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1 Introduction

This textbook involves important topics of the limit theory for sums of independent and
weakly dependent random variables. In particular, this textbook provides an overview of
modern aspects of this theory in the case of multivariate random variables. Basic elements
of Gaussian and Poissonian approximations (including some recent results of the author)
are presented in the case when the random variables under consideration take their values
in linear spaces, in particular, in Banach spaces. We would like specially to note, firstly,
the problem of Poissonian approximation of sums of independent random variables with
values in Abelian groups, and secondly, the problem of constructing complete asymptotic
expansions for expectations of functions of sums of independent random variables in both
the Poissonian and Gaussian cases. In frame of the textbook we study rates of convergence
in the Poisson limit theorem using various probability distances.

A special interest for the reader is investigation of limit behavior of nonlinear func-
tionals of the empirical distribution like U - and V -statistics based on weakly dependent
observations. As an example of observations of such a kind, we study the case on moving
averages (linear processes) as the original observations. It is worth noting that the limit-
ing random variables for these statistics are represented as some multilinear functionals
of infinite dimensional Gaussian random variables.

The textbook consists of 13 chapters. The content of the chapters is as follows.
In Chapter 2, exact inequalities are obtained which connect expectations of some

functions of sums of independent random variables taking values in a measurable Abelian
group, and those for the accompanying infinitely divisible laws. Some applications to
empirical processes are studied.

In Chapter 3, a more general version of the well-known Dobrishin’s result connected
with an optimal coupling of two random variables is proven. An application to the problem
of Poisson approximation in Abelian groups is considered. In particular, an optimal
coupling in Poisson approximation of empirical processes is studied.

Chapter 4 is dedicated to deriving upper bounds for the Strassen distance in the
invariance principle in Banach spaces under the Poissonian setting when the distributions
of the random variables have large atoms at zero.

In Chapter 5, we study limit behavior of χ2-distance between the distributions of the
nth partial sum of independent not necessarily identically distributed Bernoulli random
variables and the accompanying Poisson law. As a consequence in the i.i.d. case we
make more precise the multiplicative constant in the classical upper bound for the rate of
convergence in the Poisson limit theorem.

In Chapter 6, the total variation distance is estimated between distributions of the
so-called rescaled empirical process and a Poisson point process which are indexed by all
Borel subsets of a bounded Borel set in Rk.

In Chapter 7, under minimal moment conditions, complete asymptotic expansions are
obtained for expectations of unbounded functions of a finite family of independent random
variables in the Poissonian setting.

In Chapter 8, we study the second term in the asymptotic expansion for the expecta-
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tions of smooth functions of sums of independent identically distributed random variables;
moreover, the order of smallness of the remainder is optimal. The method proposed in
the chapter allows us to strengthen the corresponding results of the predecessors, since, to
obtain the asymptotic expansions, we enlarge the class of smooth functions under a fixed
moment condition.

In Chapter 9, we study optimal connection between smoothness of functions and
the corresponding asymptotic expansions for the moments of these functions in the clas-
sical one-dimensional central limit theorem (CLT). In particular, under the fixed moment
conditions, we prove optimality of some smoothness conditions necessary for asymptotic
expansions for expectation of smooth functions in the CLT with optimal bounds of the re-
mainder terms.

In Chapter 10, we prove the central limit theorem for normalized von Mises statistics
based on an array of degenerate kernel functions. In the case under consideration the
limiting random variable is represented as a multifold stochastic integral constructed by
a Gaussian stochastic product-measure.

In Chapter 11, it is studied limit behavior of canonical Von Mises statistics based
on samples from a sequence of weakly dependent stationary observations satisfying ψ-
mixing condition. The corresponding limit distributions are defined by multiple stochastic
integrals of nonrandom functions with respect to nonorthogonal Hilbert noises generated
by Gaussian processes with nonorthogonal increments.

In Chapter 12, a functional limit theorem (the invariance principle) is proven for a
sequence of normalized U -statistics (i.e., for the so-called U -processes) of arbitrary order
with canonical kernels defined on samples of ϕ-mixing observations of growing size. The
corresponding limit distribution is described as that of a polynomial of a sequence of
dependent Wiener processes with some known covariance function.

In Chapter 13, we study approximation to the partial sum processes which is based on
the stationary sequences of random variables having the structure of the so-called moving
averages of independent identically distributed observations. In particular, the rates of
convergence both in Donsker’s and Strassen’s invariance principles are obtained in the
case when the limit Gaussian process is a fractional Brownian motion with an arbitrary
Hurst parameter.

The results of the textbook are based on fundamental knowledge of the students in
Probability Theory, Mathematical Statistics, Functional Analysis, and Theory of Func-
tions. This textbook corresponds to high international scientific level in Probability The-
ory and Mathematical Statistics.
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2 Moment inequalities connected with accompanying

Poisson laws in Abelian groups

1. Main definitions and results

LetX1, X2, . . . be independent random variables taking values in a measurable Abelian
group (G,A) with respective distributions P1, P2, . . . . If the random variables are identi-
cally distributed (the i.i.d. case), then we denote by P their common distribution. We
suppose that {0} ∈ A and the operation “ + ” is measurable. In other words, a sum of
arbitrary random variables in (G,A) is a random variable, too.

Denote by Pois(µ) the generalized Poisson distribution with the Lévy measure µ:

Pois(µ) := e−µ(G)

∞∑
k=0

µ∗k

k!
,

where µ∗k is the k-fold convolution of a finite measure µ with itself; µ∗0 is the unit mass
concentrated at zero. Under the measurability conditions above the convolution is well
defined because we can define the convolution of probability (i.e.,normed finite) measures.

Put Sn := Σi≤nXi. Generalized Poisson distribution with the Lévy measure µ :=∑
i≤n Pi is called the accompanying Poisson law for Sn (for example, see Araujo and

Giné, 1980). We will denote by τµ a random variable having this distribution.
The main goal of the chapter is to obtain sharp moment inequalities for some measur-

able functions of Sn via the analogous moments of the accompanying Poisson law. Results
of such a kind are connected with the Kolmogorov problem of approximation of the sum
distributions by infinitely divisible laws as well as with an improvement of the classical
probability inequalities for the sums.

For an arbitrary measurable function f satisfying the condition E|f(τµ)| <∞, intro-
duce the following notations:

(1) φ(k) := Ef(Sk), φm,z(k) := Ef(Sm,k + z),

where Sm,k :=
∑

i≤k Xm,i, Sm,0 = S0 = 0, and {Xm,i; i ≥ 1} are independent copies of
the random variable Xm. We assume that all the sequences {Xi}, {X1,i}, {X2,i}, . . . are
independent. Note that, under the moment condition above, the functions φ(k) exist as
well as the functions φm,z(k) are well defined at least for almost all z with respect to the
distribution of Sj,k for each j 6= m and integer k ≥ 0 (for details, see Section 3).

We say that a function g(k) is convex if the difference ∆g(k) := g(k + 1) − g(k) is
nondecreasing.

Theorem 1. Let one of the following two conditions be fulfilled:
a) the random variables {Xi} are identically distributed and φ(k) is a convex function;
b) for all z and m, all the functions φm,z(k) are convex.
Then, for each n,

(2) Ef(Sn) ≤ Ef(τµ).

4



For the initial random variables which are nondegenerate at zero, let {X0
i } be inde-

pendent random variables with respective distributions

P 0
i := L(Xi|Xi 6= 0).

For this sequence we introduce the notations S0
k , S

0
m,k, φ

0(k), and φ0
m,z(k) as above.

Proposition. Convexity of the functions φ0(k) or φ0
m,z(k) implies convexity of the

functions φ(k) or φm,z(k) respectively. The converse implication is false.
Rema r k 1. If the functions in the conditions of the above two assertions are concave

then inequality (2) is changed to the opposite. It follows from the well-known connection
between convex and concave functions.

A simple sufficient condition for the functions φ(k) and φm,z(k) as well as φ0(k) and
φ0

m,z(k) to be convex is as follows:
For all x ∈ G and all z, h ∈

⋃
i≤n suppXi the function f satisfies the inequality

(3) f(x+ h)− f(x) ≤ f(x+ h+ z)− f(x+ z),

where suppXi denotes a measurable subset such that Xi ∈ suppXi with probability 1.
For example, in the i.i.d. case, the convexity (say, of φ(k)) easily follows from (3):

φ(k + 1)− φ(k) ≤ E(f(Sk+2)− f(Sk +Xk+2)) = φ(k + 2)− φ(k + 1).

For the Banach-space-valued summands the following result is valid.
Theorem 2. Let G be a separable Banach space. Suppose that at least one of the

following two conditions is fulfilled:
1) the function f is continuously differentiable in Fréchet sense (i.e., f ′(x)[h] is continuous
in x for each fixed h) , and, for each x ∈ G and every z, h ∈

⋃
i≤n suppXi,

(4) f ′(x)[h] ≤ f ′(x+ z)[h];

2) EXk = 0 for all k, f is twice continuously differentiable in Fréchet sense, and
f ′′(x)[h, h] is convex in x for each fixed h ∈

⋃
i≤n suppXi.

Then all the functions in the conditions of Theorem 1 and in Proposition are convex.
Corollary 1. If Xi ≥ 0 a.s. and f is an arbitrary convex function on [0,∞), then

inequality (3) is true. Moreover, if Xi are random vectors in Rk, k ≥ 2, (as well as in the
Hilbert space l2) with nonnegative coordinates, then the function f(x) := ‖x‖2+α, where
‖·‖ is the corresponding Euclidean norm and α ≥ 0, satisfies inequalities (3) and (4). For
the mean zero Hilbert-space-valued summands, the function f(x) := ‖x‖β, where β = 2, 4
or β ≥ 6, satisfies condition 2) of Theorem 2. Therefore, in these cases, inequality (2)
holds under the additional necessary restriction E|f(τµ)| <∞.

Rema r k 2. In the multivariate case, conditions (3) and (4) are slightly stronger than
convexity. In particular, in general, the Euclidean norm does not satisfy these conditions.

R ema r k 3. There exist functions f(x) which do not satisfy the conditions of Theorem
2 but the corresponding functions in Theorem 1 and Proposition are convex. For example,
in the i.i.d. one-dimensional case, we consider the function f(x) := x5 and the centered
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summands {Xi}. It is clear that the conditions of Theorem 2 are not fulfilled. In this case
we have

φ(k) = E(
k∑

i=1

Xi)
5 = kEX5

1 + 10k(k − 1)EX3
1EX

2
1 .

Thus, if EX3
1 ≥ 0, then the function φ(k) (as well as the function φ0(k)) is convex,

otherwise it is concave. In other words, in this case we have various inequality signs in
(2) depending on positivity or negativity of the third moment of the summands.

Given a finite measure µ on (G,A) satisfying the condition µ({0}) = 0, we denote by
φµ(k) the function φ(k) in (1) computed in the i.i.d. case for the summand distribution
µ(·)/µ(G). Exactness of inequality (2) is characterized by the following result:

Theorem 3. In the i.i.d. case, let the function φµ(k) be convex. Then

(5) sup
n, P

Ef(Sn) = Ef(τµ)

whenever the expectation on the right-hand side of (5) is well defined, where L(τµ) =
Pois(µ) and the supremum is taken over all n and P such that nP (A \ {0}) = µ(A) for
all A ∈ A.

Rema r k 4. Taking inequality (2) into account we can easily reformulate Theorem 3
for the non-i.i.d. case. Perhaps, for the first time the idea of employing generalized Poisson
distributions for constructing upper bounds for moments of the sums was proposed by
Prokhorov (1960, 1962). In particular, relations (2) and (5) were obtained by Prokhorov
(1962) for the functions f(x) := x2m (m is an arbitrary natural) and f(x) := ch(tx),
t ∈ R, and for one-dimensional symmetric {Xi}. Moreover, in the case of mean zero
one-dimensional summands, these relations for the functions f(x) := exp(hx), h ≥ 0, can
be easily deduced from Prokhorov (1960) (see also Pinelis and Utev, 1989).

The most general result in this direction was obtained by Utev (1985) which, in fact,
rediscovered and essentially employed some results of Cox and Kemperman (1983) regard-
ing lower bounds for moments of sums of independent centered random variables. Under
condition 2) of Theorem 2 he proved extremal equality (5) for nonnegative functions f(x)
having an exponential majorant. Moreover, he required some additional unnecessary re-
strictions on the sample Banach space. In our opinion , the corresponding proof proposed
in this chapter, is simpler than that of Utev and need no additional restrictions on f(x)
and the sample space.

Relations like (2) and (5) can be also applied for obtaining sharp moment and tail prob-
ability inequalities for sums of independent random variables (for details, see Kemperman,
1972; Pinelis and Utev, 1985, 1989; Utev, 1984, 1985; Ibragimov and Sharakhmetov, 1997,
2001).

The above results deal with some type of convexity. However, we can obtain moment
inequalities close to those mentioned above without any convexity conditions.

Theorem 4. In the i.i.d. case, for every nonnegative measurable function f, the
following inequality holds:

(6) Ef(Sn) ≤ 1

1− p
Ef(τµ),
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where p := Pr(X1 6= 0).
In the non-i.i.d. case, the factor (1− p)−1 in (6) should be replaced by exp(

∑
i≤n pi),

where pi := Pr(Xi 6= 0).

It is clear that inequality (6) provides a sufficiently good upper bound under the
so-called Poissonian setting when the summand distributions have large atoms at zero
(i.e., the probabilities pi are small enough). Some particular cases of inequality (6) are
contained in Araujo and Giné (1980), and in Giné, Mason, and Zaitsev (2001).

2. Applications to empirical processes

In this section we formulate some consequences of the above theorems as well as some
new analogous results for empirical processes. For the sake of simplicity we study the em-
pirical processes with one-dimensional time parameter although the results below can be
reformulated for empirical processes indexed by subsets of an arbitrary measurable space
(moreover, for abstract empirical processes indexed by a family of measurable functions).
These results are a basis for the so-called Poissonization method for empirical processes.
Sometimes it is more convenient to replace an empirical process under study by the corre-
sponding accompanying Poisson point process having a simpler structure for analysis (for
example, independent “increments”). Some versions of this sufficiently popular and very
effective method can be found in many papers. In particular, some probability inequali-
ties connecting the distributions of empirical processes (in various settings) and those of
the corresponding Poisson processes are contained in Borisov (1983, 1990, 1991), Einmahl
(1987), Deheuvels and Mason (1992), Giné, Mason, and Zaitsev (2001), and others.

Introduce the so-called tail (or local) empirical process on the interval [0, n] :

νn(t) := nFn(t/n),

where Fn(·) is the empirical distribution function (right-continuous version) based on a
sample of size n from the (0,1)-uniform distribution. We consider νn as a random variable
in the space LS([0, n]) which is defined as the linear span of the set of all piecewise
constant right-continuous functions on [0, n] with finitely many jumps, endowed with the
cylinder σ-field. It is easy to verify that the standard Poisson process π(t) on [0, n] (with
right-continuous paths) has the accompanying Poisson distribution for νn in this space.

Theorem 5. Let Φ(·) be a convex nonnegative functional on LS([0, n]) which is
nondecreasing on the subset of all nonnegative functions with respect to the standard partial
order in function spaces. Suppose that, for each function x(·) ∈ LS([0, n]), the following
relation holds: limm→∞ Φ(x(m)) = Φ(x), where x(m)(t) = x([mt]/m), with [·] the integer
part of a number. Moreover, if EΦ(π) <∞ then

(7) EΦ(νn) ≤ EΦ(π).

Rema r k 5. It is well known that if a convex functional defined on a topological
linear space (say, on a Banach space) is bounded in a neighborhood of some point, then

7



it is continuous (for example, see Kutateladze, 1995). Thus, if the functional in Theorem
5 is defined, say, on Lm([0, n], λ), where λ is a finite measure, and satisfies the local
boundedness condition, then the continuity condition connected with the step functions
x(m)(t) can be omitted.

In the sequel, in the case of Banach-space-valued random variables, we will con-
sider only continuous convex functionals. For example, the functional Φ(x) := ‖x‖q

m ≡
(
∫ n

0
|x(t)|mλ(dx))q/m with arbitrary parameters m ≥ 1 and q ≥ 1, where λ is an arbitrary

finite measure on [0, n], satisfies the conditions of Theorem 5.
Note that the accompanying Poisson process for the centered empirical process ν0

n(t) :=
νn(t)−t, say, in Lm([0, n], λ) differs from the corresponding centered Poisson process. This
process can be defined as π0(t) := π(t) − π(n)t/n and, by analogy with the definition of
a Brownian bridge, can be called a Poissonian bridge on [0, n]. For such processes the
second assertion of Theorem 2 can be reformulated as follows:

Corollary 2. Let Φ(x) be a functional on Lm([0, n], λ) having convex second Fréchet
derivative. Then

(8) EΦ(ν0
n) ≤ EΦ(π0)

whenever the expectation on the right-hand side of (8) exists.
As an example of such a functional we can consider Φ(x) := ‖x‖mq

m for any m ≥ 2 and
q ≥ 3.

If we consider the processes νn and π as random elements in LS([o, δn]), where δ < 1,
then the following direct consequence of Theorems 4 and 5 above, and Lemma 1 and
Corollary 6 below holds:

Corollary 3. For every measurable functional Φ on LS([0, δn]) under the minimal
restriction E|Φ(π)| <∞, the following inequality holds:

(9) E|Φ(νn)| ≤ 1

1− δ
E|Φ(π)|.

Moreover, if δ = N/n, N does not depend on n, and the functional Φ satisfies the
conditions of Theorem 5, then

(10) sup
n

EΦ(νn) = lim
n→∞

EΦ(νn) = EΦ(π).

Finally, we formulate some useful moment inequalities which deal with one-dimensional
projections of the processes νn(·) and π(·). A direct consequence of Corollary 1 is as follows:

Corollary 4. For every natural n and m, and every t ≥ 0, the following inequality
holds:

E(νn(t) + x)m ≤ E(π(t) + x)m,

where x is arbitrary for even m, and x ≥ 0 for odd m.
In the following assertion which complements this inequality, the above-mentioned

convexity conditions need not be fulfilled.
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Theorem 6. For every natural n and m, and every t ≥ 0, the following inequality
holds:

|E(νn(t) + x)2m−1| ≤ E(π(t) + x)2m−1,

where x ∈ [−t, 0] is arbitrary.
Corollary 5. Let f(x) be an entire function on [0,∞), i.e., an analytic function which

admits Taylor expansion at all points with a converging power series on the whole positive
half-line. Assume that, for a point x0 ≥ 0, the kth derivative of this function at x0 is
nonnegative for each k ≥ 2. Then, for every t ≥ x0,

Ef(νn(t)) ≤ Ef(π(t)).

3. Proof of the results

First we formulate two important lemmas which play a key role in proving the above
results.

Lemma 1. In the i.i.d. case, under the above notations, the following relations hold:

(11) Pois(nL(X1)) = L(Sπ(n)),

where the standard Poisson process π(·) is independent of {Xi};

(12) L(Sn) = L(S0
ν(n,p)), Pois(nL(X1)) = L(S0

π(np)),

where p := Pr(X1 6= 0), L(ν(n, p)) = Bn,p is the binomial distribution with parameters n
and p; the pair (ν(n, p), π(np)) does not depend on the sequence {X0

i }.
The relation (11) is well known. It immediately follows from the above-mentioned

definition of a generalized Poisson distribution: the probability law Pois(µ) may be in-
terpreted as the distribution of

∑
i≤πµ

Yi, where {Yi} are i.i.d. random variables with the

common distribution µ(·)/µ(G) and πµ is a Poissonian random variable with parameter
µ(G), which is independent of the sequence {Yi}.

The equalities in (12) which are more convenient in studying accuracy of Poisson ap-
proximation of the sums, are contained in various forms in many papers (see, for example,
Khintchine, 1933, 1936; Le Cam, 1960, 1965; Borovkov, 1988; Borisov, 1993, 1996; and
others). Actually, these relations also represent versions of the total probability formula
and are easily proven.

Taking into account the representations in Lemma 1 we can reduce the problem to the
simplest one-dimensional case when we estimate the analogous moments of the binomial
distribution introduced in Remark 1. However, in this case, we can obtain sufficiently
exact inequalities for moments of arbitrary functions using the following lemma.

Lemma 2. For each p ∈ (0, 1),

(13) sup
n,j

Bn,p(j)

L(π(np))(j)
≤ 1

1− p
.
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Proof. For every nonnegative integer j ≤ n, we have

P(ν(n, p) = j)

P(π(np) = j)
=

n(n− 1) · · · (n− j + 1)

nj(1− p)j
(1− p)nenp =

exp

{
n(p+ log(1− p))− j log(1− p) +

j−1∑
i=0

log

(
1− i

n

)}
≤

exp

{
− log(1− p) + n(p+ log(1− p))− (j − 1) log(1− p)

+n

∫ (j−1)/n

0

log(1− x)dx

}
≤ exp

{
− log(1− p)− nHp

(
j − 1

n

)}
,

where Hp(x) = −p+ x+ (1− x) log((1− x)/(1− p)). The following properties of Hp are
obvious:

Hp(1) = 1− p, Hp(p) = 0,
d

dx
Hp(p) = 0,

d2

dx2
Hp(x) = 1/(1− x),

which implies Hp(x) ≥ 0 if x ≤ 1, i.e., inequality (13) is proven.
R ema r k 6. Inequality (13) is a part of a more general result in Borisov and Ruzankin

(2002). It is worth noting that this upper bound is an estimate for the so-called Radon-
Nikodym derivative of a binomial distribution with respect to the accompanying Poisson
law. This problem was studied by a number of authors (Le Cam, 1960; Chen, 1975; Bar-
bour, Chen, and Choi, 1995; and others). In particular, under some additional restriction
on n and p, a slightly stronger estimate is contained in Le Cam (1960). However, in
general, estimate (13) cannot be essentially improved. Under some restrictions on n and
p, a lower bound for the left-hand side of (13) has the form (1 − cp)−1, where c is an
absolute positive constant.

Corollary 6. Let g be an arbitrary function with the restriction E|g(π(λ))| < ∞ for
some λ. Then, for every n and p satisfying the condition np ≤ λ, the following inequality
holds:

(14) E|g(ν(n, p))| ≤ eλ−np

1− p
E|g(π(λ))|.

Moreover,

(15) lim
n→∞, np→λ−0

Eg(ν(n, p)) = Eg(π(λ)).

Proof. Inequality (14) follows from Lemma 2 and the simple estimate

sup
j

P(π(np) = j)

P(π(λ) = j)
≤ eλ−np.

Relation (15) follows from the classical Poisson limit theorem and inequality (14) which
provides fulfillment of the uniform integrability condition. The corollary is proven.
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Rema r k 7. Inequality (6) in Theorem 4 immediately follows from Corollary 6 and
representations (12). In the case n = 1 in Lemma 2 there exists a slightly stronger upper
bound for the Radon–Nikodym derivative. It is easy to see that, in this case, the right-
hand side of (13) can be replaced by ep. In the non-i.i.d. case evaluation of the moment
Ef(Sn) can be reduced to that for a new function of n independent Bernoulli random
variables ν1(1, p), . . . , νn(1, p) (for details, see the proof of Theorem 1 below). In this
case, the approximating moment is calculated by independent Poisson random variables
π1(p), . . . , πn(p) with the same parameter p. Thus, the corresponding upper bound for the
Radon–Nikodym derivative (as well as the corresponding factor on the right-hand side
of (6)) equals exp(

∑
i≤n pi). However, in the special case when Sn =

∑
i≤n νi(1, p), there

exist better upper bounds for this derivative. For example, in this case we can replace
the factor exp(

∑
i≤n pi) by (1− p̃)−2, where p̃ = max{pi; i ≤ n} (see Barbour, Chen, and

Choi, 1995; Borisov and Ruzankin, 2002).
It is worth noting that, under the minimal moment condition above, we cannot replace

the one-sided double limit in (15) by the classical double limit as well as the condition
np ≤ λ in (14) cannot be omitted. For example, the function g(k) = (1 ∨ (k − 2))!λ−k

satisfies the above-mentioned moment condition, however it is easy to prove the relation

lim sup
n→∞, np→λ

Eg(ν(n, p)) = ∞.

Proof of Theorem 1. In the i.i.d. case inequality (2) is a simple consequence of relation
(11) and the classical Jensen inequality:

Ef(τµ) = Eφ(π(n)) ≥ φ(n) = Ef(Sn).

