On isomorphism type of some structures in many-one degrees

Sergei Podzorov

Sobolev Institute of Mathematics, Novosibirsk, Russian Federation,
podz@math.nsc.ru

Many-one degree (all necessary definitions could be found in [1]) is called simple if it contains simple or computable set. It is also called hypersimple if it contains hypersimple or computable set. We say that m-degree is Δ^0_2-degree if it consists of the sets from class Δ^0_2 of arithmetical hierarchy.

It is easy to show that hypersimple m-degrees form an ideal in simple m-degrees; simple m-degrees form an ideal in c.e. m-degrees; c.e. m-degrees form a principal ideal in Δ^0_2 m-degrees and Δ^0_2 m-degrees form an ideal in the upper semilattice of all m-degrees. So the sets of hypersimple, simple, computably enumerable and Δ^0_2 m-degrees are all the distributive upper semilattices w.r.t. m-reducibility relation. Straightforward construction shows that the upper semilattice of Δ^0_2 m-degrees has no greatest element.

Now it has been proved [3] that the next upper semilattices are isomorphic:

1. the upper semilattice of all hypersimple m-degrees;
2. the upper semilattice of all simple m-degrees;
3. the upper semilattice of all c.e m-degrees with the greatest element excluded;
4. the upper semilattice of all Δ^0_2 m-degrees;
5. Rogers semilattices of Σ^0_2-computable numberings of finite nontrivial family of the Σ^0_2-sets which are pairwise incomparable w.r.t. inclusion.

The existence of isomorphism between semilattices in items 3 and 4 was firstly announced by S. D. Denisov in 1978 [2] but the proof of this fact has never been published.

References

3. Podzorov, S.Yu.: Universal Lachlan’s semilattice with the greatest element excluded. Algebra and Logic, to be printed.