In order to prove inequality (2) in the non-i.i.d. case we introduce the sequence of
independent identically distributed random variables {πi; i ≥ 1} having Poisson distri-
bution with parameter 1, which are independent of all the sequences of random variables
introduced in (1) (including the initial random variables). Then we can define the random
variable τµ in the following way:

(16) τµ :=
n∑

m=1

Sm,πm ,

where Sm,k are defined in (1). The further reasoning is quite analogous to the above. Put
z1 :=

∑n
m=2 Sm,πm . Using the above arguments, we have

Ef(τµ) = EEz1φ1,z1(π1) ≥ EEz1φ1,z1(1) = Ef(X1 + z1),

where the symbol Ez1 denotes the conditional expectation given z1. Now we put z2 :=
X1 +

∑n
m=3 Sm,πm . Then, repeating the same calculation, we obtain the estimate

Ef(X1 + z1) = EEz2φ2,z2(π2) ≥ EEz2φ2,z2(1) = Ef(X1 +X2 +
n∑

m=3

Sm,πm).
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Continuing the calculations in this way, we finally obtain inequality (2). Theorem 1
is proven.

Proof of Proposition. The first assertion is easily verified. Indeed, by Corollary 1 and
Lemma 1 (see (12)) we have

φ(k + 1)− φ(k) = Eφ0(ν(k + 1, p))− Eφ0(ν(k, p))

≤ φ(k + 2)− φ(k + 1).

The analogous inequality holds for the functions φm,z(k).
In order to prove the second assertion of this Proposition we consider the subclass of

random variables satisfying the conditions EX4
1 <∞, P(X1 = 0) 6= 0, and EX1 6= 0. Put

f(x) := x4. Then

(17) φ(k) = A4
k(EX1)

4 + 6A3
kEX

2
1 (EX1)

2 + 3A2
k(EX

2
1 )2 + 4A2

kEX1EX
3
1 + kEX4

1 ,

where Am
k := k(k − 1) · · · (k −m+ 1). The second derivative has the form

φ′′(k) = Ak2 +Bk + C,

where A := 12(EX1)
4, B := 36EX2

1 (EX2
1 − (EX1)

2), and

(18) C := 22(EX1)
4 + 6(EX2

1 )2 + 8EX1EX
3
1 − 36EX2

1 (EX1)
2.

Because of positivity of A and B, the function φ(k) in (17) is convex for C ≥ 0. If C < 0
and at least φ′′(2) < 0, then the function φ(k) replaces concavity with convexity. The
same representations with the above comments hold for the function φ0(k) (with the
replacement of X1 by X0

1 and C by C0 in (17) and (18)).
Consider the case in which the first moment of X0

1 is positive and the third moment
equals zero. It is clear that we can choose the distribution of X0

1 so that the constant
C0 will be negative with its absolute value large enough. In this case the function φ0(k)
will be of the mixed type. For example, we can define this distribution as follows: Given
a positive constant K, we put X0

1 = K with probability 8/9, and X0
1 = −2K with

probability 1/8. In this case, EX0
1 = 6K/9, E(X0

1 )2 = 4K/9, and C0 < −K4.
Since EXk

1 = pE(X0
1 )k for each integer k, given the above-mentioned distribution of

X0
1 , we can consider p as a free parameter. Substituting this representation into (18)

we conclude that, for sufficiently small p (say, p ≤ 0.1), the constant C will be positive.
Proposition is proven.

Proof of Theorem 2. The first assertion is trivial because, under condition 1), from
Taylor’s formula we have

f(x+ h)− f(x) =

∫ 1

0

f ′(x+ th)[h]dt ≤
∫ 1

0

f ′(x+ z + th)[h]dt

= f(x+ z + h)− f(x+ z)

for every x ∈ G and z, h ∈
⋃

i≤n suppXi, that is, inequality (3) is fulfilled.

12



To prove the second assertion we only need to prove this in the i.i.d. case because,
using the arguments in proving Theorem 1 above, we can reduce the problem to the i.i.d.
case. It remains to observe that, under condition 2) and given z, the function f(x + z)
has convex second derivative with respect to x. So, we prove the assertion in the i.i.d.
case. Taking into account continuity in x of the function f ′′(x)[h, h] for any fixed h and
using Taylor’s formula, we have

(19) f(Sk+1)− f(Sk) = f ′(Sk)[Xk+1] +

∫ 1

0

(1− t)f ′′(Sk + tXk+1)[Xk+1, Xk+1]dt.

First we average both sides of (19) with respect to the distribution of Xk+1 and use the
fact that, for any centered (in Bochner sense) random variable X and an arbitrary linear
continuous functional l(·), the equality El(X) = 0 holds. Averaging both sides of this
identity with respect to the other distributions we then obtain the equality (with more
convenient representation of the remainder in (19))

(20) φ(k + 1)− φ(k) =
1

2
Ef ′′(Sk + ζXk+1)[Xk+1, Xk+1],

where ζ is a random variable with the density 2(1−t) on the unit interval, which is defined
on the main probability space and independent of the sequence {Xk} (we may assume
here that this space is reach enough). It is worth noting that, because of integrability of
the left-hand side of (19), the expectation on the right-hand side of (20) is well defined
due to Fubini’s theorem. In the i.i.d. case, by the classical Jensen inequality (for the
conditional expectation Eζ,Xk+2

) we finally obtain the inequality we need:

φ(k + 1)− φ(k) =
1

2
EEζ,Xk+2

f ′′(Sk + ζXk+2)[Xk+2, Xk+2]

≤ 1

2
Ef ′′(Sk+1 + ζXk+2)[Xk+2, Xk+2] = φ(k + 2)− φ(k + 1).

The proof of convexity of φ0(k) and φ0
m,z(k) is the same because, for the centered

initial summands, EX0
k = 0. The theorem is proven.

Proof of Theorem 3. Put n > µ(G) and consider the independent random variables
Xk ≡ Xk(n) with the following common distribution:

P (A \ {0}) = µ(A)/n, P ({0}) = 1− µ(G)/n.

Then the corresponding random variables X0
i have the common distribution P 0(A) =

µ(A)/µ(G). Therefore, for each n, by Proposition we have the corresponding inequality
for the moments under study. It is easy to see that, in this case, the function φ0(k) ≡ φµ(k)
does not depend on n, and we can apply Lemma 1 and relation (15). Thus, we have

lim
n→∞

Ef(Sn) = lim
n→∞

Eφµ(ν(n, p))

13



= Eφµ(π(λ)) = Ef(τµ),

where p = µ(G)/n and λ = µ(G). The theorem is proven.
Proof of Theorem 4. The claim follows immediately from Lemmas 1 and 2 and Re-

mark 7.
Proof of Theorem 5. Because of the monotonicity and continuity conditions it is

sufficient to prove the assertion for any finite-dimensional projection ν
(m)
n and π(m) of

the processes under consideration. To this end it we consider an arbitrary nonnegative
function ψ(x1, . . . , xk) which is convex and increasing in every coordinate xi. We will study
the moment Eψ(νn(t1), . . . , νn(tk)), where ti ∈ [0, n) are arbitrary points and ti < ti+1 for
every i < k. We will also assume that the corresponding Poisson moment exists.

The following so-called Markov property of νn(·) is well known: Given the quantity
νn(t) (the number of the sample points to the left of t/n), two new samples constituted by
the points to the left and to the right of t/n respectively, are independent and distributed
as samples (of the corresponding sizes) from the uniform distributions on [0, t/n] and
[t/n, 1] respectively. In other words, given νn(t1), the increment νn(t2)− νn(t1) coincides
in distribution with ν∗N((t2 − t1)N/n), where N := n − νn(t1), and the process ν∗n(·) is
an independent copy of νn(·). Thus, taking into account Corollary 1 and convexity and
monotonicity of the function ψ1(x) := Eψ(νn(t1), . . . , νn(tk−1), νn(tk−1) + x), we have

Eψ(νn(t1), . . . , νn(tk)) = EENψ1(ν
∗
N((tk − tk−1)N/n))

≤ EENψ1(π((tk − tk−1)N/n)) ≤ Eψ1(π(tk)− π(tk−1)),

where π(·) is a Poisson process independent of νn(·).
Therefore, we reduced the problem to evaluating the moment of a function of the

analogous (k − 1)-dimensional projection νn(t1), . . . , νn(tk−1). It remains to observe that
the function ψ2(x1, . . . , xk−1) := Eψ(x1, . . . , xk−1, xk−1 + π(tk) − π(tk−1)) is convex and
monotone, too. In other words, to prove the assertion we may use induction on k. The
theorem is proven.

Proof of Theorem 6. It is clear that, under the above notations, we deal with the
random variable ν(n, p) having the binomial distribution Bn,p. First we consider the case
n = 1.

Lemma 4. For every natural m, the function gm(t) := E(π(t) − t)m is a polynomial
on [0,∞) with nonnegative coefficients, and the following inequalities hold:

(21) E(ν(1, p) + x)2m−1 ≤ E(π(p) + x)2m−1

if x ≥ −1; and

(22) |E(ν(1, p) + x)2m−1| ≤ E(π(p) + x)2m−1

if x ≥ −p.
Proof. The properties of the functions gm(t) immediately follow from the relation

gm(t) =
∞∑

k=0

(k − t)m−1(k − t)
tk

k!
e−t =

∞∑
k=1

(k − t)m−1 tk

(k − 1)!
e−t − tgm−1

14



= tE(π(t)− t+ 1)m−1 − tgm−1 = t

m−2∑
k=0

(m− 1)!

k!(m− k − 1)!
gk(t),

where m ≥ 2, g0(t) ≡ 1, and g1(t) ≡ 0.
In order to prove (21) we first study the case x = −1. We have

E(ν(1, p)− 1)2m−1 = p− 1,

E(π(p)− 1)2m−1 = −e−p +
∞∑

k=2

(k − 1)2m−1

k!
pke−p

> −e−p +
1

2

∞∑
k=2

(k − 1)2m−3

(k − 2)!
pke−p = −e−p +

p2

2
E(1 + π(p))2m−3

(23) > p− 1− p2

2
+
p2

2
E(1 + π(p))2m−3 > p− 1,

where m ≥ 2 (in the case m = 1 the assertion is trivial). Inequality (21) follows from
(23) and the analogous inequality for the corresponding derivatives with respect to x (see
Corollary 4).

To prove (22) we need to deduce only the inequality

(24) E(p− ν(1, p))2m−1 ≤ E(π(p)− p)2m−1.

First we assume that p ≤ 1/2. Then we have

E(p− ν(1, p))2m−1 = p(1− p)(p2m−2 − (1− p)2m−2) ≤ 0,

and (24) holds because of nonnegativity of the functions gm(t).
In the case p > 1/2 we put ν̃(1, p̃) := 1 − ν(1, p), where p̃ := 1 − p. By (24) we then

obtain
E(p− ν(1, p))2m−1 = E(ν̃(1, p̃)− p̃)2m−1 ≤ g2m−1(p̃) ≤ g2m−1(p)

due to monotonicity of the functions gm(t). The lemma is proven.
Since ν(n, p) coincides in distribution with a sum of independent copies of the random

variables ν(n − 1, p) and ν(1, p), the further proof of the theorem can be continued by
induction on n (using (22) and the binomial formula). The theorem is proven.
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3 Couplings in Poissonian approximation in Abelian

groups

1. Introduction and the main result

Let S be a separable metric space. Denote by V (L(X),L(Y )) the total variation
distance (with respect to the Borel σ-field) between the distributions of random variables
(r.v-s) X and Y taking values in S. We discuss the following fundamental result of
Dobrushin, 1970: There exist r.v-s X0 and Y0 defined on a common probability space,
with the same distributions as X and Y respectively such that

(1) V (L(X),L(Y )) = Pr(X0 6= Y0)

and, moreover,

(2) V (L(X),L(Y )) = inf
X,Y

Pr(X 6= Y ),

where the infimum is taken over all possible constructions of r.v-s X and Y on a common
probability space.

Relations (1) and (2) are a duality theorem in the Monge–Kantorovich problem for
the indicator metric (for details, see Rachev, 1984). These relations mean that if the total
variation distance between the distributions of some r.v-s is sufficiently small, then there
exist versions of these r.v-s coinciding with probability close to 1, and this probability is
the largest possible.

R ema r k 1. If S is a Polish space with a metric r, then relations (1) and (2) follow
from the more general result of Strassen, 1965: For every t ≥ 0, we have

(3) ρ(t, P,Q) = β(t, P,Q),

where
ρ(t, P,Q) = inf

ξ,η
{P(r(ξ, η) > t)}

with P = L(ξ), Q = L(η), and

β(t, P,Q) = sup{P (Z)−Q(Zt) : Z is closed in S}

with Zt = {y ∈ U : r(Z, y) ≤ t}. In particular, from (3) it follows that ρ(0, P,Q) =
V (P,Q).

Under less restrictive conditions on S (for the so-called inner regular separable metric
spaces which may be incomplete) relation (3) was proved by Dudley (1968).

Another proof of the Dudley-Strassen result was proposed by Schay (1974). But at
least transition from the discrete case to the general one in that paper (see Theorem 2 in
Schay, 1974) is incorrect. Actually, the Schay method of discrete approximation implies
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continuity of the functional ρ(t, P,Q) on P and Q with respect to the weak convergence
topology (for every fixed t ≥ 0). However, this statement is false (the functional ρ(t, P,Q)
is continuous with respect to a stronger metric like the total variation distance).

R ema r k 2. The original Dobrushin proof of (1) and (2) which was carried out for an
arbitrary metric space S (not necessarily separable), contains an incorrectness because, in
general, the event {X 6= Y } does not belong to the product σ-field on which every joint
distribution is well defined. In other words, it is not clear how to define the probability
on the right-hand side of (2) for an arbitrary construction of r.v-s X and Y on a common
probability space without separability. In order to correct the proof we need a more
careful construction of the optimal joint distribution of (X0, Y0) on the product space and
the probabilities on the right-hand side of (2) as well.

Now let (S, A) be an arbitrary measurable space. Denote by Σ = Σ(A × A, D)
the minimal σ-field generated by the standard product σ-field A×A and diagonal D =
{(x, y) : x = y} of the product space. The following assertion is a more general and
somewhat corrected version of the Dobrushin result:

Theorem 1. On the probability space (S × S, Σ), there exist copies X0 and Y0 of
r.v-s X and Y respectively such that relations (1) and (2) hold, where the infimum in (2)
is taken over all pairs (X, Y ) based on the above probability space and having the initial
marginal distributions.

Proof. Let P1 and P2 be the distributions of X and Y respectively. The Dobrushin
proof is based on the classical Hahn–Jordan decomposition S = S+

⋃
S− for the signed

measure G := P1 − P2. In other words, we have G(A ∩ S+) ≥ 0 and G(A ∩ S−) ≤ 0 for
every A ∈ A.

Put ν(A) := P2(A ∩ S+) + P1(A ∩ S−) and α := ν(S). It is clear that α ≤ 1 because,
from the definition of S+ and S−, we have

ν(A) ≤ min{P1(A), P2(A)}.

We omit the cases α = 0 and α = 1 because in the first case, we have P1 ⊥ P2 and in the
second case, P1 = P2, and the problem is trivially solved.

Let 0 < α < 1. Introduce the following three probability measures:

µ(A) := ν(A)/α,

λ1(A) :=
P1(A)− ν(A)

1− α
,

λ2(A) :=
P2(A)− ν(A)

1− α
.

The construction of the optimal joint distribution P(·) on the probability space (S×S, Σ)
is as follows: For all A,B ∈ A, we put

P(A×B) = αµ(A ∩B) + (1− α)λ1(A)λ2(B),

P((A×B) ∩D) = αµ(A ∩B).
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Note that, for a separable metric space, it is sufficient to define the optimal distribution
only on rectangles A × B (as in Dobrushin, 1970). In other words, we have constructed
an elementary measure on the minimal semiring generated by all canonical rectangles and
the diagonal of the product space. Thus, by the classical extension theorem of measure
theory, we can extend this elementary probability to the minimal σ-field containing this
semiring of subsets.

It is easy to see that P(A× S) = P1(A), P(S ×B) = P2(B), and

P(D) = ν(S) = P2(S+) + P1(S−) = 1−G(S+)

= 1− V (L(X),L(Y )).

Relations (1) and (2) follow from the above and the elementary inequality

Pr(X ∈ A) ≤ Pr(Y ∈ A) + Pr(X 6= Y )

which is true for all constructions of X and Y on a common probability space with
measurable diagonal. In other words, in this case,

V (L(X),L(Y )) ≤ Pr(X 6= Y ).

The theorem is proved.
R ema r k 3. In the formulation of Theorem 1, the infimum in (2) can be taken over

all constructions of r.v-s X and Y on a common probability space if we replace Pr in (2)
with the symbol of the outer probability Pr∗ which is defined by the above-introduced
extended product σ-field Σ.

R ema r k 4. Actually, the construction of the optimal joint distribution of (X0, Y0)
in the Dobrushin theorem is also contained in Le Cam (1965) (however, without proving
equalities (1) and (2)). Le Cam’s proof is based on the notion of the minimal measure that
is equivalent to the above-mentioned Hahn-Jordan decomposition. It is easy to verify that
the Le Cam coupling provides equality (1) as well (at least for separable metric spaces).

2. Poisson approximation in Abelian groups

Let {Xk; k ≥ 1} be independent identically distributed (i.i.d.) r.v-s taking values in
an arbitrary measurable Abelian group (G,A) with measurable operation “+”. In this
case, we have no measurability difficulties mentioned above. Let {X0

i } be i.i.d. r.v-s with
distribution

L(X0
1 ) = L(X1|X1 6= 0),

where the distribution on the right-hand side of this equality is conditional under the
condition {X1 6= 0}. Put p := Pr(X1 6= 0), Sn :=

∑
i≤nXi, and S0

n :=
∑

i≤nX
0
i . Intro-

duce the so-called accompanying (for Sn) Poisson r.v. Πn. It is well known that this r.v.
coincides in distribution with the sum Sπ(n), where the r.v. π(n) has the Poisson distribu-
tion with parameter n and is independent of the initial sequence of r.v-s. We need more
convenient representations of the r.v-s introduced above. Actually, these representations
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in various forms are contained in many papers (see, for example, Khintchine, 1933, 1936;
Le Cam, 1960, 1965; K.Borovkov, 1988; Borisov, 1993, 1996) and they can be briefly
defined by the relations

(4) L(Sn) = L(S0
ν), L(Πn) = L(S0

π),

where L(ν) = Bn,p is the binomial distribution with parameters n and p; L(π) = Pnp is
the classical Poisson distribution with parameter np; the pair (ν, π) does not depend on
the sequence {X0

i }.
Whence the following inequality immediately follows (say, by Theorem 1):

(5) V (L(Sn),L(Πn)) ≤ V (Bn,p, Pnp).

Moreover, if there exists (with probability 1) a measurable one-to-one mapping n → S0
n

(typical property of empirical processes) then it is easy to obtain the equality

(6) V (L(Sn),L(Πn)) = V (Bn,p, Pnp).

In other words, the problem of approximating the distributions of the sums in Abelian
groups by the accompanying Poisson laws is easily reduced to the simplest one-dimensional
case. In our opinion, employment of relations (5) and (6) allows us to obtain the correspon-
ding upper bounds by the shortest way. Using Theorem 1 we easily obtain the correspon-
ding coupling with an exact upper bound.

Sometimes we study approximation of the distributions by Poisson laws different from
the accompanying. In this case, we can use the well-known representation of such a Poisson
law as an operator exponential. Denote by Pois(µ) the generalized Poisson distribution
in (G,A) with the Lévy measure µ:

(7) Pois(µ) := e−µ(G)

∞∑
k=0

µ∗k

k!
,

where µ∗k is the k-fold convolution of a finite measure µ with itself; µ∗0 is the unit mass
concentrated at zero. In particular, using relations (4), it is easy to verify the double
equality

(8) L(Πn) = Pois(nL(X1)) = Pois(npL(X0
1 )).

¿From (7) it is easy to obtain the estimate (for details, see Borisov, 2000)

(9) V (Pois(µ), Pois(λ)) ≤ 2V (µ, λ),

where the factor “2” in the right-hand side of (9) can be omitted if either λ(G) = µ(G) or
λ ≥ µ (λ ≤ µ). This inequality improves the corresponding result in Reiss (1993, p. 87).

As a consequence of Theorem 1, relations (4), (8), (9), and the classical Prohorov-Le
Cam estimate for the right-hand side in (5) as well (see Prohorov, 1953; Le Cam, 1960;
Barbour and Hall, 1984), we can formulate the following result:

19



Theorem 2. Let Π(µ) be an r.v. in (G,A) with distribution Pois(µ). Then r.v-s Sn

and Π(µ) can be defined on a common probability space such that

(10) Pr(Sn 6= Π(µ)) ≤ min{p, np2}+ 2V (npL(X0
1 ), µ).

Corollary. Let {Xnk; k ≤ n}, n = 1, 2, ..., be row-wise i.i.d. r.v-s in (G,A). Given a
finite measure µ, let the condition

(11) lim
n→∞

V (npnL(X0
n1), µ) = 0

be fulfilled, where pn = Pr(Xn1 6= 0). Then, for each n, r.v-s S
(n)
n :=

∑
k≤nXnk and Π(µ)

can be defined on a common probability space such that

(12) lim
n→∞

Pr(S(n)
n 6= Π(µ)) = 0.

Note that, under the conditions of the Corollary, we have npn → µ(G). Thus, using
the upper bound in (10), we can estimate the rate of convergence in (12).

R ema r k 5. The above-introduced measurability condition on the operation “+” can
be weakened. We only need a correct definition of the distributions of S0

n for all n. In
other words, if 0 ∈ A, we can axiomatically define the nth convolutions we need, and
convolutions of the initial distribution of the summands as well (for details, see Borisov,
1993). In this case, the accompanying Poisson law is well defined. However, for every
construction of r.v-s Sn and Π(µ) on a common probability space, we cannot guarantee
measurability of the event {Sn 6= Π(µ)} as well as correct definition of the corresponding
probability. Theorem 2 provides such a construction.

3. Poisson approximation of empirical processes

Let {Ynk; k ≤ n}, n = 1, 2, ..., be row-wise i.i.d. r.v-s taking values in an arbitrary
measurable space (S,A). For each n, introduce the normalized empirical process based
on the sample {Ynk; k ≤ n} and indexed by a family F of real-valued Borel measurable
functions on (S,A) :

Sn(f) :=
∑
k≤n

f(Ynk), f ∈ F .

We consider Sn as an r.v. in the measurable space (RF , C) of all real-valued functions
indexed by F , with the cylinder σ-field C (Kolmogorov’s space).

Denote by νn(A) := Sn(IA) the normalized empirical measure, where IA(·) is the
indicator function. The following theorem is a simple consequence of the Corollary above:

Theorem 3. Given some B ∈ A and some finite measure λ with support in B,
suppose that V (npnL(Y B

n1), λ) → 0 as n → ∞, where L(Y B
n1) = L(Yn1 |Yn1 ∈ B) and
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pn = Pr(Yn1 ∈ B). Then the sample {Ynk; k ≤ n} and a Poisson point process πλ on A
with mean measure λ can be defined on a common probability space such that

lim
n→∞

Pr{sup
A⊆B

|νn(A)− πλ(A)| 6= 0} = 0.

Because of the identity

Sn(f) =

∫
S

f(x)νn(dx)

we can reformulate Theorem 3 in the following equivalent form:

Theorem 3′. Under the conditions of Theorem 3, we can define the random process
Sn(f) and the generalized Poisson process

Π(f) :=

∫
S

f(x)πλ(dx),

on a common probability space such that

lim
n→∞

Pr{
⋃
f∈F

{Sn(f) 6= Π(f)}} = 0.

Proof of Theorem 3. Introduce the notations

Xnk := {IA∩B(Ynk); A ∈ A},

X0
nk := {IA(Y B

nk); A ∈ A},
pn := Pr(Yn1 ∈ B) = Pr(Xn1 6= 0).

We consider the random processes {Xnk} as elements of the corresponding Kolmogorov
space. In order to apply the Corollary of Theorem 2, we need to verify condition (11). De-
note by {Zi; i ≥ 1} a sequence of i.i.d. r.v-s in S with the distribution λ(·)/λ(S). It is easy
to see that the Lévy measure of the Poisson point process πλ introduced in the statement
of Theorem 3 coincides with µ := λ(S)L{IA(Z1); A ∈ A}. It only remains to evaluate the
total variation distance in the Kolmogorov space between µ and npnL{IA(Y B

nk); A ∈ A}.
In order to do this, we need to estimate closeness of the measures only over all finite-
dimensional cylindrical subsets. Note that, for arbitrary measurable subsets A1, . . . , Ak

and an arbitrary S-valued r.v. ξ, we have the equality of the events

{IA1(ξ) = e1, . . . , IAk
(ξ) = ek} = {ξ ∈

⋂
i≤k

Ci},

where ei ∈ {0, 1}, Ci = Ai whenever ei = 1, and Ci = Ac
i (Ac is the complement of A)

whenever ei = 0.
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Therefore,
V (npnL(X0

n1), µ) ≤ V (npnL(Y B
n1), λ).

Finally, using Theorem 1, we complete the proof.
R ema r k 6. Actually, the convergence in the total variation distance of the distribu-

tions of restrictions to a subset B of the point processes νn(·) to that of the analogous
restriction of πλ(·) was studied in Reiss (1993). Thus the statement of Theorem 3 can
be deduced from Theorem 1 and Theorem 3.2.3 in Reiss (1993). Under some separability
conditions on the parametric set such a proof of the coupling was proposed by Einmahl
(1997).

R ema r k 7. Many authors studied some problems of Poisson approximation close to
that mentioned above in Theorem 3 (say, the so-called strong Poisson approximation of
empirical measures) in various particular cases and applied this approximation in limit
theorems of various kinds. For example, the cases were studied in which A ⊆ B, where B is
a bounded Borel subset in Rk, or A = {x ∈ Rk : x ≥ a}, a ≥ a0 > 0, and Xn1 = m(n)X1,
where m(n) →∞ for the first case, and m(n) → 0 for the second case (the so-called local
and tail empirical processes; see Deheuvels and Pfeifer, 1988; Deheuvels and Mason, 1995;
Major, 1990; Horvath, 1990; Borisov, 1993, 1996, 2000; Einmahl, 1997; and others). Some
of them used the so-called Serfling coupling because of studying the approximation by
accompanying Poisson processes (see Remark 8 below).

Note that analogs of inequality (5) for the above-mentioned particular cases can be
found in the corresponding papers by Deheuvels and Pfeifer (1988), Major (1990), Borisov
(1993, 1996), and some others. Actually, for the empirical and accompanying Poisson
point processes, equality (6) holds.

Note also that, under some additional separability restrictions on the parametric set,
the corresponding references to the above-mentioned Dobrushin’s result are contained in
papers by Borisov (1993, 1996, 2000), Borisov and Mironov (2000), and Einmahl (1997).

R ema r k 8. In the mid 1970s, to prove the Poisson limit theorem, two close cou-
pling methods were proposed independently by Serfling (1975) and A.Borovkov (1976)
(see also English translation of the last textbook by A.Borovkov, 1998, p.100). For ex-
ample, Borovkov’s method is based on comparison of the standard quantile transforms
for Bernoulli and the corresponding Poisson distribution functions (for details, see also
Borisov, 1993, 1996). The Lebesgue measure of noncoincidence (as well as in Serfling’s
coupling, although his construction is slightly different from that of Borovkov) of these
quantile transforms on the unit interval is equal to p(1 − e−p) < p2. It is worth noting
that the above-mentioned optimal coupling in Le Cam (1965) provides a construction of
these r.v-s on a common probability space with a smaller probability of their noncoin-
cidence (for details, see Le Cam, 1965, p. 186). Whence the Le Cam upper bound np2

immediately follows for the probability of noncoincidence of r.v-s with the (n, p)-Binomial
and accompanying Poisson distributions based on the probability space [0, 1]n with the n-
variate Lebesgue measure. Moreover, it is easy to obtain a lower bound of the same order
np2 for the probability of noncoincidence under Borovkov’s and Serfling’s constructions.
However, Dobrushin’s theorem allows us to obtain optimal coupling in the Poisson approx-
imation with the probability of noncoincidence of order min{p, np2}. This is Prohorov’s
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(1953) and Le Cam’s (1960) combined estimate for the total variation distance between
the distributions under study. In other words, the above-mentioned three couplings for
each pair of the summands in the sums of independent r.v-s under consideration provide
worse Poisson approximation for the (n, p)-Binomial distribution than Dobrushin’s (as
well as Le Cam’s) coupling for the whole sums.

It is very important to note that Borovkov’s and Serfling’s couplings are applicable
only in approximation of the sum distributions by the accompanying Poisson laws (see
the proof of Theorem 2). However, the limit Poisson processes in Theorems 3 and 3′

differ from the corresponding accompanying Poisson processes. In this case, Borovkov’s
and Serfling’s couplings do not work.

R ema r k 9. Borovkov’s coupling mentioned in Remark 8 can be interpreted as a
particular case of the well-known ε-coupling proposed by Prohorov (1956) studying the
convergence rates in the Donsker invariance principle. This method was also based on
comparison of quantile transforms for the distribution functions of independent increments
(on subintervals of a suitable length) of a partial sum process and a Wiener process.

To study proximity between the distributions of two partial sum processes based on
Bernoulli and accompanying Poisson r.v-s respectively (Poisson ”invariance principle” or
strong Poisson approximation), we can use Dobrushin’s and Le Cam’s constructions as
well as Borovkov’s and Serfling’s couplings because a lower bound for the total variation
distance between the distributions of these partial sum processes in the corresponding
functional sample space has order np2 (see Borisov, 1996).
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4 Poissonian approximation of the partial sum pro-

cesses in Banach spaces

1. Statement of the Main Results

Let X,X1, X2, . . . be independent random variables taking values in a measurable
Banach space

(
B,A, ‖ · ‖

)
and having the respective distributions P, P1, P2, . . . ; here A

is a σ-field in B. Hereafter, we suppose that the linear operations and the norm ‖ · ‖ are
measurable with respect to A. If B is separable, then A is usually considered to be the
Borel σ-field. The measurability conditions are fulfilled in this case. For a nonseparable
B, such choice of A is not natural, since in this case the family of all measurable random
variables may become too narrow (see [30]). Thus, for nonseparable Banach spaces, the
class A is, as a rule, smaller than the Borel σ-field (for example, the cylindrical or ball
σ-fields).

Denote by Pois(µ) the generalized Poisson distribution with the Lévy measure µ:

Pois(µ) := e−µ(B)

∞∑
k=0

µ∗k

k!
,

where µ∗k is the k-fold convolution of a finite measure µ with itself; µ∗0 is the unit mass
concentrated at zero. It is easy to see that Pois(µ) coincides with the distribution of the
sum

∑
i≤π(µ(B)) Yi, where {Yi} are independent identically distributed random variables

having the common distribution µ(·)/µ(B), and π(µ(B)) is a Poisson random variable
having mean µ(B) and independent of {Yi}.

The main goal of this chapter is to obtain path proximity estimates between the
random process (vector)

Sn :=

{
k∑

i=1

Xi; k = 1, . . . , n

}
(1)

and the generalized Poisson process

Πn :=

{
k∑

i=1

π̂i(Pi); k = 1, . . . , n

}
, (2)

where {π̂k(Pk)} are independent random variables with the respective distributions
{Pois(Pk)}. We study the proximity in terms of the distance

d(z, Sn,Πn) := inf
{Xk,π̂k(·); k≤n}

P

(
max
k≤n

∥∥∥∥ k∑
i=1

Xi −
k∑

i=1

π̂i(Pi)

∥∥∥∥ > z

)
, (3)
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where the infimum is taken over all families of {Xk} and {π̂k(·)} based on a common
probability space. Alongside (3), we also need the total variation distance between the
distributions L(Xi) of arbitrary B-valued random variables Xi, i = 1, 2:

V (X1, X2) := sup
A∈A

|P(X1 ∈ A)−P(X2 ∈ A)|.

We now recall the most significant relevant results. One of the first results was obtained
by Yu. V. Prokhorov [98] and was later generalized by L. Le Cam [82]. In the case
when B = R and Xi ≡ νi are Bernoulli random variables with the respective success
probabilities pi, the following inequality was proved in [98] and [82]:

V
(∑

i≤n

νi, π
(∑

i≤n

pi

))
≤ cp0, (4)

where c is an absolute constant, p0 = maxi≤n pi, and π(s) is a Poisson random variable
with mean s. Somewhat later, L. Le Cam proved (see [83], [84]) the following inequality
for every random variable X taking values in an Abelian group B (under the above
measurability conditions):

V (X, π̂(P )) ≤ p2, (5)

where p := P(X 6= 0). Moreover, if B is a Polish space, then it is easy to obtain from (5)
the following estimate

V
(∑

i≤n

Xi,
∑
i≤n

π̂i(Pi)
)
≤
∑
i≤n

p2
i , (6)

where pi := P(Xi 6= 0).
Therefore, in the Bernoulli case, (4) and (6) yield a more universal upper bound

V
(∑

i≤n

νi, π
(∑

i≤n

pi

))
≤ min

(
cp0,

∑
i≤n

p2
i

)
. (7)

The best two-sided estimate was obtained by A. Barbour and P. Hall (see [5]):

1

32
εn

∑
i≤n

p2
i ≤ V

(∑
i≤n

νi, π
(∑

i≤n

pi

))
≤ εn

∑
i≤n

p2
i , (8)

where εn := min
{
1,
(∑

i≤n pi

)−1}
. Note that, under the condition

∑
i≤n pi ≤ 1, the right-

hand sides in (6) and (8) coincide, and for the identically distributed νi the right-hand
sides in (7) and (8) coincide up to an absolute multiplicative constant. Note also that, in
the Bernoulli case under the condition

∑
i≤n pi → ∞, the exact asymptotics of the total

variation distance under consideration is known (see [7]) and differs from the right-hand
side of (8) only by the factor (2πe)−1/2.

For non-Bernoulli sequences {Xi}, estimate (6) cannot be improved without additional
restrictions on the distributions Pi. For example, if each random variable Xi has a two-
points distribution concentrated at zero and the point (ai)

1/2 where {ai} are different
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prime numbers then, because of one-to-one correspondence between rational numbers {ei}
and the sums

∑
i≤n

√
aiei, we have (see [83])

V

(∑
i≤n

Xi,
∑
i≤n

π̂i(Pi)

)
≥ 1−P

(∑
i≤n

π̂i(Pi) ∈
{∑

i≤n

√
aiei; ei = 0, 1, i ≤ n

})

= 1−
∏
i≤n

e−pi(1 + pi) ≥ 1−
∏
i≤n

(
1− p2

i (1− pi)/2
)
≥ 1− exp

{
−1

2

∑
i≤n

p2
i (1− pi)

}
. (9)

In other words, if
∑

i≤n p
2
i → 0, then the right-hand side of (9) is equivalent to 1

2

∑
i≤n p

2
i

(where, possibly,
∑

i≤n pi →∞).
We would like to emphasize the significance of the fundamental result by R. L. Do-

brushin (see [45]):
V (X, Y ) = inf

X,Y
P(X 6= Y ), (10)

where the infimum in the right-hand side of (10) is taken over all pairs (X, Y ) based on a
common probability space, and A is the Borel σ-field in B. If A is smaller than the Borel
σ-field then the sign “=” in (10) must be replaced by the sign “≤.”

Relation (10) means that if the total variation distance between some random variables
is sufficiently small, then there exist versions of these random variables coinciding with
probability close to 1.

R e m a r k. The original proof of (10) in [45] which was carried out for arbitrary
metric spaces B (not necessarily separable ) is incorrect since the event {X 6= Y } may be
nonmeasurable. Postulating the measurability of linear operations (or the group operation
when B is an Abelian group) allows us to avoid this inconvenience.

Before evaluating d(z, ·), let us agree to consider the partial sum processes (1) and (2)
as random elements in the measurable Banach space Bn := B × · · · × B endowed with
the norm ‖Y ‖∞ := maxk≤n ‖Y (k)‖ and the σ-field An := A× · · · × A. If B is separable
then Bn is separable too. In this case, it follows from (10) that the total variation
distances between the distributions of S and Πn, and those between (X1, . . . , Xn) and
(π̂1(P1), . . . , π̂n(Pn)) coincide. Moreover, by (5) and (10) we obtain

d(0, Sn,Πn) ≤ inf
Sn,Πn:{(Xk,π̂k(Pk))} are independent

P
(⋃

k≤n

{Xk 6= π̂k(Pk)}
)

≤
∑

inf
Xk,πk(Pk)

P (Xk 6= π̂k(Pk)) ≤
∑
k≤n

p2
k. (11)

Note that, even in the Bernoulli case, the upper bound in (11) cannot be essentially
improved (in contrast to (6)) since the distance d(0, Sn,Πn) admits the lower bound by
the analogy with (9):

d(0, Sn,Πn) ≥ 1−P(πi(pi) ∈ {0, 1}; i = 1, . . . , n) ≥ 1− exp

{
−1

2

∑
i≤n

p2
i (1− pi)

}
.
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If B is not separable then, generally speaking, (10) does not hold. Thus, to estimate
d(z, ·), we need a new approach. Denote by {X0

i } the independent random variables with
the following distributions:

P
(
X0

i ∈ A
)

= P(Xi ∈ A | Xi 6= 0). (12)

Note that the random variables are well defined because, by the above assumptions, the
event {Xi 6= 0} = {‖Xi‖ 6= 0} is measurable. It is proved in [17] that for every k the
following equalities hold:

L(Xk) = L
( νn(k)∑

i=νn(k−1)+1

X0
k,i

)
, Pois(Pk) = L

( π̄n(k)∑
i=π̄n(k−1)+1

X0
k,i

)
, (13)

where
{
X0

k,i; i = 1, 2, . . .
}

are independent copies of X0
k , the random processes νn(k) :=∑

i≤k νi and π̄n(k) :=
∑

i≤k πi(pi), k ≤ n, do not depend on {X0
k,i}, and pi := P(Xi 6= 0),∑0

i=1 = 0. If X0
i are identically distributed (whereas Xi can be nonidentically distributed

with arbitrary pi), then (13) and independence of the increments of the processes ν̄n(·)
and π̄n(·) readily imply more informative representations for the distributions of Sn and
Πn in the Banach space Bn:

L(Sn) = L


ν̄n(k)∑
i=1

X0
i ; k = 1, . . . , n

 , L(Πn) = L


π̄n(k)∑
i=1

X0
i ; k = 1, . . . , n

 , (14)

We formulate several simple and useful consequences of (13), (14), and (10) (see [17]).
Corollary 1. If B is a separable Banach space then the inequality

V (Sn,Πn) ≤ V (ν̄n(·), π̄n(·)) (15)

holds for arbitrary distributions {Pi}.
Corollary 2. If B is a separable Banach space and P

(∑
i≤mX

0
k,i = 0

)
= 0 for all

natural numbers m and k then the following relation holds

V (Sn,Πn) = V (ν̄n(·), π̄n(·)). (16)

Corollary 3. If ‖Xi‖ ≤ 1, i = 1, 2 . . ., almost surely and random variables {X0
i } are

identically distributed then the inequality

d(z, Sn,Πn) ≤ d(z, ν̄n(·), π̄n(·)) (17)

holds for all z ≥ 0.
Finally, the last consequence is connected with a special structure of the random

variables {Xi}. We say that Xi are elements of the indicator type with conforming
supports if for all natural m and k the following identity holds with probability 1:∥∥∥∥∥

m+k∑
i=m+1

X0
i

∥∥∥∥∥ = k. (18)
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Corollary 4. If {Xi} are random elements of the indicator type with conforming
supports, and

{
X0

i

}
are identically distributed then the identity

d(z, Sn,Πn) = d(z, ν̄n(·), π̄n(·)). (19)

holds for all z ≥ 0
Hence, for the identically distributed

{
X0

i

}
, evaluation of the distances V (·) and d(·) in

arbitrary Banach spaces reduces to an analogous problem for sequences of independent,
generally speaking, nonidentically distributed Bernoulli random variables with special
success probabilities.

The main result of the chapter is as follows:
Theorem 1. Let {νi} be independent identically distributed Bernoulli random vari-

ables with the success probability p. Then

d(z, ν̄n(·), π̄n(·)) ≤ (np2)[z]+1 exp{−C1z ln ln(z + 2) + C2} if np ≥ 1,

np[z]+2 exp{−C3z + C4}, if np ≤ 1, (20)

where C1–C4 are absolute positive constants.
Therefore, for bounded identically distributed B-valued random variables {Xi}, (15)–

(20) allow us to obtain an appropriate estimate.
As an example consider the problem of the uniform Poisson approximation of the

sequence of multivariate empirical distribution functions. Let Fn(t), t ∈ Rm, be the
empirical distribution function based on the sample Y1, . . . , Yn from an arbitrary distri-
bution in Rm. Put Xi ≡ Xi(t) := I(Yi < t), where I(·) is the indicator function and
the sign “<” means the standard partial order in Rm. We consider Xi as elements of
the Banach space B consisting of all bounded left-continuous functions (in the sense of
the partial order mentioned) defined on the set {t ∈ Rm : t ≤ a} and endowed with the
uniform norm. Denote by A the cylindrical σ-field. The norm introduced is A-measurable
although the space B is not separable. Without loss of generality, we may assume that
P(Xi 6= 0) ≡ P(Yi ≤ a) 6= 0. Then the random variables X0

i in (12) are well defined and
satisfy (18). Therefore, from (19) and (20) we obtain the estimate

d(z, S̃n, Π̃n) ≤ δ(z, n, p), (21)

where

S̃n := {kFk(t); k = 1, . . . , n}, Π̃n :=

{ π(k)∑
i=1

I(Yi < t); k = 1, . . . , n

}
,

π(·) is the standard Poisson process (with mean s) independent of {Yi}, δ(z, n, p) is the
right-hand side of (20), p := P(Y1 ≤ a).

The particular case considered above was studied by a number of authors (see [1, 17, 62,
86]). In [62], the upper bound for the left-hand side of (21) had the form

√
np(z−1 + z−2).

In [17], it was improved by means of (17): np2 exp{−C1

√
z + C2}. Under the additional
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restriction np ≥ 1 in [86] (in the special case p = p(n)) and [1], it was proved that the
left-hand side of (21) admits the upper bound C(z)(np2)[z]+1, but the structure of C(z)
was not investigated. Note that in the particular case mentioned, in [1] and [86], an
equality like (19) was used which also reduced the problem to the one-dimensional case.

Therefore, Theorem 1 and Corollaries 1–4 strengthen and essentially generalize the
above results.

Note that, for z = 0, the right-hand side of (20) has order O(np2), i.e. it is unimprov-
able up to an absolute multiplicative constant. Moreover, under the condition np ≤ 1,
the dependence of the right-hand side of (20) on p is optimal, while the dependence on z
is close to the optimal for any fixed n and p.

Theorem 2. For any p, n and z, the following relation holds

d(z, ν̄n(·), π̄n(·)) > (2π)−1/2p[z]+2 exp{−(z + 5/2) ln(z + 2)}. (22)

R e m a r k. In [62], a simpler coupling was used which is based on the equality
mentioned above

L(�\) = L
{ π(‖)∑

〉=∞

X〉; ‖ = ∞, . . . , \
}
, (23)

where π(t) is the standard Poisson process independent of Xi. As an example, we
compare the nth coordinates of the random vectors Sn and Πn in (23). By the total
probability formula we have

P

( n∑
i=1

Xi 6=
π(n)∑
i=1

Xi

)
= 1− E(1− p)|π(n)−n|. (24)

On the other hand, it is clear that E|π(n) − n| = O(
√
n). Thus, under the conditions

n→∞ and p
√
n→ 0, the left-hand side of (24) tends to zero at the rate of p

√
n. Hence,

the coupling based on representation (23) cannot provide the optimal upper bound for
d(z, Sn,Πn).

2. Proof of the Main Results

Proof of Theorem 1. We begin with constructing the families of random variables
{vi; i ≤ n} and {πi(p); i ≤ n} on a common probability space by the method proposed
independently in [14] and [15]. Given a random variable ζ, we introduce the notation
F−1

ζ (ω) := inf{t ∈ R : Fζ(t) ≥ ω}, where R is the extended real line, Fζ(t) is the
distribution function of ζ, and ω ∈ [0, 1]. It is well known that if ω has the uniform
distribution on [0, 1], then L(F−1

ζ (ω)) = L(ζ). We set

ν∗i := F−1
νi

(ωi), π∗i := F−1
πi(p)(ωi),
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where {ωi; i ≤ n} are independent random variables with the uniform distribution on
[0, 1] It is easy to see that

max
k≤n

∣∣∣∣∣
k∑

i=1

ν∗i −
k∑

i=1

π∗i

∣∣∣∣∣ ≤
n∑

i=1

ζi, (25)

where ζi = (π∗i −1)I{π∗i ≥ 2}+I{ωi ∈ [1−p, e−p]}. It is easy to verify that the distribution
of ζi is determined as follows:

P(ζi = 0) = 1− p(1− e−p), P(ζi = 1) = e−p − 1 + p+
p2

2
e−p,

P(ζi = k) =
pk+1

(k + 1)!
e−p, k ≥ 2. (26)

First, assume that np ≥ 1. Denote z0 = [z] + 1. Then, for every t ≥ 0, by (25) we
have

d(z, ν̄n(·), π̄n(·)) ≤ P

(
n∑

i=1

ζi ≥ z0

)
≤ (E exp{tζ1})ne−tz0 . (27)

The moment generating function in the right-hand side of (27) admits the following esti-
mate:

E exp{tζ1} ≤ 1 + etp2 +
∞∑

k=2

ekt pk+1

(k + 1)!
= 1 + e−t

(
exp{etp} − 1− etp+

e2tp2

2

)

≤ exp

{
etp2

2
(exp{etp}+ 1)

}
. (28)

Put t = ln
(

1
2np2 ln(z0 + 2)

)
, where we may assume that ln(z0 + 2) ≥ 2np2 without losing

generality (see (29)). Then (27) and (28) imply the estimate

d(z, ν̄n(·), π̄n(·)) ≤ exp{etnp2 exp{etp} − tz0}

= exp

{
1

2
ln(z0 + 2)(z0 + 2)1/2np − z0 ln

(
1

2np2
ln(z0 + 2)

)}
≤ (2np2)z0 exp

{
−z0 ln ln(z0+2)+

1

2

√
z0+2 ln(z0+2)

}
. (29)

¿From here we obtain the first inequality in (20).
Before proving the second inequality in (20), we note that the first holds also in

the case np ≥ δ for any δ ∈ (0, 1). To verify this fact, it suffices to put in (29) t =
ln
(

δ
2np2 ln(z0 + 2)

)
. Moreover, because of the identity (np2)k+1 = (np)knpk+2, δ ≤ np ≤ 1,

the second inequality in (20) follows from the first in case δ ≤ np ≤ 1. Hence, it suffices
to prove the second estimate in (2) under the condition np ≤ δ, where δ will be chosen
later.
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Assume that np ≤ δ. We prove the second inequality in (20) by induction on n.
Denote Qn(k) := P

(∑n
i=1 ζi ≥ k

)
, k = 1, 2, . . .. Then, by the total probability formula,

we have

Qn(k) = Q1(k) +
k−1∑
m=0

P(ζ1 = m)Qn−1(k −m). (30)

To prove the assertion, it suffices to find a positive constant c < 1 such that, for all
integers k ≥ 2 and n ≥ 1, the inequality

Qn(k) ≤ n(cp)k+1 (31)

holds which together with the trivial estimate Qn(1) ≤ np2 implies (20). For n = 1,
relation (31) with the constant c = e/3 follows from the elementary estimate Q1(k) ≤
pk+1/(k+ 1)! that is true for all k ≥ 2 (see (26)), and from the Stirling formula (see [15]).
Further, let (31) be fulfilled for all n ≤ N − 1 with Np ≤ δ. Then from (30) we obtain

QN(k) ≤ pk+1

(k + 1)!
+

k−2∑
m=2

pm+1

(m+ 1)!
(N − 1)(cp)k−m+1

+(N − 1)(cp)k+1 + (N − 1)pc−1(cp)k+1 +
p

k!
Npk+1. (32)

Consider separately the second summand in the right-hand side of (32). We have

k−2∑
m=2

pm+1

(m+ 1)!
(N − 1)(cp)k−m+1 ≤ (N − 1)

6
(cp)k+2

∞∑
m=0

(c−1)m

m!

= (cp)k+1 (N − 1)cp

6
e1/c. (33)

Substituting (33) into (32) and taking into account the estimate p ≤ δN−1, we obtain

QN(k) ≤ N(cp)(k+1)R(N, c, δ, k), (34)

where

R(N, c, δ, k) :=
1

Nck+1(k + 1)!
+

(N − 1)cδ

N2
e1/c

+
N − 1

N
+

(N − 1)δ

cN2
+

δ

ck+1k!N
. (35)

¿From (34) it follows that the theorem will be proved if we find some absolute constants
e/3 ≤ c < 1 and δ < 1 such that the inequality R(N, δ, c, k) ≤ 1 holds for all N ≥ 2 and
k ≥ 2,. By the Stirling formula, from (35) we obtain a more convenient upper bound

R(N, c, δ, k) ≤ 1− 1

N

[
1−

(
e

c(k + 1)

)k+1
1√

2π(k + 1)

31



−(N − 1)δ

N
(ce1/c + c−1)− δ

c
√

2πk

( e
ck

)k
]
. (36)

Now it is easy to see that, for c = e/3 and δ = 10−1, the expression in the square
brackets in the right-hand side of (36) is nonnegative for all k ≥ 2 and N ≥ 2. The
theorem is proved.

Proof of Theorem 2 is based on the following simple inequality. For every coupling of
the random processes ν̄n(·) and π̄n(·), the following lower bound holds:

P
(
max
k≤n

∣∣∣∑
i≤k

νi −
∑
i≤k

πi(p)
∣∣∣ > z

)
≥ P(π1(p) > z + 1)

= P(π1(p) ≥ [z] + 2) >
p[z]+2

([z] + 2)!
e−p.

It remains merely to use the Stirling formula and to carry out an elementary evaluation
of the right-hand side of the inequality obtained. Theorem 2 is proved.

R e m a r k. In the case when np → ∞, the coupling method for the processes ν̄n(·)
and π̄n(·) used in Theorem 1 could fail to be optimal. For the random variables {Xi} that
are not too degenerate, there exist better approximations of the sum distributions by the
accompanying Poisson laws in terms of the distance d(z, ·). The corresponding example
was considered in [86].
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5 Rate of the χ2-distance approximation in the Pois-

son theorem

1. Preliminaries

An approximation of the sum distribution of independent Bernoulli random variables
(in the non i.i.d. case we deal with the so-called generalized binomial distributions) to
the accompanying Poisson law or to other Poisson laws close to the accompanying is one
of the classical problems of Probability Theory. This study has a rich semi–centennial
prehistory which started with the paper [98] by Yu. V. Prokhorov published in 1953. We
do not plan here to review all papers in this direction due to a huge number of such
papers. We will mention only the results close to the topic under consideration.

First of all, we note that the most papers in this direction were dedicated to estimating
the total variation distance between the above–mentioned distributions (for example,
see [5, 8, 82]). In these papers, the corresponding results from [98] were improved and
generalized. We also note the recent paper [57], in which the rate of convergence in the
classical Poisson theorem was studied in terms of the Kulback – Leibler distance which
is stronger than the total variation distance. In particular, by Pinsker’s inequality in [57]
(see § 2) the authors obtained some refinement of the above-mentioned results for the
total variation distance.

In this chapter, we study the so-called χ2-distance between a generalized (or a clas-
sical) binomial distribution and the accompanying Poisson law. As a consequence of
Theorem 4.1 of the chapter, we improve the corresponding result in [57] concerning the
estimating of the total variation distance.

The chapter has the following structure. In § 2 we recall the definitions of three
probability distances and their properties we need. In § 3 we study an asymptotic form
of χ2-distance for a generalized binomial distribution (Theorem 3.1). In § 4 we obtain
asymptotic expansions and two-sided estimates for this distance in the case of a classical
binomial distribution. In § 5 we compare the upper bounds obtained in § 4 with the
corresponding results of predecessors in the case of a classical binomial distribution.
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2. Main definitions and notation

Let P and Q be some distributions on the set Z+ := {0, 1, 2 . . . }. Introduce the
following distances in the space of all such distributions:

1. The total variation distance between P and Q (see [1, 2]):

‖P −Q‖ :=
∞∑
i=0

|P (i)−Q(i)|.

Sometimes (see [5, 8]) this distance is defined as sup
A⊂Z+

|P (A) − Q(A)| which is half the

value ‖P −Q‖, i. e., half the total variation of the signed finite measure P −Q.
2. Information divergence or the Kulback – Leibler distance between P and Q:

D(P,Q) :=
∞∑
i=0

P (i) log
P (i)

Q(i)
.

3. χ2-distance between P and Q:

χ2(P,Q) :=
∞∑
i=0

(P (i)−Q(i))2

Q(i)
=

∞∑
i=0

Q(i)

(
P (i)

Q(i)
− 1

)2

=
∞∑
i=0

P (i)
P (i)

Q(i)
− 1.

In the case when the supports of the distributions P and Q does not coincide with the
set Z+, in the items 2 and 3, we put that 0/0 = 0, a/0 = ∞ for a > 0, 0 · log(0) = 0
and log(∞) = ∞. Hence, on the set of all distributions, we can define these distances
with values on the extended positive half–line. If the support of P (·) is finite and it is
included into the support of Q(·) then, under the above–mentioned agreement regarding
the arithmetical operations, the values of χ2(P,Q) and D(P,Q) are finite. Notice that
the distances χ2(P,D) and D(P,Q) (in contrast with ‖ · ‖) are not metrics. They do not
possess the symmetry, and, in general, do not satisfy the triangle inequality.

These three distances are connected by the following inequalities:
(a) Cauchy — Bunyakovskii inequality

‖P −Q‖2 ≤ χ2(P,Q);

(b) Pinsker’s inequality (see [5, 6])

‖P −Q‖2 ≤ 2D(P,Q);

(c) The inequality
D(P,Q) ≤ χ2(P,Q)

follows from the simple estimate log x ≤ x− 1 for all x > 0.
Thus, χ2-distance is the strongest of these three distances. Therefore, it seems that it

is more logical to evaluate the total variation distance by the Kulback – Leibler distance
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(as in [5]). However, χ2-distance has a simpler structure than that of D(P,Q). Moreover,
in spite of coincidence of the leading terms of the asymptotic expansions of the right–
hand sides in (a) and (b) (say, in the conditions of the classical Poisson theorem), limit
behavior of the smaller terms in these expansions differ in order: For χ2-distance this
term is asymptotically better than that for D(P,Q) (see § 5). In fact, this phenomenon
provides an improvement of the upper bounds for the total variation distance obtained in
[57] by Pinsker’s inequality.

In the sequel, we will use the following notation:
1) ξ1, . . . , ξn are independent Bernoulli random variables with the respective success

probabilities p1, . . . , pn;

2) η is a Poisson random variable with the parameter λ :=
n∑

i=1

pi;

3) P is the distribution of the sum
n∑

i=1

ξi, and Q is the distribution of η (the accompa-

nying Poisson distribution);

4) p :=
n∑

i=0

p2
i /λ; in particular, in the case of identically distributed Bernoulli random

variables, the value p coincides with the corresponding success probability;

5) p̃i := pi

1−pi
, λ̃ :=

n∑
i=1

p̃i, p̃ :=
n∑

i=0

p̃2
i /λ̃.

We agree to interpret the limit relations like →, ∼, o, O, and lim as those as n→∞.
And a limit relation of the type ϕn = O(f(λ, p)) for positive ϕn and f(·) means that
the the upper limit of the corresponding ratio can be evaluated by an absolute positive
constant. In the paper, such constants will be denoted by the symbols c or ci. Dependence
of constants on some parameters will be denoted by the corresponding arguments in the
recording c(·).

3. Approximation to a generalized binomial distribution

The main goal of this Section is to prove the following assertion.
Theorem 3.1 Let λ7p→ 0. Then

χ2(P,Q)

p2
→ 1

2
.

Proof To study the asymptotics of χ2(P,Q)-distance, for ∆(k) := (P (k)−Q(k))2

Q(k)2
, we

obtain a two-sided estimate of the form

A(k) + C(k) ≤ ∆(k) ≤ A(k) +B(k),

where the expectations E(C(η)) and E(B(η)) should be much smaller than the expec-
tation E(A(η)) which should be easy calculated. Then we will obtain the asymptotic
representation

χ2(P,Q) = E(∆(η)) ∼ E(A(η)).
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The corresponding construction consists of several stages.

Lemma 3.1. Let λp/2 +
n∑

i=1

p̃i
3/3 ≤ 1. Then, for every k ∈ [0, n], the following

two–sided inequality is valid:

R1R2 ≤
P (k)

Q(k)
≤ R∗

1R
∗
2,

where R1 := 1− λp/2−
n∑

i=1

p̃3
i /3, R

∗
1 := 1− λp/2 + (λp)2/8, R2 := (λ̃/λ)k(1− λ̃−1C2

k p̃),

R∗
2 := R2 +

(
λ̃

λ

)k(
C4

k + 3C3
k

)
max

( n∑
i=1

p̃i
3

λ̃3
, (p̃/λ̃)2

)
,

and, by definition, Cm
k := k(k − 1) . . . (k −m+ 1)/m! = 0 for each k < m.

Proof For every integer k ≤ n, we have

P (k)

Q(k)
= k!

∑
i1<···<ik≤n

λ−kp̃i1 p̃i2 . . . p̃ik(1− p1)(1− p2) . . . (1− pn)eλ = F1F2, (1)

where F1 := (1 − p1)(1 − p2) . . . (1 − pn)eλ, F2(k) := λ−k
∑

i1 6=···6=ik≤n

p̃i1 p̃i2 . . . p̃ik . If we

additionally put F2(0) := 1 then the identity (1) holds for all 0 ≤ k ≤ n.
We first evaluate F1. By Taylor’s formula we obtain that

log(F1) = λ+
n∑

i=1

log(1− pi) = −
n∑

i=1

p2
i

2
−

n∑
i=1

p3
i

3

1

(1− θipi)3
,

where 0 < θi < 1 for all i. Therefore,

−
n∑

i=1

p2
i

2
−

n∑
i=1

p̃3
i

3
≤ log(F1) ≤ −

n∑
i=1

p2
i

2
.

Using the elementary two–sided inequality 1−x ≤ e−x ≤ 1−x+x2/2 for x ≥ 0 we deduce
from here the two–sided estimate

1− λp

2
−

n∑
i=1

p̃3
i

3
≤ F1 ≤ 1− λp

2
+

1

8
(λp)2.

We now construct upper and lower bounds for F2(k) in (1) for all k ≤ n. Since
F2(0) = 1 and F2(1) = λ̃/λ, i. e., for k = 0, 1, the estimates from the Lemma are valid,
it suffices to study the case 2 ≤ k ≤ n only. Denote by S := {1, 2, . . . , n}k the set of
multi-indices (i1, i2, . . . , ik) such that every coordinate im takes all the values from 1 to
n. Introduce the following finite measure µ defined on subsets of S, by the formula

µ(S ′) :=
∑
s∈S′

p̃(s),
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where S ′ ⊆ S, p̃(s) := p̃i1 p̃i2 . . . p̃ik if s = (i1, i2, . . . , ik); here, by definition, µ(∅) = 0.
Then F2(k) = λ−kµ(S∗), where S∗ = {(i1, i2, . . . , ik) ∈ S : i1 6= i2 · · · 6= ik}. Put
Sl,m = {(i1, i2, . . . , ik) ∈ S, il = im} for 0 < l < m ≤ k, and Sl,m = ∅ otherwise. It is clear
that S∗ = S\ ∪l,m Sl,m. Therefore, by additivity of µ, the following inequalities are valid:

µ(S∗) ≥ µ(S)−
∑
l,m

µ(Sl,m) = λ̃k − C2
kµ(S1,2),

µ(S∗) ≤ µ(S)−
∑
l,m

µ(Sl,m) +
1

2

∑
(l,m) 6=(i,j)

µ(Sl,m ∩ Si,j) =: µ∗. (2)

Notice that, for k = 2, these two inequalities are reduced to the equalities since, in this
case, the sum

∑
(l,m) 6=(i,j)

vanishes (as a sum over the empty set of indices). Let l < m. Then

µ(Sl,m) = µ(S1,2) =
n∑

i=1

p̃2
i

(
n∑

i=1

p̃i

)k−2

=

n∑
i=1

p̃2
i

λ̃2
λ̃k.

Thus, an lower bound for F2(k) has the form

F2(k) = µ(S∗)λ−k ≥ R2.

In the case k ≥ 3, to estimate the value µ∗ in (2), calculating the measure µ of all
pair–wise intersections of the subsets Si,j we note that, in the corresponding sum, the
values of these measures are distinguished only in the two cases when either the pairs
(i, j) and (l,m) have one identical coordinate or there are no such coordinates.

Respectively, in the first case, we have

µ(Sl,m ∩ Si,j) = µ(S1,2 ∩ S2,3) = µ(S1,2 ∩ S1,3) = µ(S1,3 ∩ S2,3)

=
n∑

i=1

p̃3
i

(
n∑

i=1

p̃i

)k−3

=

n∑
i=1

p̃3
i

λ̃3
λ̃k, (3)

and the number of such summands in the corresponding sum equals 6C3
k ; in the second

case,

µ(Sl,m ∩ Si,j) = µ(S1,2 ∩ S3,4) =

(
n∑

i=1

p̃2
i

)2( n∑
i=1

p̃i

)k−4

=

( n∑
i=1

p̃2
i

λ̃2

)2

λ̃k (4)

and the number of such summands in the sum above equals 2C4
k .

Denote α := max

(
λ̃−3

n∑
i=1

p̃3
i ,
(
λ̃−1p̃

)2
)

. From (2)–(4) we then finally obtain that

F2(k) ≤ λ−kµ∗ = R2 + 2−1λ−k
∑

(l,m) 6=(i,j)

µ(Sl,m ∩ Si,j) ≤ R2 + (λ̃/λ)k
(
C4

k + 3C3
k

)
α = R∗

2.
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Under the conditions of the Lemma, we have R1 ≥ 0, R∗
1 ≥ 0, R∗

2 ≥ 0. Although the
value R2 may be negative, the two–sided inequality R1R2 ≤ F1F2 ≤ R∗

1R
∗
2 is valid. The

Lemma is proven.
Lemma 3.2. Let λp→ 0. Then the following asymptotic relations are valid:

1)
n∑

i=1

p̃m
i /p = O((λp)(m−2)/2) for all m > 2;

2) λ̃ ∼ λ, p̃ ∼ p;

3)
∑ p2

i

1−pi
= λp(1 +O((λp)1/2));

4) λ̃p̃ = λp+O((λp)3/2);
5) λ̃m − λm = mλmp(1 +O(m2m(λp)1/2)) for each m ≥ 1.
Proof. Notice that, under the conditions of the Lemma, max

i≤n
pi ≤ (λp)1/2 → 0. It

implies assertions 1–4.
To prove relation 5 we note that, by relation 3,

λ̃− λ =
n∑

i=1

(p̃i − pi) =
n∑

i=1

(
p2

i

1− pi

)
= λp(1 +O((λp)1/2)) =: δ.

Therefore, for every fixed m ≥ 2,

λ̃m − λm = (λ+ δ)m − λm =
m∑

i=1

Ci
mλ

m−iδi = λm

m∑
i=1

Ci
mp

i(1 +O(m(λp)1/2))

= mλmp(1 +O(m2m(λp)1/2))

since
m∑

i=2

Ci
mp

i ≤ C2
mp

2

m∑
i=2

Ci−2
m−2p

i−2 = C2
mp

2(1 + p)m−2,

and, by the trivial estimates p ≤ λ and p ≤ 1, we derive that, under the conditions of the
Lemma, the right–hand side of the last inequality has the order O(pm22m(λp)1/2). The
Lemma is proven.

Further we need the following simple properties of Poisson distributions.
Lemma 3.3 Let ζ1 and ζ2 be Poissonian random variables with arbitrary parameters

µ1 and µ2 respectively. Then, for every function f(k), k ∈ Z+ module of which increases
faster than an exponential as k →∞, the following equality is valid:

E(µ2/µ1)
ζ1f(ζ1) = eµ2−µ1Ef(ζ2).

Moreover, for every natural m,

ECm
ζ2

=
µm

2

m!
, E(Cm

ζ2
)2 =

µm
2

(m!)2
E(ζ2 + 1) . . . (ζ2 +m) ≤ c(m)µm

2 (1 + µm
2 ).

We now separately extract a fragment in the proof of Theorem 3.1.
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Lemma 3.4. Let the functions A(k), C(k), S(k), and B(k) defined on Z+ satisfy the
following conditions:

A(k) + C(k) ≤ S(k) ≤ A(k) +B(k),

E(B(η))2 = o(p2), E(C(η))2 = o(p2), E|B(η)A(η)| = o(p2), E|C(η)A(η)| = o(p2)

for p→ 0. Then E(S(η))2 = E(A(η))2 + o(p2).
Proof. Consider the function D(k) := S(k)− A(k). It is clear that

E(S(η))2 = E(A(η))2 + 2ED(η)A(η) + E(D(η))2.

In conclusion, we use the estimate

|D(k)| ≤ |C(k)|+ |B(k)|

and the conditions of the Lemma as well. The Lemma is proven.

We now begin to prove Theorem 3.1. First we note that, from the inequalities p ≤ λ
and λ7p ≥ λbI(λ ≥ 1)p for every b ∈ [0, 7], where I(·) is the indicator function, it follows
the relation λbp → 0 for each b from the interval above. In particular, the condition
of the Theorem implies the condition of Lemma 3.2. Moreover, since max

i≤n
pi ≤ (λp)1/2

then
n∑

i=1

p̃3
i ≤ (λp)3/2. Therefore, if the value λp is small enough then the condition of

Lemma 3.1 is fulfilled.
Introduce the following notation:

S(k) :=
P (k)

Q(k)
− 1, A(k) :=

(
λ̃

λ

)k (
1− λp

2
− λ̃−1C2

k p̃

)
− 1, (5)

B(k) := R∗
1R

∗
2 − 1− A(k), C(k) := R1R2 − 1− A(k),

where R1, R2, R
∗
1, and R∗

2 are defined in Lemma 3.1. Notice that, under the above–
introduced notation,

χ2(P,Q) = E(S(η))2.

Moreover, due to the Lemma 3.1, for λp small enough, the following two–sided estimate
is valid:

A(k) + C(k) ≤ S(k) ≤ A(k) +B(k).

Put α̃ := max

(
λ̃−1

n∑
i=1

p̃3
i , p̃

2

)
. Notice that, due to Lemma 3.2 and the conditions of the

Theorem, α̃ = o(p). It is easy to obtain that, for λp small enough, we have

B(k)2 ≤
(
λ̃

λ

)2k

c0
(
(λp)4 +

(
C2

k λ̃
−1p
)2

(λp)2 +
(
C4

k + C3
k

)2
λ̃−4α̃2

)
=:

(
λ̃

λ

)2k

f(k).
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Under the conditions of Lemma 3.3, we put ζ1 := η (. . µ1 := λ) µ2 := λ̃2/λ. Then

EB(η)2 ≤ E

(
λ̃

λ

)2η

f(η) = exp

(
λ̃2

λ
− λ

)
Ef(ζ2). (6)

Moreover,

λ̃−2E
(
C2

ζ2

)2 ≤ c1(λ̃/λ)2(1 + (λ̃/λ)4λ2),

λ̃−4E
(
C3

ζ2

)2 ≤ c1(λ̃/λ)2(1 + (λ̃/λ)6λ3)/λ,

λ̃−4E
(
C4

ζ2

)2 ≤ c1(λ̃/λ)4(1 + (λ̃/λ)8λ4).

(7)

We also note that the simple relation α̃ = O(pmax
i
pi) and the estimate max

i
pi ≤ (λp)1/2

imply the asymptotic relation α̃2 = O(λp3). Therefore, under the conditions of the
Theorem,

α̃2λ̃−4E
(
C3

ζ2

)2
= O((λp)3) = o(p2), α̃2λ̃−4E

(
C4

ζ2

)2
= O(λ5p3) = o(p2),

λ̃−2E
(
C2

ζ2

)2
p2(λp)2 = O(p2((λp)2 + λ4p2)) = o(p2).

(8)

Thus, we finally obtain the asymptotic relation

EB(η)2 = o(p2). (9)

For λp small enough, the estimates derived above imply the inequality (recall that
λ̃ > λ)

|B(k)A(k)| ≤
((

λ̃

λ

)k

−1+

(
λ̃

λ

)k(
λp

2
+C2

k p̃/λ̃

))(
λ̃

λ

)k√
f(k) = B1(k)+B2(k)+B3(k),

where
B1(k) = (λp/2)(λ̃/λ)2k

√
f(k), B2(k) = p̃(λ̃/λ)2kλ̃−1C2

k

√
f(k),

B3(k) = ((λ̃/λ)k − 1)(λ̃/λ)k
√
f(k).

Hence,
E|B(η)A(η)| ≤ EB1(η) + EB2(η) + EB3(η). (10)

Evaluation of the three expectations on the right–hand side of (10) is carry out by
Lemma 3.3 using an approach of the same kind. To prove the first summand on the
right–hand side of (10) we use the inequality (6), where we substitute

√
f for f , and

further we apply the Cauchy — Bunyakovskii inequality. We then have

EB1(η) ≤
λp

2
exp

(
λ̃2

λ
− λ

)
(Ef(ζ2))

1/2. (11)

Using the asymptotic formulas in (8) (in terms of the symbol O(·)) we finally obtain the
following asymptotic relation for the expectation Ef(ζ2):

EB1(η) = O((λp)5/2 + λ7/2p5/2 + λ2p3) = O(p2(
√
λ7p+

√
λ5p+ λ2p)) = o(p2). (12)
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Evaluation of the second summand on the right–hand side of (10) is absolutely the
same. To do it we use inequality (6) in which we substitute C2

k

√
f(k) for f(k) and apply

the Cauchy — Bunyakovskii inequality and the asymptotic relations in (7) and (8) for
expectations of the corresponding components.

To evaluate the last summand on the right–hand side of (10) we first note that, due
to Lemma 3.3 and the Cauchy — Bunyakovskii inequality, we have

EB3(η) ≤ (E((λ̃/λ)η − 1)2)1/2(E(λ̃/λ)2ηf(η))1/2

= (exp{λ̃2/λ− λ} − 2 exp{λ̃− λ}+ 1)1/2(Ef(ζ2))
1/2 exp(1/2)(λ̃2/λ− λ)}. (13)

Consider the first factor on the right–hand side of (13). Using Taylor’s expansions at zero
for these two exponential up to terms of the second order as well as the relation

λ̃2/λ− λ− 2(λ̃− λ) = (λ̃− λ)2/λ = λp2(1 + o(1)),

which follows from Lemma 3.2, we obtain the following asymptotic representation:

(exp{λ̃2/λ− λ} − 2 exp{λ̃− λ}+ 1)1/2 = O(λ1/2p+ λp).

In other words, the estimating of (13) is reduced to (11) and (12).
So, EBi(η) = o(p2) for all i = 1, 2, 3, and hence,

E|B(η)A(η)| = o(p2). (14)

By analogy with the foregoing we prove the relations

EC(η)2 = o(p2), E|C(η)A(η)| = o(p2)

which together with (9), (14), and Lemma 3.4 imply

lim
χ2(P,Q)

p2
= lim

ES(η)2

p2
= lim

EA(η)2

p2
.

It remains to prove the limit relation limEA(η)2/p2 = 1/2. To prove this fact we
apply Lemmas 3.2 and 3.3 once more as well as the above–described technique of the
asymptotic analysis. In contrast to the previous calculations, we use the upper bounds
for the remainders in the corresponding assertions of Lemma 3.2 since we need an exact
asymptotics of the expectation EA(η)2. For convenience of the reader we extract the
assertions from Lemmas 3.2 and 3.3 we need:

λ̃2

λ
− λ = 2λp(1 +O((λp)1/2)), λ̃− λ = λp(1 +O((λp)1/2)),

(15)

λ̃p̃ = λp(1 +O((λp)1/2)), Eζ(ζ − 1) = µ2, E(ζ(ζ − 1))2 = µ4 + 4µ3 + 2µ2,
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where ζ is a Poissonian random variable with parameter µ. Notice that the last two
formulas in (15) will be applied below in the two cases: For ζ = ζ2 (i. e., for µ = λ̃2/λ)
and for ζ = η̃ (i. e., for µ = λ̃).

First, by Lemma 3.3 we represent the second moment in such a way:

EA(η)2 = A1 + A2 + A3,

where
A1 := exp(λ̃2/λ− λ)− 2 exp(λ̃− λ) + 1,

A2 := exp(λ̃− λ)(pλ+ λ̃p̃)− exp(λ̃2/λ− λ)(pλ+ (λ̃2/λ2)λ̃p̃),

A3 := exp(λ̃2/λ− λ)E(λp/2 + λ̃−1p̃C2
ζ2

)2.

To evaluate A1 we use Taylor’s expansions at zero for both the exponentials up to terms
of the third order and apply the relations from (15). We then have

A1 = (λ̃− λ)2/λ+ (1/2)(λ̃2/λ− λ)− (λ̃− λ)2 = λp2 + (λp)2 + o(p2).

By analogy, using the above–mentioned Taylor’s expansions up to terms of the second
order of smallness, we obtain the following asymptotic representation for A2:

A2 = −2(λp2 + (λp)2) + o(p2).

Evaluate A3. By (15) we have

A3 = exp

(
λ̃2

λ
− λ

)(
(λp)2

4
+

1

2
λpλ̃p̃

(
λ̃

λ

)2

+
1

4

(
λ̃

λ

)4

(λ̃p̃)2 +

(
λ̃

λ

)3

λ̃p̃2 +
1

2

(
λ̃

λ

)2

p̃2

)
= (λp)2 + λp2 + p2/2 + o(p2).

Thus, we finally obtain
EA(η)2 = p2/2 + o(p2).

Theorem 3.1 is proven.

4. Two–sided estimates of approximation
to a classical binomial distribution.

In the sequel we put pi = p, i = 1, . . . , n. In this case, λ = np

P (k) =
n!

(n− k)!k!
(1− p)n−kpk, Q(k) =

λk

k!
e−λ.

The main result of this Section is as follows.
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Theorem 4.1 For arbitrary p and n, the following two–sided estimate is valid:

p2

2
+

2p3

3n
≤ χ2(P,Q) ≤ p2

2
+

2p3

3n
+

p4

1− p
+
p8(23− 20p)

(1− p)2
. (16)

Proof To construct the estimates from (16) we first reduce χ2(P,Q)-distance to the
form

∑
m≥0

Bmp
m and evaluate the coefficients Bm.

Lemma 4.1 The following representation is valid:

χ2(P,Q) + 1 =
∑
m≥0

m!

nm
A2

mp
m, (17)

where Am :=
m∑

i=0

ni(−1)m−i

i!
Cm−i

n .

Proof We agree that if, for some summation indices, the range of summation is not
indicated then the corresponding sum is taken over the set Z of all integers. Meanwhile,
in the formulas below, we put for convenience that (−k)! = ∞ for all natural k that is
equivalent to the above–mentioned in § 3 agreement on the equality Cm

k = 0 for all natural
k < m (of course, under the standard agreement concerning the arithmetical operations on
the extended real line). Notice that the analogous interpretation of binomial coefficients
is contained in [51].

Using the corresponding representation for χ2(P,Q) from § 2 we have

χ2(P,Q) + 1 =
n∑

k=0

(n!)2pk

((n− k)!)2k!nk
(1− p)n−k(1− p)n−kenp

=
n∑

k=0

(n!)2pk

((n− k)!)2k!nk

∑
i,j,l

(
(−1)ipi (n− k)!

(n− k − i)!i!

)(
(−1)jpj (n− k)!

(n− k − j)!j!

)
nlpl

l!

=
∑

k

∑
i,j,l

(n!)2(−1)i+jpi+j+l+knl

k!nk(n− k − i)!i!(n− k − j)!j!l!
=: R1.

In the last multiple sum, we change the four summation variables by the formulas
i = d + r − q, j = d, k = m − r − d and l = q − d. It is easy to verify that this linear
transform of the variables is a bijection from Z4 to Z4. Then

R1 =
∑

m,r,q,d

(n!)2(−1)2d+r−qpmnr+q−m

(m− r − d)!(n−m+ q)!(d+ r − q)!(n−m+ r)!d!(q − d)!
.

In the multiple sum of the last representation for R1, we may consider the variables r and
q to be not exceeding m, since, otherwise, at least one of the factorials in the fraction
denominator equals −∞.
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Therefore, R1 admits the following refinement:

R1 =
∑
m≥0

m∑
r,q=0

∑
d

(n!)2(−1)2d+r−qpmnr+q−m

(m− r − d)!(n−m+ q)!(a+ r − q)!(n−m+ r)!d!(q − d)!

=
∑
m≥0

m∑
r,q=0

(
(n!)2(−1)2d+r−qpmnr+q−mm!

(n−m+ q)!(n−m+ r)!r!q!(m− r)!(m− q)!

∑
d

Cd
qC

m−r−d
m−q

Cr
m

)
;

meanwhile, due to the definition of a hypergeometric distribution,

∑
d

Cd
qC

m−r−d
m−q

Cr
m

= 1.

Thus,

χ2(P,Q) + 1 =
∑
m≥0

pmm!

nm

m∑
r,q=0

(n!)2(−1)r+qnr+q

(n−m+ q)!(n−m+ r)!r!q!(m− r)!(m− q)!

=
∑
m≥0

pmm!

nm

(
m∑

r=0

n!(−1)rnr

(n−m+ r)!r!(m− r)!

)(
m∑

q=0

n!(−1)qnq

(n−m+ q)!j!(m− q)!

)

=
∑
m≥0

pmm!

nm
A2

m,

where the coefficients Am are defined in (17). The assertion is proven.

The next Lemma describes a simple method to calculate the coefficients Am.
Lemma 4.2 For the coefficients Am in (17), for each natural n, the following recurrent

relation is valid:

Am+2 = − n

m+ 2

m∑
i=0

Ai for allm ≥ 0.

Proof. First of all, we compute the generating function for the sequence {Am; m ≥ 0}
defined in (17) by the formula

Am =
m∑

i=0

ni

i!
(−1)m−iCm−i

n .

By this formula, changing the summation order, we obtain the identity

∞∑
m=0

pmAm =
∞∑
i=0

(np)i

i!

n+i∑
m=i

(−p)m−iCm−i
n = (1− p)nenp (18)
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which is valid for all p ∈ (0, 1). We now differentiate in p both the parts of this equality
(the termwise differentiation of the series in (18) is correct in a neighborhood of every
point of the interval (0, 1)). We then obtain the equality

∞∑
m=0

pmAm+1(m+ 1) = n(1− p)nenp − n(1− p)n−1enp = −n(1− p)nenp p

1− p

= −
∞∑

m=0

pmAm
np

1− p
= −n

∞∑
m=0

pm+1Am
1

1− p
= −n

∞∑
m=1

pm

(
m−1∑
i=0

Ai

)
which implies the relation we need:

Am+1(m+ 1) = −n
m−1∑
i=0

Ai.

The lemma is proven.

Calculate a few first coefficients Ai:

A0 = 1, A1 = 0, A2 = −n
2
, A3 = −n

3
, A4 = −n

4
+
n2

8
,

A5 = −n
5

+
n2

6
, A6 = −n

6
+

13n2

72
− n3

48
, A7 = −n

7
+

11n2

60
− n3

24
.

(19)

In particular, by (17) we obtain the following asymptotic expansion:

χ2(P,Q) =
p2

2
+

2p3

3n
+
∑
m≥4

m!

nm
A2

mp
m. (20)

¿From here the lower bound in (16) follows immediately. To obtain an upper bound for
the remainder sum on the right–hand side of (20) we need the following assertion.

Lemma 4.3. For every natural n and k > 1, the following inequality is valid:

Bk :=
k!

nk
A2

k < 3k.

Proof. By Lemma 4.1, taking the relations B0 = 1 and B1 = 0 into account, we have∑
i≥2

Bip
i = χ2(P,Q).

Since Bi ≥ 0 for each natural i then

Bk ≤ χ2(P,Q)p−k ≤ p−k( sup
0≤i≤n

(P (i)/Q(i))− 1).
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In [8] the following inequality is proved:

sup
0≤i≤n

(P (i)/Q(i)) ≤ 1

1− p
.

Therefore,

Bk ≤
p

pk(1− p)
. (21)

Since Bk does not depend on p then, setting p = 1− 1/k in (21) (this is the point of the
minimum of the right–hand side of (21)), we finally obtain

Bk ≤
k − 1(
1− 1

k

)k ≤ k − 1

1− k
k

+ k(k−1)
2k2 − k(k−1)(k−2)

6k3

=
3k2

k + 1
< 3k.

The Lemma is proven.

We now easily derive the upper bound in (16). Taking the form of the coefficients Ai

in (19) into account it is easy to verify that m!
nmA

2
m ≤ 1 for m = 4, 5, 6, 7. Therefore, by

Lemma 4.3 and (20), we derive the following inequality:

χ2(P,Q) ≤ p2

2
+

2p3

3n
+ p4 + p5 + p6 + p7 +

∑
k≥8

3kpk. (22)

Further, it is easy to verify the identity∑
k≥8

3kpk = p8
∑
k≥0

pk(3(k + 1) + 21) = p8

(
3

(1− p)2
+

21

1− p

)

=
p8(23− 20p)

(1− p)2
+

p8

1− p
=
p8(23− 20p)

(1− p)2
+

p4

1− p
− p4 − p5 − p6 − p7.

Using this representation and (22) we obtain the upper bound in (16). The Theorem is
proven.

Corollary For the total variation distance between the distributions P and Q, the
following upper bound is valid:

‖P −Q‖ ≤ p

(
1

2
+

2p

3n
+

p2

1− p
+
p6(23− 20p)

(1− p)2

)1/2

. (23)

5. Comparison of upper bounds for the total variation distance

The best known upper bound for the total variation distance between a binomial
distribution and the accompanying Poisson law has the form (see [5, 8, 82])

‖P −Q‖ ≤ min(2p, 2np2), (24)
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meanwhile, there are no restrictions on the parameters n and p. As follows from Theo-
rem 4.1 (see the lower bound), χ2-distance is too strong to obtain the estimates of order
O(np2) for the total variation distance in whole range of the variables n and p. Therefore,
in the sequel, we will consider only the case λ = np ≥ 1. In this case, the right–hand side
of (24) has the form min(2p, 2np2) = 2p.

As a consequence of evaluating the Kulback–Leibler distance in [57], the authors de-
rived by Pinsker’s inequality the upper bound

‖P −Q‖ ≤ p

(
− log(1− p) + p

p2
+

1 + p

2n(1− p)3

)1/2

. (25)

Denote by R0
1 and R0

2 the respective right–hand sides of inequalities (23) and (25).
Notice that, as p→ 0, uniformly over all λ ≥ 1, the following asymptotic representa-

tions are valid:

R0
1 = p

(
1

2
+ p2

(
2

3λ
+ 1

)
+O(p3)

)1/2

, R0
2 = p

(
1

2
+ p

(
1

2λ
+

1

3

)
+O(p2)

)1/2

.

So, for p small enough, the upper bound in (23) is slightly better than (25) in spite of
equivalence of the leading terms of the asymptotics of both the variables R0

1 and R0
2 as

p → 0: These parts are equal to p/
√

2. In this connection, we note that the constant
1/
√

2 = 0, 7071 · · · slightly exceeds the exact lower bound 3/2e = 0, 5518 . . . from [9]
for the constants c in upper bounds of the form cp for the total variation distance under
consideration in the range λ ≥ 1 and p ≤ 1/4.

Notice that, under some restrictions on the parameters p and n, one can obtain stronger
upper bounds than that in (24). For example, in [2] for p ≤ 1/4 and λ ≥ 3, the following
inequality was proved:

‖P −Q‖ ≤ 1, 64p.

For comparison, in a more broad range of the variables p and λ, namely, under the
restrictions p ≤ 1/4 and λ ≥ 1, it is easy to show (in this case, the right–hand sides in
(23) and (25) reach their maxima in the points p = 1/4 and λ = 1), so that R0

2 < 0, 987p
but the right–hand side of (23) admits the better estimate R0

1 < 0, 796p. Notice also that,
for the estimates above, a restriction from below on λ is equivalent to a restriction from
below on n. More precisely, if we consider restrictions of the type p ≤ p∗ and, λ ≥ λ∗ then
the maxima of the factors of p in (23) and (25) coincide with those under the restrictions
p ≤ p∗ and n ≥ λ∗/p∗, and these maxima are reached in the corresponding extreme points.
As an example, we cite the uniform upper bounds for R0

1 and R0
2 in some typical ranges

of the variables n and p:
1) In the range p ≤ 1/4 and n ≥ 10 we have R0

1 < 0, 780p and R0
2 < 0, 867p;

2) In the range p ≤ 1/4, n ≥ 100 we have R0
1 < 0, 770p R0

2 < 0, 786p.
Beginning with the next order n ≥ 1000 the uniform over p ≤ 1/4 upper bounds for

the values under consideration do not change (up to the accuracy indicated above). For
all such n, We may put that R0

1 < 0, 769p and R0
2 < 0, 778p.
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Remark In [105], for the total variation distance, the following upper bound is valid:

‖P −Q‖ ≤ p

(
3

2e
+

14
√
p(3− 2

√
p)

6(1−√
p)2

)
. (26)

It is clear that the value C(p) := 3/2e+O(
√
p) in the brackets on the right–hand side of

(26), for p small enough, is slightly less than the value

C0(p, n) :=

(
1

2
+

2p

3n
+O(p2)

)1/2

from (23). Since the function C(p) increases on the interval (0, 1/4), to obtain the cor-
responding upper bounds it suffices to calculate the values of this function in the cor-
responding extreme points of the intervals under consideration. For example, C(1/4) =
9, 885 . . . , C(0, 1) = 4, 288 . . . , C(0, 01) = 1, 358 . . . , C(0, 001) = 0, 782 . . . , and finally,
C(0, 0001) = 0, 622 . . . .

But as indicated above,

max
p≤1/4, n≥10

C0(p, n) = 0, 780 . . . , max
p≤1/4, n≥100

C0(p, n) = 0, 770 . . . .

Thus, the upper bounds in (26) will be better in comparison with (23) only for the values
of p of the order 10−4. But for such p, the problem of improvement of the multiplicative
constant in upper bounds of the type cp for the total variation distance, with relation to
some applications, seems empty.
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6 Poissonian approximation of rescaled set-indexed

empirical processes

Let {Xi; i ≥ 1} be independent identically distributed random variables in Rk possessing
an absolutely continuous distribution with a density f(t) continuous at zero. Introduce
the rescaled empirical process

Sn(A) :=
∑
i≤n

I{n1/kXi ∈ A}

indexed by the class B0 of all Borel subsets A of a bounded Borel set A0 in Rk. Denote
by {Π(A); A ∈ B0} the Poisson point process with mean measure f(0)λ(·), where λ(·) is
the Lebesgue measure in Rk.

Weak convergence of distributions of the point processes {Sn(A); A ∈ B0} to that of
{Π(A); A ∈ B0} in a functional sample space has been studied by Ivanoff and Merzbach
([68]). Actually, they proved only convergence of finite-dimensional distributions of these
point processes by using a theory of set-indexed martingales. The main goal of this
chapter is to obtain a much stronger result by a simpler (but not traditional) technique
of multivariate analysis. In the theorem below we prove that convergence of distributions
of the processes actually holds in the total variation distance.

Theorem. The point processes Sn(·) and Π(·) can be constructed on a common prob-
ability space such that

lim
n→∞

P

(
sup
A∈B0

|Sn(A)− Π(A)| > 0

)
= 0. (1)

Proof. It suffices to prove (1) only for the case in which B0 is a countable determining
class for all discrete measures. More precisely, let B0 be the algebra generated by all
balls with bounded rational diameters and rational centers in a bounded subset of Rk.
Consider the functional space

B := {f(A); A ∈ B0 : sup
A∈B0

|f(A)| <∞}

endowed with the norm ‖f‖ := supi{αi|f(Ai)|}, where {Ai} = B0 and {αi} is a sequence
of positive numbers tending monotonically to zero. Note that the linear normed space
{B, ‖ · ‖} is separable (but not complete).

Recall that the generalized Poisson distribution Pois(µ) with the Lévy measure µ in
a separable linear normed space B is defined by the relation

Pois(µ) := e−µ(B)

∞∑
k=0

µ∗k

k!
, (2)

where µ∗k is the k-fold convolution of a finite measure µ with itself; µ∗0 is the unit mass
concentrated at zero. We say that Pois(µ) is the accompanying Poisson distribution for
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the nth convolution of L(X) (or for the nth sum of independent copies of a random
variable X), if µ = nL(X).

Put µ := nL{I(n1/kX1 ∈ A); A ∈ B0} and consider the distribution Pois(µ). It is
the accompanying Poisson distribution for Sn(·) in the space {B, ‖ · ‖}. The well-known
Le Cam result (for the details, see Borisov ([18]) and Le Cam ([84])) yields the following
upper bound.

Lemma 1. For all n, the following inequality holds:

V (L(Sn), Pois(µ)) ≤ np2, (3)

where V (·, ·) is the total variation distance between two finite measures in {B, ‖ · ‖},

p := 1−P(I(n1/kX1 ∈ A) = 0, ∀A ∈ B0) = P(n1/kX1 ∈ A0).

Let Y be a random variable with the uniform distribution in the ball Sf in Rk with
center zero and size f(0)−1. Consider in {B, ‖ · ‖} the generalized Poisson distribution
Pois(µ0) with the Lévy measure µ0 := nL{I(n1/kY ∈ A); A ∈ B0}. It is easy to verify
that, for sufficiently large n satisfying the condition n−1/kA0 ⊆ Sf , the equality Pois(µ0) =
L(Π) holds, where the process Π(·) was introduced in the above theorem, because, in this
case, nEI(n1/kY ∈ A) = f(0)λ(A) for all A ∈ B0.

Lemma 2. For all n, the following inequality holds:

V (Pois(µ), Pois(µ0)) ≤ 2n sup
A∈B0

|P(n1/kX1 ∈ A)−P(n1/kY ∈ A)|. (4)

Proof. First, we obtain from (2) the following simple upper bound:

V (Pois(µ), Pois(µ0)) ≤ 2V (µ, µ0). (5)

Indeed, because of the symmetry, we can put µ(B) ≤ µ0(B). Then

V (Pois(µ), Pois(µ0)) ≤ (e−µ(B) − e−µ0(B))eµ(B)+

e−µ0(B)V

(
∞∑

k=0

µ∗k

k!
,

∞∑
k=0

µ∗k0

k!

)
.

The upper bound follows from the above inequality and the two estimates:

e−µ(B) − e−µ0(B) ≤ (µ0(B)− µ(B))e−µ(B),

V (µ∗k, µ∗k0 ) ≤ kµ0(B)k−1V (µ, µ0).

Because of the separability and the definition of the norm, the total variation distance
on the right-hand side of (5) coincides with the supremum over all finite-dimensional
cylindrical sets in {B, ‖ · ‖}. But, in this case, the right-hand side of (5) is estimated
easily by the right-hand side of (4). The lemma is proved.
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Finally, under the condition n−1/kA0 ⊆ Sf , we have

sup
A∈B0

|P(n1/kX1 ∈ A)−P(n1/kY ∈ A)| ≤ 1

n

∫
A0

|f(n−1/kz)− f(0)|dz.

Moreover, we need the obvious representation

p =
1

n

∫
A0

f(n−1/kz)dz ∼ 1

n
f(0)λ(A0),

where the above integrals are understood to be k-fold. Relation (1) follows from the trian-
gle inequality for V (·, ·), the above upper bounds and the classical Lebesgue theorem, and
from a theorem of Dobrushin ([45]) which asserts: it is possible to construct two random
variables in a separable metric space such that the probability of their noncoincidence
equals the total variation distance between their distributions.

R e m a r k. If the density f(t) satisfies the Lipschitz condition at zero, then
V (Sn, Π) = O(n−1/k). By the Dobrushin theorem, the analogous rate of convergence
is valid for the probability in (1). Moreover, we can define f(t) as the derivative of the
distribution function with respect to the direction determined by the family of subsets

{n−1/kA0; n ≥ 1}.
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7 Poissonian approximation for expectations of func-

tions of independent random variables

1. Statement of the main results.

Accuracy of Poisson approximation for sums of independent random variables (r.v.’s)
has already been investigated for about half a century. One of the first results was
obtained by Prohorov (1953), who estimated the total variation distance between a bino-
mial distribution and the corresponding Poisson law. His upper bound is close to being
unimprovable. Le Cam (1960) considerably generalized and strengthened the Prohorov
estimate. He used the so-called operator technique to extend the estimate to the case
of approximating distributions of sums of independent arbitrarily distributed r.v.’s by
corresponding generalized (accompanying) Poisson laws. Take note also of the remark-
able result due to Barbour and Hall (1984) which, in particular, proved unimprovability
of the Prohorov–Le Cam estimate for the total variation distance between a binomial
distribution and the corresponding Poisson law.

Approximation of the next orders in the Poisson limit theorem, called an asymptotic
expansion, originates from Chen (1975). Note also the paper by Deheuvels and Pfeifer
(1986), where the first term of the expansion was explicitly written out. Kruopis (1986a,
b) simultaneously obtained a similar result. However, he represented the first term of
the expansion implicitly as the Fourier transform of some signed measure. Borovkov
(1988) proposed a new approach to derive terms of the expansion in a form similar to
that of Kruopis (1986a, b). He used a combination of the operator technique and a
coupling to derive complete asymptotic expansion in the Poisson theorem. As in Kruopis
(1986a, b) the expansion was presented via the Fourier transforms and, moreover, a
scheme to invert the transforms was discussed. However, in our opinion, the resulting
explicit representation of the terms of the asymptotic expansion is resistant to analysis
[in contrast, say, to Deheuvels and Pfeifer (1986)].

It is worth noting that in all of the above-mentioned papers remainders of the ex-
pansions are estimated in terms of the total variation distance. Thus, it is clear that
these results can be reformulated in terms of moments of bounded functions with the
corresponding upper bounds of remainders taken uniformly over all bounded (say, by 1)
functions. There are also more publications where Poisson approximation of the moments
is considered uniformly over special subclasses of bounded functions [e.g., see Roos (1995,
1998)].

However, the total variation distance, the point metric and some related distances
become unsuitable for approximation of moments of unbounded functions of a binomial
r.v. In this connection, investigations of the Poisson approximation for expectations of
unbounded functions of sums of r.v.’s are to be distinguished. The papers which are to
be particularly noted are those by Barbour (1987) and Barbour, Chen and Choi (1995).
Barbour (1987) used the so-called Stein–Chen method to obtain complete asymptotic
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expansions in the Poisson approximation of at most polynomially growing functions of
sums of independent arbitrarily distributed integer nonnegative r.v.’s. In the latter paper,
a similar approach is used to obtain the first term of the expansion for expectation of some
functions of a binomial r.v. under minimal moment restrictions on the functions under
consideration. In particular, these restrictions allow the functions growing faster than
exponential. The bounds on the remainders of the expansions in these two papers are not
far from optimal.

The main goal of the chapter is to obtain complete asymptotic expansions of moments
of unbounded functions of n independent r.v.’s in the case when each of these r.v.’s is
equal to zero with high probability. The probabilities for these r.v.’s to be unequal to zero
are considered as natural small parameters, sums of which powers are used to represent
the asymptotic expansions. In the case of asymptotic expansions for bounded functions
a similar formulation of the problem was given by Borovkov (1988). The particular case,
wherein the functions depend only on the sum of the r.v.’s, is separately studied. In this
case the estimate of the remainder of the expansion is unimprovable in some sense and
improves the corresponding results of Barbour (1987) and Barbour, Chen and Choi (1995)
in a broad range of change of the expansion parameters.

The approach used to derive the main results is based on the so-called Lindeberg
method. This method was successfully employed in a great number of papers to study
rates of convergence in the central limit theorem (the Gaussian case) under various set-
tings including studying remainders in different asymptotic expansions. However, the
method was rarely used in the Poisson approximation. One can find certain versions of
the Lindeberg method in the Poisson approximation, for example, in the papers by Le
Cam (1960), Deheuvels, Karr, Pfeifer and Serfling (1988) and Novak (1998).

In Section 5 it is shown that the problem of the Poisson approximation for expectation
of a function of independent arbitrarily distributed r.v.’s can be reduced to the case of
independent Bernoulli r.v.’s. Thus, in the chapter, this case is particularly studied.

Let ζ1,...,ζn be independent Bernoulli r.v.’s with the success probabilities pj = P(ζj =
1), j = 1, ..., n. Let η1,...,ηn be independent Poisson r.v.’s with parameters p1, ..., pn,
respectively. Denote λk = p1 + · · · + pk, λ = λn, and ζ̄ = (ζ1, ..., ζn), η̄ = (η1, ..., ηn).
Finally, let F be an arbitrary real function of n nonnegative integer variables.

Denote by ēk the n-dimensional vector which has the kth coordinate 1 and all the
other coordinates 0. For any function G of n arguments, define the difference operator
∆k:

∆kG(ā) = G(ā+ ēk)−G(ā).

In the sequel we denote by ∆r
k the corresponding operator power. In the one-dimensional

case the subscript will be omitted.
The following theorem is the key result for deriving most of the subsequent statements.

Theorem 1. Suppose E|F (η̄)| <∞. Then

(1) EF (η̄)− EF (ζ̄) =
n∑

k=1

∞∑
r=2

pr
k

r!
E∆r

kF (φ̄k),
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where φ̄k = (ζ1, ..., ζk−1, 0, ηk+1, ..., ηn), and, for each k, the corresponding series in (1)
absolutely converges.

Moreover, if Eηk
s+1|F (η̄)| < ∞ for all k and some s ≥ 1, then, first, the remainder

of series in (1) can be estimated as follows:

(2)

∣∣∣∣∣
∞∑

r=s+1

pr
k

r!
E∆rF (φ̄k)

∣∣∣∣∣ ≤ epk
ps+1

k

(s+ 1)!
E|∆s+1

k F (ψ̄k)|,

where ψ̄k = φ̄k + ηkēk = (ζ1, ..., ζk−1, ηk, ..., ηn) and, second, another expansion of the
difference EF (η̄)− EF (ζ̄) holds:∣∣∣∣∣EF (η̄)− EF (ζ̄)−

s∑
r=2

(−1)r(r − 1)
n∑

k=1

pr
k

r!
E∆r

kF (ψ̄k)

∣∣∣∣∣
≤ s

(s+ 1)!

n∑
k=1

epkps+1
k E|∆s+1

k F (ψ̄k)|.
(3)

Remark 1. Under the moment restrictions considered above expansion (3) cannot
be represented as a converging series with an upper bound for its remainder like in (1) and
(2), because this representation would require considerably stronger moment restrictions.

Remark 2. The right-hand sides of the inequalities (2) and (3) can be bounded
through expectations of functions of η̄ using the obvious unimprovable upper bound for
the Radon–Nikodym derivative of the distribution of ψ̄ with respect to the distribution
of η̄:

E|∆s+1
k F (ψ̄k)| ≤ eλkE|∆s+1

k F (η̄)|.

The right-hand side of the inequality is finite if Eηs+1
k |F (η̄)| < ∞ for all k, since the

following proposition is true:

Proposition 1. Let τ be an arbitrary Poisson r.v. and g be an arbitrary real function.
Then, for each l = 1, 2, ..., the following three conditions are equivalent:

(a) Eτ l|g(τ)| <∞.
(b) E|g(τ + l)| <∞.
(c) E|∆lg(τ)| <∞.

Corollary 1. If, for all k, Eηk
2|F (η̄)| <∞, then

|EF (ζ̄)− EF (η̄)| ≤ 1
2

n∑
k=1

epkp2
kE|∆2

kF (ψ̄k)|

≤ 1
2

n∑
k=1

eλkp2
kE|∆2

kF (η̄)|.
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Corollary 2. If Eηk
3|F (η̄)| <∞, Eηj

2ηk
2|F (η̄)| <∞ for all j, k : j 6= k, then∣∣∣∣∣EF (ζ̄)− EF (η̄) + 1

2

n∑
j=1

p2
jE∆2

jF (η̄)

∣∣∣∣∣
≤ 1

4

n∑
k=1

p2
k

k−1∑
j=1

epjp2
jE|∆2

j∆
2
kF (ψ̄j)|+ 1

3

n∑
j=1

epjp3
jE|∆3

jF (ψ̄j)|.

Theorem 1 also allows us to obtain complete asymptotic expansions of EF (ζ̄)−EF (η̄),
since the expectations E∆r

kF (ψ̄k) in (3) can be subsequently approximated with expec-
tations E∆r

kF (η̄k) using (3).

Corollary 3. Let l ≥ 1. Suppose

Eηr1
k1
· · · ηrs−1

ks−1
η

l+s−r1−···−rs−1

ks
|F (η̄)| <∞

for all 1 ≤ s ≤ l, n ≥ k1 > k2 > · · · > ks ≥ 1, 2 ≤ r1 ≤ l,...,2 ≤ rs−1 ≤ l + s− 2. Then∣∣∣∣∣EF (ζ̄)− EF (η̄)−

∑′
(−1)s+r1+···+rs(r1 − 1) · · · (rs − 1)

pr1
k1
· · · prs

ks

r1! · · · rs!
E∆r1

k1
· · ·∆rs

ks
F (η̄)

∣∣∣∣∣
≤
∑′′

epks (r1 − 1) · · · (rs−1 − 1)(l + s− r1 − ...rs−1 − 1)

pr1
k1
· · · prs−1

ks−1
p

l+s−r1−...−rs−1

ks

r1! · · · rs−1!(l + s− r1 − ...rs−1)!
E|∆r1

k1
· · ·∆rs−1

ks−1
∆

l+s−r1−...rs−1

ks
F (ψ̄ks)|,

where
∑′ and

∑′′ denote the following sums:

∑′
=

l−1∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−1−1∑
ks=1

l+s−1−r1−···−rs−1∑
rs=2

,

∑′′
=

l∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−2−1∑
ks−1=1

l+s−2−r1−···−rs−2∑
rs−1=2

ks−1−1∑
ks=1

.

In the last sum we assume k0 = n+ 1 if s = 1.
Now we consider the Poisson approximation for moments of functions of sums of

independent Bernoulli r.v.’s. Put S = ζ1 + · · · ζn, Z = η1 + · · · ηn and let h be an arbitrary
function of nonnegative integer. Introduce the following notation: λ = p1 + · · · + pn,
p̃k = max{p1, ..., pk}, p̃ = p̃n.
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Theorem 2. Let E|h(Z)| <∞. Then

(4) Eh(Z)− Eh(S) =
n∑

k=1

∞∑
r=2

pr
k

r!
E∆rh(Tk),

where Tk = ζ1 + · · ·+ ζk−1 + ηk+1 + · · ·+ ηn, and, for each k, corresponding series in (4)
absolutely converges.

Moreover, if EZs+1|h(Z)| <∞ then, first,

(5)

∣∣∣∣∣
∞∑

r=s+1

pr
k

r!
E∆rh(Tk)

∣∣∣∣∣ ≤ epk

(1− p̃k−1)2

ps+1
k

(s+ 1)!
E|∆s+1h(Z)|, s ≥ 1

and, second, another expansion of the difference Eh(Z)− Eh(S) holds:∣∣∣∣∣Eh(Z)− Eh(S)−
s∑

r=2

(−1)r(r − 1)
n∑

k=1

pr
k

r!
E∆rh(Yk)

∣∣∣∣∣
≤ s

(s+ 1)!

n∑
k=1

epk

(1− p̃k−1)2
ps+1

k E|∆s+1h(Z)|,
(6)

where Yk = ζ1 + · · ·+ ζk−1 + ηk + · · ·+ ηn.

Remark 3. The principal distinction between Theorem 1 and Theorem 2 is the
appreciably sharper upper bound for the remainder in Theorem 2 which is obtained by the
corresponding upper bound for the Radon–Nikodym derivative in Lemma 2 (see Section
2). Formal application of Theorem 1 to functions of sums of the arguments yields an
upper bound for the remainder which is substantially rougher than that in Theorem 2 as
λ→∞.

Remark 4. As noted in Proposition 1, the finiteness of E|∆s+1h(Z)| is equivalent to
finiteness of E|Zs+1h(Z)|. Nevertheless, the series (4) absolutely converges under weaker
(s = −1) moment restrictions.

Corollary 4. If EZ2|h(Z)| <∞, then

|Eh(S)− Eh(Z)| ≤ 1

2

ep̃

(1− p̃)2

n∑
j=1

p2
jE|∆2h(Z)|.

Corollary 5. If EZ4|h(Z)| <∞, then∣∣∣∣∣Eh(S)− Eh(Z) +
1

2

n∑
j=1

p2
jE∆2h(Z)

∣∣∣∣∣
≤ ep̃

(1− p̃)2

1

3

n∑
j=1

p3
jE|∆3h(Z)|+ 1

8

(
n∑

j=1

p2
j

)2

E|∆4h(Z)|

 .
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Corollary 6. If EZ6|h(Z)| <∞, then∣∣∣∣∣Eh(S)− Eh(Z) +
1

2

n∑
j=1

p2
jE∆2h(Z)− 1

3

n∑
j=1

p3
jE∆3h(Z)− 1

8

(
n∑

j=1

p2
j

)2

E∆4h(Z)

∣∣∣∣∣
≤ ep̃

(1− p̃)2

1

4

n∑
j=1

p4
jE|∆4h(Z)|+ 1

6

n∑
j=1

p2
j

n∑
k=1

p3
kE|∆5h(Z)|+ 1

48

(
n∑

j=1

p2
j

)3

E|∆6h(Z)|

 .

The complete asymptotic expansion for the sums can be written as follows:

Corollary 7. If E|∆2lh(Z)| <∞, then∣∣∣∣∣Eh(S)− Eh(Z)−

∑′
(−1)s+r1+···+rs(r1 − 1) · · · (rs − 1)

pr1
k1
· · · prs

ks

r1! · · · rs!
E∆r1+···+rsh(Z)

∣∣∣∣∣
≤
∑′′ epks

(1− p̃ks)
2
(r1 − 1) · · · (rs−1 − 1)(l + s− r1 − ...rs−1 − 1)

pr1
k1
· · · prs−1

ks−1
p

l+s−r1−···−rs−1

ks

r1! · · · rs−1!(l + s− r1 − ...rs−1)!
E|∆l+sh(Z)|,

where
∑′ and

∑′′ denote the following sums:

∑′
=

l−1∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−1−1∑
ks=1

l+s−1−r1−···−rs−1∑
rs=2

,

∑′′
=

l∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−2−1∑
ks−1=1

l+s−2−r1−···−rs−2∑
rs−1=2

ks−1−1∑
ks=1

.

In the last sum we suppose k0 = n+ 1 if s = 1.

2. Preliminary results.

In this section we prove the following three lemmas, which are also of independent
interest.
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Lemma 1. Let p1 = · · · = pn = p. Then

(7) sup
j

P(S = j)

P(Z = j)
≤ 1

1− p

and moreover,
P(S = j)

P(Z = j)
≤ 1

if j ≤ max{0, λ−
√

2n(− log(1− p)) + 1} or j ≥ λ+ min{λ,
√

2λ}+ 1.

Proof. For j ≤ n,

P(S = j)

P(Z = j)
=

n(n− 1) · · · (n− j + 1)

nj(1− p)j
(1− p)nenp =

exp

{
n(p+ log(1− p))− j log(1− p) +

j−1∑
i=0

log

(
1− i

n

)}
≤

exp

{
− log(1− p) + n(p+ log(1− p))− (j − 1) log(1− p)

+n

∫ (j−1)/n

0

log(1− x)dx

}
≤ exp

{
− log(1− p)− nHp

(
j − 1

n

)}
.

where Hp(x) = −p+ x+ (1− x) log((1− x)/(1− p)). The following properties of Hp are
obvious: Hp(x) ≥ 0 if x ≤ 1 [hence (7) is true], Hp(1) = 1− p, Hp(p) = 0, d

dx
Hp(p) =

0, d2

dx2Hp(x) = 1/(1− x), that implies

Hp(x) ≥
(x− p)2

2(1− p)
if p ≤ x ≤ 1.

Hence, for j ≥ λ+ 1,

P(S = j)

P(Z = j)
≤ exp

{
− log(1− p)− (j − 1− np)2

2n(1− p)

}
≤ 1 if j ≥ λ+

√
2λ+ 1.

Analogously,

Hp(x) ≥
(x− p)2

2
if x ≤ p.

And hence, for j ≤ λ+ 1,

P(S = j)

P(Z = j)
≤ exp

{
− log(1− p)− (j − 1− np)2

2n

}
≤ 1 if j ≤ λ−

√
2n(− log(1− p))+1.

We also have

P(S = j)

P(Z = j)
= exp

{
n(p+ log(1− p))− j log(1− p) +

j−1∑
i=0

log

(
1− i

n

)}
≤
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exp {n(p+ log(1− p))− j log(1− p)− 1/n− 2/n− · · · − (j − 1)/n} ≤
exp{jn−1(np− (j − 1)/2)} ≤ 1 if j ≥ 2λ+ 1.

The lemma is proved. 2

Lemma 2. In the case of arbitrary pj, the following inequality holds:

sup
j

P(S = j)

P(Z = j)
≤ 1

(1− p̃)2
.

Proof. Denote by S(a1, ..., am) the sum of m independent Bernoulli r.v.’s the jth of
which is equal to 1 with probability aj. Denote also by Z(b) a Poisson r.v. with parameter
b. Let g be an arbitrary real function. The proof of Corollary 2.1 in Hoeffding (1956)
does not have to be changed when it is applied to the similar statement concerning

sup{Eg(S(a1, ..., an)) : 0 ≤ a1 ≤ p̃, ..., 0 ≤ an ≤ p̃, a1 + · · ·+ an = λ}.

This sumpremum is attained with such a1, ..., an that a1 = a2 = · · · = am = a, am+1 =
... = ak = p̃, ak+1 = · · · = an = 0 for some a,m, k, 0 < a ≤ p̃, 1 ≤ m ≤ k ≤ n.

Now, for each j = 0, 1, ..., n, we set g(y) = I(y = j) and find the corresponding values
a = a(j), m = m(j), k = k(j). Let a1(j) = · · · = am(j)(j) = a(j), am(j)+1(j) = · · · =
ak(j)(j) = p̃, ak(j)+1(j) = · · · = an(j) = 0.

In the case m(j) < k(j) we have

P(S = j)

P(Z = j)
≤ P(S(a1(j), ..., an(j)) = j)

P(Z = j)
=

P(S1(a1(j), ..., am(j)(j)) + S2(am(j)+1(j), ..., ak(j)(j)) = j)

P(Z1(m(j)a(j)) + Z2((k(j)−m(j))p̃) = j)
≤

sup
i≥0

P(S(a1(j), ..., am(j)(j)) = i)

P(Z(m(j)a(j)) = i)
sup
i≥0

P(S(am(j)+1(j), ..., ak(j)(j)) = i)

P(Z((k(j)−m(j))p̃) = i)
≤

1

(1− p̃)2
,

where S1(·), S2(·) and Z1(·), Z2(·) denote pairs of independent r.v.’s with the correspond-
ing distributions; the last inequality follows from Lemma 1.

In the case k(j) = m(j) the inequality

P(S = j)

P(Z = j)
≤ 1

(1− p̃)2

is also true. The lemma is proved. 2

Lemma 3. Let Z ′ be a Poisson r.v. with parameter λ− δ, where 0 < δ < λ. Then∣∣∣∣∣Eg(Z ′)− eδ

m∑
j=0

(−δ)j

j!
Eg(Z + j)

∣∣∣∣∣ ≤ eδδm+1

(m+ 1)!
E|g(Z +m+ 1)|,
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if E|g(Z +m+ 1)| <∞.

Proof. We have
Eg(Z ′) = eδEg(Z)(1− δ/λ)Z =

eδEg(Z)(1− δ/λ)ZI(Z ≤ m) + eδEg(Z)(1− δ/λ)ZI(Z > m).

We assume binomial coefficient Cj
l to be zero if j > l. Consider the first term on the

right-hand side of the last relation. We have

Eg(Z)(1− δ/λ)ZI(Z ≤ m) = Eg(Z)
m∑

j=0

Cj
Z(−δ/λ)jI(Z ≤ m)

=
m∑

j=0

(−δ/λ)jECj
Zg(Z)I(Z ≤ m)

=
m∑

j=0

(−δ)j

j!
Eg(Z + j)I(Z ≤ m),

(8)

where the last equality is true because of the identity

EZ(Z − 1) · · · (Z − j)g(Z) = λjEg(Z + j).

On the subset of elementary events {Z > m}, using Taylor’s formula we have

(1− δ/λ)Z =
m∑

j=0

Cj
Z(−δ/λ)j + Cm+1

Z (δ/λ)m+1θm+1,

where θ is a function of δ, λ, Z and m, such that |θ| ≤ 1. Hence

Eg(Z)(1− δ/λ)ZI(Z > m) =
m∑

j=0

(−δ)j

j!
Eg(Z + j)I(Z > m)

+ ECm+1
Z (δ/λ)m+1θm+1g(Z)I(Z > m),

(9)

where the last summand can be easily estimated:

|ECm+1
Z (δ/λ)m+1θm+1g(Z)I(Z > m)| ≤ ECm+1

Z (δ/λ)m+1|g(Z)I(Z > m)|

=
δm+1

(m+ 1)!
E|g(Z +m+ 1)|.

(10)

Combining relations (8)–(10) we complete the proof. 2

60



3. Proofs of the main results.

Proof of Proposition 1. First show that (a) implies (b):

E|g(τ + l)| =
∞∑
j=l

e−µ µk−l

(k − l)!
|g(k)| ≤ µ−le−µ

∞∑
k=l

µkkl

k!
|g(k)| ≤ µ−le−µEτ l|g(τ)|.

Analogously, (b) implies (a). It is also clear that (b) implies (c), since E|g(τ + l)| < ∞
implies E|g(τ + k)| <∞ for all k ≤ l, and hence

E|∆lg(τ)| = E

∣∣∣∣∣
l∑

k=0

(−1)l−kCk
l g(τ + k)

∣∣∣∣∣ ≤ E
l∑

k=0

Ck
l |g(τ + k)| <∞.

Now we show that (c) implies (b) if l = 1. We have

E|g(τ + 1)| = E

∣∣∣∣∣g(0) +
τ∑

j=0

∆g(j)

∣∣∣∣∣ ≤ |g(0)|+ E
τ∑

j=0

|∆g(j)| =

|g(0)|+
∞∑

k=0

e−µµ
k

k!

k∑
j=0

|∆g(j)| = |g(0)|+ e−µ

∞∑
j=0

∞∑
k=j

µk

k!
|∆g(j)| ≤

|g(0)|+ eµE|∆g(τ)|.

Finally, it is easy to prove equivalence of (b) and (c) using induction on l. 2

Proof of Theorem 1. The proof is substantially based on the Lindeberg method
which is contained in the following identity:

(11) EF (η̄)− EF (ζ̄) =
n∑

k=1

(EF (φ̄k + ηkēk)− EF (φ̄k + ζkēk)).

We have
EF (φ̄k + ζkēk) = EF (φ̄k) + pkE∆kF (φ̄k).

For any function g, the following equality is well known:

∆rg(y) =
r∑

j=0

(−1)r−j r!

(r − j)!j!
g(y + j).

Thus

EF (φ̄k + ηkēk) =
∞∑

j=0

e−pk
pj

k

j!
EF (φ̄k + jēk) =

∞∑
j=0

∞∑
t=0

(−1)tpj+t
k

t!j!
EF (φ̄k + jēk) =

∞∑
r=0

r∑
j=0

pr
k

(−1)r−j

j!(r − j)!
EF (φ̄k + jēk) =
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(12)
∞∑

r=0

pr
k

r!
E∆r

kF (φ̄k),

where the order of summing was changed by Fubini’s theorem.
Therefore,

(13) EF (φ̄k + ηkēk)− EF (φ̄k + ζkēk) =
∞∑

r=2

pr
k

r!
E∆r

kF (φ̄k).

The last equality together with (11) proves relation (1).
Now we prove (2). Let E|∆s+1

k F (η̄)| < ∞ and hence E|∆s+1
k F (φ̄k)| < ∞. Thus we

have∣∣∣∣∣
∞∑

r=s+1

pr
k

r!
E∆r

kF (φ̄k + jēk)

∣∣∣∣∣ =

∣∣∣∣∣ps+1
k

∞∑
r=0

r∑
j=0

pr
k

(r + s+ 1)!

(−1)r−jr!

j!(r − j)!
E∆s+1

k F (φ̄k + jēk)

∣∣∣∣∣ =

∣∣∣∣∣ps+1
k

∞∑
j=0

∞∑
t=0

pj+t
k

(−1)t(j + t)!

(j + t+ s+ 1)!j!t!
E∆s+1

k F (φ̄k + jēk)

∣∣∣∣∣ ≤
ps+1

k

(s+ 1)!

∞∑
j=0

pj
k

j!

∣∣∣∣∣
∞∑

t=0

(s+ 1)!(j + t)!

(j + t+ s+ 1)!

(−pk)
t

t!

∣∣∣∣∣ |E∆s+1
k F (φ̄k + jēk)| ≤

ps+1
k

(s+ 1)!

∞∑
j=0

pj
k

j!
E|∆s+1

k F (φ̄k + jēk)| = epk
ps+1

k

(s+ 1)!
E|∆s+1

k F (φ̄k + ηkēk)|.

So, (2) is true.
Now we proceed to proving (3). If s = 1 then, by (1) and (2), the relation is true.

Consider the case s ≥ 2. Set

f(j) = fk(j) = EF (φ̄k + jēk).

To prove (3) it suffices to show that, for each k,

(14)

∣∣∣∣∣Ef(ηk)− Ef(ζk)−
s∑

r=2

(−1)r(r − 1)
pr

k

r!
E∆rf(ηk)

∣∣∣∣∣ ≤ s

(s+ 1)!
epkps+1

k E|∆s+1f(ηk)|.

In order to prove the last relation we need the expression

1−
m∑

j=2

(−1)j(j − 1)Cj
r , m ≥ 2,

to be calculated. In order to do it we use the identity

t∑
j=0

(−1)jCj
i = (−1)tCt

i−1
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and derive that

m∑
j=2

(−1)jCj
r = (−1)mCm

r−1 − 1 + r,

−
m∑

j=2

(−1)jjCj
r = r

m−1∑
j=1

(−1)jCj
r−1 = −(−1)mmCm−1

r−2 − r.

Thus, for m ≥ 2,

1−
m∑

j=2

(−1)j(j − 1)Cj
r = (−1)m

(
Cm

r−1 −mCm−1
r−2

)

(15) = −(−1)m

(
(m− 1)(r − 1)!

m!(r − 1−m)!
+

(r − 2)!

(m− 1)!(r − 1−m)!

)
.

To prove (14) we show by induction on m that, for all m = 2, 3, ..., s, the following
relation holds:

Ef(ηk)− Ef(ζk)−
m∑

r=2

(−1)r(r − 1)
pr

k

r!
E∆rf(ηk)

(16) =
∞∑

r=m+1

(
1−

m∑
j=2

(−1)j(j − 1)Cj
r

)
pr

k

r!
∆rf(0).

For m = 2, by (12) and (13), the equality is true. Now suppose that (16) is valid for some
m ≥ 2. Then, by (12) and (15),

∞∑
r=m+1

(
1−

m∑
j=2

(−1)j(j − 1)Cj
r

)
pr

k

r!
∆rf(0) =

(−1)mm
pm+1

k

(m+ 1)!
∆m+1f(0) +

∞∑
r=m+2

(
1−

m∑
j=2

(−1)j(j − 1)Cj
r

)
pr

k

r!
∆rf(0) =

(−1)mm
pm+1

k

(m+ 1)!
E∆m+1f(ηk) +

∞∑
r=m+2

(
1−

m+1∑
j=2

(−1)j(j − 1)Cj
r

)
pr

k

r!
∆rf(0),

and hence (16) is true for m+ 1. Thus (16) is valid for m = s.
Finally, for (14) to be proved, it remains only to estimate the right-hand side of the

equality (16) for m = s. Because of (15) we have∣∣∣∣∣
∞∑

r=s+1

(
1−

s∑
j=2

(−1)j(j − 1)Cj
r

)
pr

k

r!
∆rf(0)

∣∣∣∣∣ =
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∣∣∣∣∣
∞∑

r=s+1

(
(s− 1)(r − 1)!

s!(r − 1− s)!
+

(r − 2)!

(s− 1)!(r − 1− s)!

)
pr

k

r!
∆rf(0)

∣∣∣∣∣ =

∣∣∣∣∣ps+1
k

∞∑
r=0

pr
k

(r + s+ 1)!

(
(s− 1)(r + s)!

s!r!
+

(r + s− 1)!

(s− 1)!r!

) r∑
j=0

(−1)r−jr!

j!(r − j)!
∆s+1f(j)

∣∣∣∣∣ =

(17)∣∣∣∣∣ps+1
k

∞∑
j=0

∞∑
t=0

pj
k

j!
(−1)tpt

k

(
(s− 1)(t+ j + s)!

s!(t+ j + s+ 1)!t!
+

(t+ j + s− 1)!

(s− 1)!(t+ j + s+ 1)!t!

)
∆s+1f(j)

∣∣∣∣∣,
where the last expression was derived by changing the order of summing and substituting
the variable t = r − j. To estimate the expression (17) it suffices to note that∣∣∣∣∣

∞∑
t=0

(−1)tpt
k

(
(s− 1)(t+ j + s)!

s!(t+ j + s+ 1)!t!
+

(t+ j + s− 1)!

(s− 1)!(t+ j + s+ 1)!t!

) ∣∣∣∣∣ ≤ s

(s+ 1)!
,

and hence the expression (17) is not greater than

s

(s+ 1)!
ps+1

k

∞∑
j=0

pj
k

j!
|∆s+1f(j)| = s

(s+ 1)!
epkps+1

k E|∆s+1f(ηk)|.

Therefore, (14) is true and hence (3) holds for s ≥ 2. The theorem is proved. 2

Proof of Corollary 2. The assertion follows from the two inequalities below
which are easy consequences of Theorem 1:∣∣∣EF (ζ̄)− EF (η̄) +

1

2

n∑
j=1

p2
jE∆2

jF (ψ̄j)
∣∣∣ ≤ n∑

j=1

epj
p3

j

3
E|∆3

jF (ψ̄j)|,

∣∣∣ n∑
k=1

p2
kE∆2

kF (ψ̄k)−
n∑

k=1

p2
kE∆2

kF (η̄)
∣∣∣ ≤ n∑

k=1

p2
k

1

2

k−1∑
j=1

p2
jE|∆2

j∆
2
kF (ψ̄j)|.

Corollary 3 is proven by repeated application of relation (3). Theorem 2 is the
immediate consequence of Theorem 1 and Lemma 2. The proof of Corollary 5 is
analogous to that of Corollary 2. Corollary 7 is proven by repeated application of relation
(6). Corollary 6 follows from Corollary 7 for l = 3. 2

4. Comparison with predecessors’ results.

We compare the results of the chapter with the corresponding results of Barbour (1987)
and Barbour, Chen and Choi (1995). Corollary 4 will be compared with the following
theorem due to Barbour, Chen and Choi (1995):
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Theorem A. Let EZ2|h(Z)| <∞. Then

|Eh(S)− Eh(Z)| ≤ 1
2
C

(
n∑

j=1

p2
j

)(
4 min{1, λ−1}E|h(Z + 1)|+ E∆2|h(Z)|

)
,

where C = maxk supj≥0
P(S−ζk=j)

P(Z=j)
.

Barbour, Chen and Choi (1995) obtained an upper bound for C which implies, in
particular, that C ≤ 2e13/12

√
π for p̃ ≤ 1/2.

Corollary 5 will be compared with the following theorem in the same paper.

Theorem B. Let EZ4|h(Z)| <∞. Then

|Eh(S)− Eh(Z) + 1
2

n∑
j=1

p2
jE∆2h(Z)| ≤

C


(

n∑
j=1

p2
j

)2

R1 +

(
n∑

j=1

p3
j

)
R2

 ,

where
R1 = 12 min{1, λ−2}E|h(Z + 2)|+

1
3
min{1, λ−1}(5E∆2|h(Z + 1)|+ E∆2|h(Z)|)+

1
8
E∆4|h(Z)|,

R2 = 2 min{1, λ−1}(E|h(Z + 2)|+ E|h(Z + 1)|)+
1
3
(E∆2|h(Z + 1)|+ 2E∆2|h(Z)|),

and the constant C is defined in Theorem A.

For functions of at most polynomial growth complete asymptotic expansions were
obtained by Barbour (1987). The following statement follows from Theorem 2, Remark
3 on it and equality (2.13) in Barbour (1987):

Theorem C. Let l ≥ 1, H ≥ 0 and t ≥ 0. Let h be a real function of integer
argument. Suppose that λ ≥ 1 and, for all y, |∆lh(y)| ≤ H(1 + λ−t/2|y − [λ]|t). Then∣∣∣∣∣Eh(S)− Eh(Z) +

l−1∑
s=1

∑
[s]

s∏
j=1

1

rj!

(
(−1)j

∑n
i=1 p

j+1
i

j + 1

)rj

E∆r1+···+rs+sh(Z)

∣∣∣∣∣

(18) ≤ KH max
(s)

{
λ−k/2

k∏
j=1

(
n∑

i=1

p
sj+1
i

)}
≤ KHλl/2−1

n∑
i=1

pl+1
i ,
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where
∑

[s] denotes the sum over all (r1, ..., rs) ∈ (Z+)s such that
∑s

j=1 jrj = s; max(s) is
taken over {

k ≥ 1; sj ≥ 1, 1 ≤ j ≤ k;
k∑

j=1

sj = l

}
;

K is some constant depending only on l and t.
But if λ ≤ 1 and |∆lh(y)| ≤ H(1 + yt), then

∣∣∣Eh(S)− Eh(Z) +
l−1∑
s=1

∑
[s]

s∏
j=1

1

rj!

(
(−1)j

∑n
i=1 p

j+1
i

j + 1

)rj

E∆r1+···+rs+sh(Z)
∣∣∣

≤ KH max
(s)

{
k∏

j=1

(
n∑

i=1

p
sj+1
i

)}
.

We shall compare the above-mentioned results in the case λ→∞, p̃→ 0, h(y) being
an arbitrary polynomial of order m ≥ 3.

Define coefficients Kj
h by the relation

(19) h(y) =
m∑

j=0

Kj
hy[j],

where y[j] denotes the so-called jth factorial power of y: y[j] = y(y− 1) · · · (y− j + 1). By
these moments we can obtain the simple representation for ∆kh :

(20) ∆kh(y) =
m∑

j=k

j(j − 1) · · · (j − k + 1)Kj
hy[j−k].

In particular,

E∆2h(Z) = E
m∑

j=2

j(j − 1)Kj
hZ[j−2] =

m∑
j=2

j(j − 1)Kj
hλ

j−2.

It is easy to see that
E|h(Z + 1)| ∼ |Km

h |λm,

(21) E|∆2h(Z)| ∼ E∆2|h(Z)| ∼ |E∆2h(Z)| ∼ |Km
h |m(m− 1)λm−2

as λ→∞. Now we compare the following resulting estimates for |Eh(S)−Eh(Z)| given
by the above-listed results:

Corollary 4: K2λ
m−2

∑n
j=1 p

2
j ;

Theorem A: K3λ
m−1

∑n
j=1 p

2
j ;

Theorem C: K1λ
m−3/2

∑n
j=1 p

2
j ;
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where K1, K2, K3 are some positive constants which depend only on h. Note that, in the
case under consideration, the constant H in Theorem C must be of order λm−1. We see
that in this case the upper bound in Theorem A is rougher than that in Theorem C and
that in Corollary 4.

Comparison of Corollary 5, Theorem B and Theorem C can be done analogously. We
get the following bounds for |Eh(S)− Eh(Z)− 1

2

∑n
j=1 p

2
jE∆2h(Z)|:

Corollary 5: K4λ
m−3

∑n
j=1 p

3
j ;

Theorem B: K5λ
m−1

∑n
j=1 p

3
j ;

Theorem C: K6(λ
m−3(

∑n
j=1 p

2
j)

2 + λm−5/2
∑n

j=1 p
3
j);

where K4, K5, K6 are constants depending only on h. To derive the first two of these
three estimates the following inequality was used:(

n∑
j=1

p2
j

)2

≤ λ
n∑

j=1

p3
j .

Proposition 2. Let p1 = · · · = pn = p and h(y) be a polynomial of order m ≥ 2.
Suppose λ→∞ and p→ 0. Then

|Eh(S)− Eh(Z)| ∼ 1
2
np2E|∆2h(Z)|,∣∣Eh(S)− Eh(Z) + 1

2
np2E∆2h(Z)

∣∣ ∼ 1
3
np3E|∆3h(Z)|+ 1

8
n2p4E|∆4h(Z)|,∣∣Eh(S)− Eh(Z) + 1

2
np2E∆2h(Z)− 1

3
np3E∆3h(Z)− 1

8
n2p4E∆4h(Z)

∣∣
∼ 1

4
np4E|∆4h(Z)|+ 1

6
n2p5E|∆5h(Z)|+ 1

48
n3p6E|∆6h(Z)|.

Thus the bounds in Corollaries 4, 5 and 6 are asymptotically precise.

Proof of Proposition 2. Calculating Eh(S) and Eh(Z) is very simple:

Eh(Z) =
m∑

j=0

Kj
hλ

j, ESm =
m∑

j=0

Kj
hn[j]p

j,

where coefficients Kj
h are defined by (19). Thus

Eh(Z)− Eh(S) ∼ Km
h

m(m− 1)

2
λm−1p.

At the same time the following relation was already noted in (21):

E|∆2h(Z)| ∼ |Km
h |m(m− 1)λm−2.

Hence the estimate of Corollary 4 is asymptotically precise.

Now we proceed to proving the exactness of Corollary 5. First, consider the case
h(y) = y[m]. We have

Eh(Z) = λm,
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Eh(S) = n[m]p =

λm − m(m− 1)

2
λm−1p+

(
m−2∑
i=1

m−1∑
j=i+1

ij

)
λm−2p2 +O(λm−3p3),

1

2
np2E∆2h(Z) =

m(m− 1)

2
λm−1p.

Hence ∣∣Eh(Z)− Eh(S)− 1
2
np2E∆2h(Z)

∣∣ ∼ (m−2∑
i=1

m−1∑
j=i+1

ij

)
λm−2p2 =

1
24
m(m− 1)(m− 2)(3m− 1)λm−2p2.

On the other hand, by (20) we have

1
8
n2p4E|∆4h(Z)|+ 1

3
np3E|∆3h(Z)| =(

1
8
m(m− 1)(m− 2)(m− 3) + 1

3
m(m− 1)(m− 2)

)
λm−2p2 =

1
24
m(m− 1)(m− 2)(3m− 1)λm−2p2.

So, the assertion is asymptotically precise for h(y) = y[m]. It is easy to understand that,
because of (19), this assertion is also asymptotically precise for any polynomial of order
m.

The proof of the exactness of Corollary 6 can be conducted analogously using the
following identity:

m−3∑
i=1

m−2∑
j=i+1

m−1∑
k=j+1

ijk = 1
48
m2(m− 1)2(m− 2)(m− 3) = 1

4
m[4] +

1
6
m[5] +

1
48
m[6].

5. The approximation for arbitrary distributions.

The content of this section is based on and to a considerable extent repeats the idea
of Kchinchine (1933) [cf. Borovkov (1988), Borisov (1993, 1996)]. We apply the results of
Section 1 to approximation of vectors of r.v.’s with arbitrary, not necessarily Bernoulli,
distributions. Let ξ1,...,ξn be independent r.v.’s in an arbitrary measurable Abelian group
A with distributions Q1, ..., Qn, respectively. The “+” operation in A is assumed to
be measurable. Let P1, ..., Pn be the accompanying Poisson distributions for Q1, ..., Qn,
respectively, and let β1, ..., βn be independent r.v.’s with distributions P1, ..., Pn, respec-
tively. Finally, let G(y1, ..., yn) be an arbitrary measurable function of n arguments in A.
We evaluate the difference

EG(ξ1, ..., ξn)− EG(β1, ..., βn)

when both of the expectations exist.
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Denote by F the following expectation:

F (k1, ..., kn) = EG(τ ∗k1
1 , ..., τ ∗kn

n ),

where τ ∗kj = τ
(1)
j + · · · + τ

(k)
j is the sum of k independent r.v.’s such that each of them

has the distribution equal to the conditional distribution of ξj under the condition ξj 6= 0.

All the r.v.’s τ
(1)
1 , τ

(2)
1 , ..., τ

(1)
n , τ

(2)
n , ... are supposed to be independent. Let pj = P(ξj 6=

0), j = 1, ..., n. As in Section 1, ζ1, ..., ζn denote independent Bernoulli r.v.’s with the
success probabilities pj = P(ζj = 1), and η1, ..., ηn denote independent Poisson r.v.’s with
parameters p1, ..., pn, respectively. We have

(22) EG(ξ1, ..., ξn) = EF (ζ1, ..., ζn), EG(β1, ..., βn) = EF (η1, ..., ηn).

Actually, these identities can be easily deduced from the corresponding results in Khint-
chine (1933) [cf. Borovkov (1988)]. These relations allow us to apply Theorem 1 and its
Corollaries to the approximation for vectors of independent arbitrarily distributed r.v.’s
in a measurable Abelian group.

In the case when, for each j, the conditional distribution of ξj under the condition
ξj 6= 0 coincides with some distribution Q independent of j, and

G(y1, ..., yn) = g(y1 + · · ·+ yn)

Theorem 2 and its corollaries can be used. Denote by τ1, τ2, ... i.i.d r.v.’s with distribution
Q. For

h(k) = Eg(τ1 + · · ·+ τk)

then the equalities

EG(ξ1, ..., ξn) = Eh(S), EG(β1, ..., βn) = Eh(Z)

hold where S = ζ1 + · · · + ζn, Z = η1 + · · · + ηn. In fact, these relations were obtained
by Khintchine (1933) [cf. Borisov (1993, 1996)]. It is clear that these representations are
equivalent to (22). They reduce the problem of Poisson approximation in an abstract sam-
ple space to investigation of closeness of a binomial and the corresponding accompanying
Poisson distributions.

Example. Let ξ1, ..., ξn be arbitrary r.v.’s on the real line. Suppose that, for all j,
the conditional distributions of ξj under the condition ξj 6= 0 coincide, and

G(y1, ..., yn) = (y1 + · · ·+ yn)l.

Also suppose that E(τ1)
l <∞. We have

h(k) = E(τ1 + · · ·+ τk)
l = (Eτ1)

lk[l] +Bl−1(k) + Eτ l
1k,

where Bj−1(k) is a polynomial of k of order ≤ j − 1 whose coefficients depend only on
expectations Eτ1, ...,Eτ

l−1
1 . Hence

∆2h(k) = (Eτ1)
lk[l−2] +B′

l−3(k),
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where B′
l−3(k) is a polynomial of k of order ≤ l − 3 whose coefficients depend only on

Eτ1, ...,Eτ
l−1
1 . Therefore, because of Corollary 4,

(23) |E(ξ1 + · · ·+ ξn)l −E(β1 + · · ·+ βn)l| ≤ 1

2

ep̃

(1− p̃)2

n∑
j=1

p2
j

(
(Eτ1)

l−2λl−2 +B′′
l−3(λ)

)
,

where B′′
l−3(λ) is a polynomial of λ of order ≤ l − 3 with coefficients depending only on

Eτ1, ...,Eτ
l−1
1 .

Barbour (1987) obtained complete asymptotic expansions for Eg(ξ1+· · ·+ξn)−Eg(β1+
· · ·+ βn) in the case when ξ1, ..., ξn are nonnegative integer r.v.’s and the function g is of
at most polynomial growth. But in the case under consideration, when g(k) = kl and,
for all j, the conditional distributions of ξj under the condition ξj 6= 0 coincide, these
expansions, in general, don’t allow us to separate the parameters p1, ..., pn and moments
of τ1 as it is done in (23). Such separation in Barbour (1987) is possible only for some
simplest classes of distributions but not for arbitrary.

6. Expansions under lesser moment restrictions.

In this section, under lesser moment restrictions than those in the theorems and corol-
laries in Section 1, the asymptotic expansions are studied. However, these expansions
may appear inconvenient in case of nonidentically distributed r.v.’s. We use the notations
pk, λk, λ, ζ̄, η̄, ēk, ∆k that were defined in Section 1. In this section, for the sake of
convenience, we also suppose that pk 6= 0 for all k.

At first we give complete asymptotic expansions for EF (ζ̄)− EF (η̄).

Corollary 8. Let Eηk
l+1|F (η̄)| <∞ for all k and some l ≥ 1. Then∣∣∣∣∣EF (ζ̄)− EF (η̄) +
∑′

(−1)s
pr1

k1
· · · prs

ks

r1! · · · rs!
E∆r1

k1
· · ·∆rs

ks
F (η̄(k1,...,ks))

∣∣∣∣∣
≤
∑′′

epks
pr1

k1
· · · prs−1

ks−1
p

l+s−r1−···−rs−1

ks

r1! · · · rs−1!(l + s− r1 − ...rs−1)!

×E|∆r1
k1
· · ·∆rs−1

ks−1
∆

l+s−r1−...rs−1

ks
F (φ̄

(k1,...,ks−1)
ks

+ ηks ēks)|,

where the right-hand side of the inequality is finite, and η̄(k1,...,ks) = η̄−ηk1 ēk1−· · ·−ηks ēks,

φ̄
(k1,...,ks)
ks

= φ̄ks − ηk1 ēk1 − · · · − ηks ēks;
∑′ and

∑′′ denote the following sums:

∑′
=

l−1∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−1−1∑
ks=1

l+s−1−r1−···−rs−1∑
rs=2

,

∑′′
=

l∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−2−1∑
ks−1=1

l+s−2−r1−···−rs−2∑
rs−1=2

ks−1−1∑
ks=1

.
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In the last sum we put k0 = n+ 1 if s = 1.

This corollary is proven through subsequent application of relations (1) and (2) of
Theorem 1.

Further we consider the sums S = ζ1+· · ·+ζn and Z = η1+· · ·+ηn. As in Section 1, put
p̃k = max{p1, ..., pk}, p̃ = p̃n and let h be an arbitrary real function of integer nonnegative
argument. For the sake of convenience we put p̃0 = 0. The following corollaries are proved
by using relations (4) and (5) of Theorem 2:

Corollary 9. Let E|∆3h(Z)| <∞. Then

|Eh(S)− Eh(Z) +
1

2

n∑
j=1

p2
jE∆2h(Z)| ≤

ep̃

(1− p̃)2

{
1

4

n∑
k=1

p2
k

k−1∑
j=1

p2
jE|∆4h(Z(k))|+ 2

3
(

n∑
k=1

p3
k)E|∆3h(Z)|

}
,

where Z(k) is a Poisson r.v. with parameter λ− pk.

Remark 5. Because of the obvious upper bound for the corresponding Radon–
Nykodim derivative the inequality

E|∆4h(Z(k))| ≤ epkE|∆4h(Z)|

holds. The right-hand side of the inequality may be infinite while the left-hand side is
finite if E|h(Z)| <∞ and pk 6= 0.

Proof of Corollary 9. Because of relations (4) and (5) of Theorem 2, the
following inequalities hold:∣∣∣∣∣Eh(Z)− Eh(S)− 1

2

n∑
k=1

p2
kE∆2h(Tk)

∣∣∣∣∣ ≤ ep̃

(1− p̃)2

n∑
k=1

p3
k

6
E|∆3h(Z)|,

∣∣∣∣∣
n∑

k=1

p2
kE∆2h(Tk)−

n∑
k=1

p2
kE∆2h(Z(k))

∣∣∣∣∣ ≤
n∑

k=1

p2
k

1

2

ep̃

(1− p̃)2

k−1∑
j=1

p2
jE|∆4h(Z(k))|,

∣∣∣∣∣
n∑

k=1

p2
kE∆2h(Z)−

n∑
k=1

p2
kE∆2h(Z(k))

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=1

p2
k

∞∑
r=1

pr
k

r!
E∆r+2h(Z(k))

∣∣∣∣∣ ≤
n∑

k=1

p2
ke

pkpkE|∆3h(Z)|,

where the proof of the last inequality is analogous to that of inequality (2) in Theorem 1.
The above three inequalities immediately imply the assertion. 2

We see that the corollary contains lesser restrictions on moments than those in Corol-
lary 5 or Theorem B.
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Corollary 10. Let E|∆l+1h(Z)| <∞ for some l ≥ 1. Then∣∣∣∣∣Eh(S)− Eh(Z) +
∑′

(−1)s
pr1

k1
· · · prs

ks

r1! · · · rs!
E∆r1+···+rsh(Z(k1,...,ks))

∣∣∣∣∣
≤
∑′′ ep̃ks

(1− p̃ks)
2

pr1
k1
· · · prs−1

ks−1
p

l+s−r1−···−rs−1

ks

r1! · · · rs−1!(l + s− r1 − ...rs−1)!
E|∆l+sh(Z(k1,...,ks−1))|,

where Z(k1,...,ks) = Z − ηk1 − · · · − ηks,
∑′ and

∑′′ denote the following sums:

∑′
=

l−1∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−1−1∑
ks=1

l+s−1−r1−···−rs−1∑
rs=2

,

∑′′
=

l∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−2−1∑
ks−1=1

l+s−2−r1−···−rs−2∑
rs−1=2

ks−1−1∑
ks=1

.

In the last sum we suppose k0 = n+ 1 if s = 1.

This corollary is proven by subsequent application of relations (4) and (5).
It was already noted that the right-hand side of the above inequality is finite since,

for any s ≥ 1,
E|∆l+sh(Z(k1,...,ks−1))| <∞

if E|∆l+1h(Z)| <∞.
By Lemma 3, the expectations of functions of Z(k1,...,ks) can be expressed through

expectations of functions of Z. However, application of Lemma 3 leads to necessity for
enforcing restrictions on the moments.
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8 Asymptotic expansion for expectations of smooth

functions in the central limit theorem

1. Preliminaries

We denote by ξj, j = 1, n, independent identically distributed RVs with Eξ1 = 0 and
Eξ2

1 = 1, and set Sn = n−1/2
∑n

j=1 ξj. Throughout the sequel, we denote by C, c, Cj,
and cj positive constants which are independent of n and the probability characteristics
of the RV ξ1, and denote by N and Nj independent RVs with the standard normal
distribution.

The method of the chapter is based on the following inequality:

Ef(Sn)− Ef(N) =

∫
(P(N < x)−P(Sn < x)) df(x), (1)

where existence of the corresponding integrals is certainly presumed. It then seems natural
to use the classical expansion for the distribution function of Sn [93, p. 197]. However,
the estimate for the remainder term in this expansion is meaningful only if, in addition
to the natural moment constraints, the well-known Cramér condition holds:

lim
|t|→∞

sup |h(t)| < 1, (2)

where h(t) is the characteristic function of the RV ξ1. In this case, by (1) we can easily
obtain the complete asymptotic expansion for Ef(Sn) as a consequence of the above-
mentioned results under the minimal (of the known) constraints on the function f .

Theorem 1. If E|ξ1|k < ∞ and
∫

1
1+|x|k |df(x)| < ∞ for some integer k ≥ 4 then

under condition (2)∣∣∣∣∣Ef(Sn)− Ef(N)−
k−3∑
j=1

1

nj/2

∫
Qj(x) df(x)

∣∣∣∣∣ ≤ C
E|ξ1|k

n(k−2)/2
, (3)

where Qj(x) are the standard terms of the expansion for the distribution function of Sn

which depend only on the moments of ξ1 up to the order j+2 inclusively (see [93, p. 171]).
For k = 3 (in this case the sum on the left-hand side of (3) is absent), estimate (3) is

valid without condition (2).
To reject the excessively rigid constraint (2), we use some special smoothing and the

ideas of Lindeberg’s operator method.

2. The Main Result

Theorem 2. Suppose that f ∈ C2(R) and

|f ′′(x)− f ′′(y)| ≤ C|x− y|ε(1 + |x|2−ε + |y|2−ε)
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for all x, y ∈ R, with 0 < ε ≤ 1. If E|ξ1|4 <∞ then

Ef(Sn) = Ef(N) +
1√
n

∫
f(x) dQ1(x) +

1

n
H, (4)

where

Q1(x) = − 1√
2π
e−x2/2x

2 − 1

6
Eξ3

1 , |H| ≤ C1(E|ξ1|4)2.

R e m a r k. If f is an even function or Eξ3
1 = 0 (for instance, the RV ξ1 is symmet-

rically distributed) then the second summand on the right-hand side of (4) vanishes and
the estimate for the convergence rate improves:

|Ef(Sn)− Ef(N)| ≤ |H|
n
.

The classical expansion by von Bahr for E|Sn|p, p > 0, under the condition of existence
of Eξ4

1 makes it possible to obtain an estimate of order O(n−(p∗+1)/2) for the convergence
rate, where p∗ = min(p, 1). It is easy to see that for p ≥ 2 an analogous result follows from
Theorem 2. It is worth nothing that, with Cramér’s condition (2) holding and the fourth
moment of ξ1 existent, Theorem 1 enables us to obtain the convergence rate O(n−1) for
the power functions f(x) = |x|p for every p ∈ [0, 4]. At the same time, by von Bahr’s
result this estimate is valid only if p ∈ [1, 4]. It can be shown that, for a lattice distribution
(i.e., without condition (2)) of ξ1, the order n−(p+1)/2 of the estimate is unimprovable for
p < 1.

Note that von Bahr obtained the complete asymptotic expansion. However, the version
of the Fourier method that he used is inapplicable to a function class wider than |x|p,
p > 0.

A. Barbour [6], using the Stein method, obtained the complete asymptotic expansions
for moments of smooth functions of sums of independent random variables. However,
the relations he established between the order of the highest moment and the order of
growth of the highest derivative are not optimal. For example, under the conditions
of Theorem 2 on the function f , Barbour’s result allows us to obtain an estimate of
order O(n−1) for the corresponding remainder term only on the condition of existence of
the sixth (not fourth!) moments of summands.

The method to be exposed allows us to distinguish also the third term of the asymptotic
expansion, provided that the fifth moments of the summands exist (to this end, the seventh
moment is required in [6]). However, in this case the order of smallness of the remainder
term is slightly worse than the optimal one.

74



3. Proof of Theorem 2

To ensure the use of the optimal growth rate for the function f(x) and its derivatives
in Theorem 2, we apply the technique of truncations. Denote

ξjn = ξjI{|ξj| ≤
√
n } − EξjI{|ξj| ≤

√
n }, j = 1, n, σ2 = Eξ2

1n, S
∗
n =

1√
n

n∑
j=1

ξjn.

Observe that σ ≤ 1 and 1−σ2 ≤ 2
n
E|ξ1|4. Furthermore, it is easy to show that σ2 ≥ 11/16

for n ≥ 16(E|ξ1|3)2.
We now use Lindeberg’s operator method to demonstrate that Ef(Sn) and Ef

(
S∗n
)

are close enough.
Lemma 1. Let f satisfy the conditions of Theorem 2. Then for every m ≥ 4∣∣Ef(Sn)− Ef

(
S∗n
)∣∣ ≤ Cn−(m−2)/2E|ξ1|mE|ξ1|3,

where the constant C depends only on f .
Proof. We have

Ef(Sn)− Ef
(
S∗n
)

=
n∑

j=1

E

∫ (
f

(
x+

1√
n
ξj

)
− f

(
x+

1√
n
ξjn

))
dP(Ajn < x), (5)

where

Ajn =
1√
n

j−1∑
i=1

ξi +
1√
n

n∑
i=j+1

ξin, j = 1, n,
∑
i∈∅

= 0.

We need the consequence of Rosenthal’s inequality [108]:

E|Ajn|3 ≤ C1E|ξ1|3, j = 1, n,

and the estimates
|f(x)− f(y)| ≤ C0|x− y|(1 + |x|3 + |y|3),

|Eξ1I{|ξ1| ≤
√
n }| = |Eξ1I{|ξ1| >

√
n }| ≤ n−(m−1)/2E|ξ1|m

which also follow from the conditions of Theorem 2. Using these inequalities, we estimate
the modulus of the right-hand side of (6) from above as follows:

n∑
j=1

E

∫
C0

∣∣∣∣ 1√
n
ξj −

1√
n
ξjn

∣∣∣∣
(

1 + |x|3 +

∣∣∣∣ 1√
n
ξj

∣∣∣∣3 +

∣∣∣∣ 1√
n
ξjn

∣∣∣∣3
)
dP(Ajn < x)

≤
n∑

j=1

C0

[
1√
n
E|ξjI{|ξj| >

√
n } − EξjI{|ξj| >

√
n }|(E|Ajn|3 + 1)
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+
1

n2
E|ξjI{|ξj| >

√
n } − EξjI{|ξj| >

√
n }|(|ξj|3 + |ξjn|3)

]
≤ C2n

−(m−2)/2E|ξ1|mE|ξ1|3.

Lemma 1 is proven.
Denote

∆n(f) = Ef(Sn)− Ef(N), ∆n1(f) = Ef

(
Sn1 +

√
b log n

n
σN0

)
− Ef(N),

∆n2(f) = Ef(S∗n)− Ef

(
Sn1 +

√
b log n

n
σN0

)
,

where S∗n = Sn1 + Sn2, Sn1 and Sn2 are independent, ES2
n2 ∼

b log n
n
σ2, and b is a pos-

itive constant (independent of n) to be specified below. For m = 4, Lemma 1 implies
the estimate

|∆n(f)−∆n1(f)−∆n2(f)| ≤ c

n
E|ξ1|3 · E|ξ1|4.

Lemma 2. If E|ξ1|4 <∞, f ∈ C1(R), and |f ′(x)| ≤ C1(1 + |x|3) for all x ∈ R, then∣∣∣∣∆n1(f)− 1√
n

∫
f(x) dQ1(x)

∣∣∣∣ ≤ C2

n
(E|ξ1|4)2. (6)

Proof. Denote m = n− [b log n]. Represent Sn1 +
√

b log n
n
σN0 as a sum of independent

identically distributed RVs:

Ym =
1√
m

m∑
j=1

νjn,

where

νjn =

√
m

n
ξjn +

√
b log n

n
σNj, j = 1,m.

Note that Eν1n = 0 and Eν2
1n = σ2. Under the conditions of the lemma, P(|Ym| > x) =

o(x−N) as x → ∞ for every N > 0. Moreover, |f ′(x)| ≤ c(1 + |x|3); hence, the integral
on the right-hand side of equality (1) is well defined with Ym substituted for Sn. Now,
we can apply the classical expansion of the distribution function of sums of independent
identically distributed RVs:∣∣∣∣P( 1

σ
Ym < x

)
−P(N < x)− Q1n(x)√

m

∣∣∣∣ ≤
|Q2nx)|
m

+
C

σ4(1 + |x|)4m

∫
|y|≥σ

√
m(1+|x|)

|y|4 dV (y)

+
C

σ5(1 + |x|)5m3/2

∫
|y|<σ

√
m(1+|x|)

|y|5 dV (y) +

(
sup
|t|≥δ

|v(t)|+ 1

2m

)m
Cm10

(1 + |x|)5
, (7)
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where V (y) is the distribution function and v(t) is the characteristic function of the RV
ν1n and

δ =
σ2

12E|ν1n|3
, Q1n(x) = − 1√

2π
e−x2/2x

2 − 1

6
Eν3

1n,

Q2n(x) = − 1√
2π
e−x2/2

[
x5 + 15x− 10x3

72

(
Eν3

1n

)2
+
x3 − 3x

24

(
1

3
+ Eν4

1n

)]
.

The main difficulty in use of this expansion consists in estimating the last summand on
the right-hand side of (7). Smoothing enables us to do this without imposing additional
constraints on the distribution of ξ1. We have

|v(t)| ≤

∣∣∣∣∣E exp

{
it

√
b log n

n
σN1

}∣∣∣∣∣ = exp

{
−t2σ2 b log n

n

}
.

Then (
sup
|t|≥δ

|v(t)|+ 1

2m

)m

≤ C3

(
1− C4δ

2 b log n

n
σ2

)n

≤

C3 exp{−C4δ
2σ2b log n} = C3n

−C4δ2σ2b.

It is clear that, by choice of the constant b, we can make C4δ
2σ2b arbitrarily large. It suf-

fices that b ≥ C5(E|ν1n|3)2/σ4. The definition of ν1n implies that this inequality holds,
for instance, with b = C6(E|ξ1|3)2 for all n such that n/ log n ≥ b2/3.

Thus, we first prove (6) for all n satisfying the inequality

n ≥ C6(E|ξ1|3)2. (8)

Moreover, we can assume that n/ log n ≥ C6(E|ξ1|3)4/3. Now, we successively estimate
the integrals with respect to df(x) separately for each summands on the right-hand side
of (7).

From the definition of Q2n(x) and in view of (8), we have∣∣∣∣∫ |Q2n(x)|
m

df(x)

∣∣∣∣ ≤ C7

n
E|ξ1|4.

Furthermore, the estimate

P(|ν1n| ≥ t) ≤ P

(∣∣∣∣∣
√
b log n

n
σN1

∣∣∣∣∣ > t−
√
m

)

is valid for every t. Using this inequality together with Chebyshev’s inequality, we estimate
the integral of the second summand on the right-hand side of (7) as follows:∣∣∣∣∫

R

df(x)

σ4(1 + |x|)4m

∫
|y|≥σ

√
m(1+|x|)

|y|4 dV (y)

∣∣∣∣
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≤ C8

n

∣∣∣∣
∞∫

0

dx

1 + x

∞∫
σ
√

m(1+x)

y4 dP(|ν1n| > y)

∣∣∣∣ ≤ C8

n

1/σ∫
0

dx

1 + x
E|ξ1|4

+
C9

n

∞∫
1/σ

dx

σ
√
mx2

∞∫
σ
√

mx

y4P

(√
b log n

n
σ|N1| > y −

√
m

)
dy ≤ C10

n
E|ξ1|4.

Using Fubini’s theorem, we obtain the following estimate for the integral of the third
summand on the right-hand side of (7):∣∣∣∣∫

R

df(x)

σ5(1 + |x|)5m3/2

∫
|y|<σ

√
m(1+|x|)

|y|5 dV (y)

∣∣∣∣
≤ C11

n

( ∞∫
0

dx√
m (1 + x)2

σ
√

m(1+x)∫
0

y4P(|ν1n| > y) dy + E|ξ1|4
)

=
C11

n

( σ
√

m∫
0

y4

√
m

P(|ν1n| > y) dy

∞∫
0

dx

(1 + x)2

+
1√
m

∞∫
σ
√

m

y4P(|ν1n| > y)

∞∫
y/σ

√
m−1

dx

(1 + x)2
dy + E|ξ1|4

)
≤ C12

n
E|ξ1|4.

The estimate for the integral of the last summand is obvious.
Applying (1), Rosenthal’s inequality [108], and the fact that the function f(x) is

Lipschitz continuous, we obtain∣∣∣∣∫ (P

(
1

σ
Ym < x

)
−P(Ym < x)

)
df(x)

∣∣∣∣ ≤ C13E

∣∣∣∣( 1

σ
− 1

)
Ym

∣∣∣∣ |Ym|3

≤ C14(1− σ2)E|Ym|4 ≤
C15

n
(E|ξ1|4)2.

From the definition of Q1n(x) and the simple inequality∣∣Eν3
1n − Eξ3

1

∣∣ ≤ C16√
n

(E|ξ1|3 + E|ξ1|4)

we infer that ∣∣∣∣∫ (Q1n(x)√
m

− Q1(x)√
n

)
df(x)

∣∣∣∣ ≤ C17

n
(E|ξ1|3 + E|ξ1|4).

In conclusion, note that (6) is also valid for n ≤ C6(E|ξ1|3)2. This ensues from
the rather elementary estimates

|∆n1(f)| ≤ C18
(E|ξ1|3)2

n
(1 + E|ξ1|4),
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∣∣∣∣ 1√
n

∫
f(x) dQ1(x)

∣∣∣∣ ≤ C19
E|ξ1|3

n
(1 + E|ξ1|3), (E|ξ1|3)2 = (E|ξ1|ξ2

1)
2 ≤ Eξ4

1 .

Lemma 2 is proven.
Lemma 3. If E|ξ1|4 < ∞, f ∈ C2(R), and the inequality |f ′′(x) − f ′′(y)| ≤ C|x −

y|ε(1 + |x|2−ε + |y|2−ε) holds for all x, y ∈ R and some 0 < ε ≤ 1, then

|∆n2(f)| ≤ c

n
(E|ξ1|3)4. (9)

Proof. We use the Taylor formula

f(x+ λ) = f(x) + λf ′(x) +
λ2

2
f ′′(x) + λ2

1∫
0

(1− θ)(f ′′(x+ θλ)− f ′′(x)) dθ.

By successively setting x = Sn1, λ = Sn2 or λ = σ
√

b log n
n
N0, we obtain

|∆n2(f)| ≤ C1E

|Sn2|2+ε

1∫
0

(1− θ)θε(1 + |Sn1 + θSn2|2−ε + |Sn1|2−ε) dθ


+C2E


∣∣∣∣∣σ
√
b log n

n
N0

∣∣∣∣∣
2+ε 1∫

0

(1− θ)θε

1 +

∣∣∣∣∣Sn1 + θσ

√
b log n

n
N0

∣∣∣∣∣
2−ε

+ |Sn1|2−ε

 dθ


≤ C3E|Sn2|2+ε + C4

(
b log n

n

)(2+ε)/2

.

Rosenthal’s inequality and the definition of b imply the estimate

E|Sn2|2+ν ≤ C5

(
b log n

n

)1+ν/2

≤ c

n
(E|ξ1|3)2+ν

for every ν ∈ (0, 2]. The last estimate implies (9). Lemma 3 and Theorem 2 therewith
are proven.
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9 Minimal smoothness conditions for asymptotic ex-

pansions of moments in the central limit theorem

1. Statement of the main results

The topic of this article was motivated by the results of [6] and [56] where asymptotic
expansions were obtained under smoothness conditions close to optimal. These results
are formulated in Theorems GH and B below.

The accuracy of approximation for expectations of functions in the CLT depends
both on the smoothness of distributions of the summands and on the smoothness of
the functions. It is interesting to note that, in the first case, to obtain the complete
asymptotic expansions of the moments we need no additional smoothness conditions on
the functions. An illustration of the fact is contained in Theorem P below.

Denote by ξi, i = 1, . . . , n, some independent identically distributed (i.i.d.) random
variables (r.v.’s) satisfying the conditions E ξ1 = 0 and E ξ2

1 = 1. Put Sn = n−1/2
∑n

i=1 ξi
and denote by N an r.vẇith standard Gaussian distribution. Introduce the classical
Cramér regularity condition of the distributions:

lim sup
|t|→∞

|h(t)| < 1, (1.1)

where h(t) is the characteristic function of ξ1. Under the minimal (known) constraints on
a function f , we can obtain complete asymptotic expansions of E f(Sn).

Theorem P.
(
see [93: p.171]

)
If E |ξ1|k <∞ and

∫
1

1+|x|k |df(x)| <∞ for some integer

k ≥ 4 then, under Cramér’s condition (1.1),∣∣∣∣∣E f(Sn)− E f(N)−
k−3∑
i=1

1

ni/2

∫ ∞

−∞
Qi(x)df(x)

∣∣∣∣∣ ≤ C(f)
E |ξ1|k

n(k−2)/2
, (1.2)

where the constant C(f) depends only on f , Qi(x) are the standard expansion members of
the distribution function of Sn, which depend on the moments of ξ1 of order up to i+ 2.

If k = 3 then the above estimate (in this case, we omit the sum on the left-hand side
of the inequality) holds without Cramér’s condition.

This result follows immediately from the classical asymptotic expansions for the dis-
tribution function of Sn

(
see [93]

)
and the following simple representation:

E f(Sn)− E f(N) =

∫ ∞

−∞

(
P (N < x)−P (Sn < x)

)
df(x),

where both sides of the identity are well defined under the conditions of the theorem.
To obtain complete asymptotic expansions under the fixed moment constraints with-

out Cramér’s condition, we need stronger smoothness of f(x) than in Theorem P. Roughly
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speaking, to obtain k members of the expansion (under the corresponding moment con-
dition) we require f(x) to be k times continuously differentiable. It is interesting to note
that, for obtaining the analogous result by the well-known Lindeberg operator method,
we need at least 3k derivatives of the functions

(
see [10]

)
.

The following result was proven in [56].
Theorem GH. Assume that, for some integer k ≥ 3, the following conditions are

fulfilled:

E |ξ1|k <∞, f ∈ Ck−2, sup
x

|f (k−2)(x)|
1 + |x|2

<∞.

Then expansion (1.2) holds with the following estimate of the remainder term η:

|η| = O
(
n−(k−2)/2

)
.

R e m a r k. If f is an even function or E ξ3
1 = 0 (for instance, if the r.v. ξ1 is sym-

metrically distributed) then the first summand of the sum on the left-hand side of (1.2)
vanishes and the estimate for the convergence rate can be improved (if the fourth moment
of the summands is finite): ∣∣E f(Sn)− E f(N)

∣∣ ≤ C1(f)
E ξ41
n

.

The classical expansion by von Bahr for E |Sn|p, p > 0, under the condition that E ξ4
1

exists, makes it possible to obtain an estimate of order O
(
n−(p∗+1)/2

)
for the convergence

rate, where p∗ = min(p, 1). It is easy to see that, for p ≥ 2, an analogous result follows
from Theorem GH. It is worth noting that, whenever Cramér’s condition (1.1) holds
and the fourth moment of ξ1 exists, Theorem P enables us to obtain the convergence rate
O(n−1) for the power functions f(x) = |x|p for every p ∈ [0, 4]. At the same time, by
von Bahr’s result, this estimate is valid only if p ∈ [1, 4]. In Theorem 1 below we show
that, for lattice distributions of ξ1

(
i.e,̇ without condition (1.1)

)
, the order n−(p+1)/2 of

the estimate is unimprovable for p < 1.
Theorem 1. Let ξi, i ≥ 1, be a sequence of i.i.dinteger-valued r.v.’s satisfying the con-

ditions: E ξ1 = 0, E ξ2
1 = 1, and E ξ4

1 < ∞. Let f(x) = |x|ph(x), where 0 < p < 1 and
h(x) is an arbitrary twice continuously differentiable function with the following properties:

h(x) = h(−x), h(0) > 0,

|h(x)| < M, |h′′(x)| < M1

(
1 + |x|m

)
,

where M and M1 are constants and m is a natural. Then

lim inf
n→∞

n(p+1)/2
∣∣E f(Sn)− E f(N)

∣∣ > 0.

The following result formulated in Theorem 2 gives a lower bound of the smoothness
which still allows us to obtain an optimal estimate of the remainder term in the asymptotic
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expansions. In particular, we show that the smoothness conditions on the function f(x)
in Theorem GH cannot be improved.

Theorem 2. Let a sequence ϕ(n) be such that limn→∞ ϕ(n) = ∞. Then there exists
a function f ∈ Ck+α(R), k ∈ {1, 2, . . . }, α ∈ (0, 1), such that, for any sequence ξi
of i.i.dinteger-valued r.v.’s with the properties E ξi = 0, E ξ2

i = 1, and E |ξi|k+3 < ∞,
the following relation holds:

lim sup
n→∞

ϕ(n)n
k+α

2

∣∣∣∣∣E f(Sn)− E f(N) − 1

n1/2

∫ ∞

−∞
f(x)dQ1(x)− · · ·

− 1

nk/2

∫ ∞

−∞
f(x)dQk(x)

∣∣∣∣∣ = ∞,

where Qi(x) are defined in Theorem P.
Now, we consider the case of nonidentically distributed summands. In this case,

the most universal result was obtained in [6]. First, we introduce an array of row-wise
independent centered r.v.’s ξn,i, i = 1, . . . , n, satisfying the condition

∑n
i=1 E ξ2

n,i = 1.
Denote

Sn =
n∑

i=1

ξn,i, Lk =
n∑

i=1

E |ξn,i|k.

Theorem B. For some integer k ≥ 2, real 0 ≤ α ≤ 1, and p ≥ 0, let one of
the following two conditions be fulfilled:

1) f ∈ Ck−2 and

sup
x 6=y

∣∣f (k−2)(x)− f (k−2)(y)
∣∣

|x− y|α
(
1 + |x|p + |y|p

) ≤ H1;

or
2) f ∈ Ck−1 and

sup
x 6=y

∣∣f (k−1)(x)− f (k−1)(y)
∣∣

|x− y|α
(
1 + |x|p+1 + |y|p+1

) ≤ H2.

Then, under the conditions E |ξn,i|k+p+α < ∞, i = 1, . . . , n, the following asymptotic
expansion holds:

E f(Sn) = E f(N) +
∑
(k−2)

(−1)r

r∏
j=1

ksj+2(Sn)

(sj + 1)!
E

r∏
j=1

(Dsj+1Θ)f(N) + η, (1.3)

where kt(Sn) is the cumulant of order t for Sn, (Dsj+1Θ)f(N) is a function depending
only on f , the symbol

∑
(k−2) denotes the summation over the subsets of indices

{
r ≥

1, sj ≥ 1 (1 ≤ j ≤ r) :
∑r

j=1 sj ≤ k − 2
}
, and

|η| ≤ CjHj

(
Lk+α + Lk+p+α

)
,

j = 1, 2, with the constants Cj depending on p, k, and α.
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Note that in Theorem B the correlation between the order of growth of the high-
est derivative and the order of the highest moments is not optimal. For example, to
obtain an upper bound O(n−1) for the third summand of the asymptotic expansion un-
der the conditions on f imposed in Theorem GH, we must require existence of the 6 th
moments of the summands (instead of the 4 th ones). The following assertion improves
Theorem B.

Theorem 3. Let f ∈ Ck−2, k ≥ 3, and let, for some 0 ≤ α ≤ 1 and p ≥ 0,
the following relation hold:

sup
x 6=y

∣∣f (k−2)(x)− f (k−2)(y)
∣∣

|x− y|α
(
1 + |x|p + |y|p

) ≤ H.

Then the expansion (1.3) holds with the upper bound

|η| ≤ C
(
Lk+α + Lk+α+σ

)
for the remainder term, where σ = max{0, p− 2} and the constant C depends only on p,
k, α, and H.

2. Proof of Theorems 1 and 2

Proof of Theorem 1. Put ε = 1/
√
n . By the definition of expectation, we have

E f(Sn) =
∞∑

i=−∞

f(iε)P(Sn = iε),

where the local probabilities satisfy the equality(
1 + |x|k+3

) (√
nP(Sn = iε) η(x)

(
1 + εq1(x) + · · ·+ εk+1qk+1(x)

))
= o
(
εk+1

)
uniformly in i

(
see [93: p.255]

)
. Here x = iε, η(x) = e−x2/2/

√
2π, qm(x) are polynomials,

and qm(x)η(x) = dQm(x)
dx

. Therefore,

E f(Sn) =
∞∑

i=−∞

f(iε)η(iε)
(
1 + εq1(iε) + ε2q2(iε)

)
ε

+εnε
2

∞∑
i=−∞

f(iε)
(
1 + (iε)4

)−1
ε,

where εn → 0. By estimating |f(x)| ≤M |x|p, we derive that the second sum on the right-
hand side of the relation has order o(n−1), since the function |x|p/(1 + x4) is integrable.
Under the conditions of the theorem, f(x) is an even function and q1(x) is an odd function.
Hence,

∞∑
i=−∞

f(iε)η(iε)q1(iε)ε = 0.
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Now, we will show that

|E f(N)−
∞∑

i=−∞

f(iε)η(iε)ε| > Kεp+1

whenever n is large enough. We have

E f(N)−
∞∑

i=−∞

f(iε)η(iε)ε

= 2

∫ ε/2

0

f(x)η(x)dx+ 2
∑
i≥1

∫ (i+1/2)ε

(i−1/2)ε

[
f(x)η(x)− f(iε)η(iε)

]
dx

= 2

∫ ε/2

0

f(x)η(x)dx+ 2
∑
i≥1

(fη)′′(αi)ε
3/24 ,

where αi ∈
[
(i− 1/2)ε, (i+1/2)ε

]
. The second derivative of the product fη is as follows:

(fη)′′(x) = p(p− 1)|x|p−2(hη)(x) + 2p|x|p−1(hη)′(x) + |x|p(hη)′′(x).

Since the functions |x|p−1(hη)′(x) and |x|p(hη)′′(x) are integrable, for all n we have:∣∣∣∣∣∑
i≥1

2p|αi|p−1(hη)′(αi)ε

∣∣∣∣∣ < C1 ,

∣∣∣∣∣∑
i≥1

|αi|p(hη)′′(αi)ε

∣∣∣∣∣ < C2 .

The last sums are bounded; therefore,

lim inf
n→∞

ε−(p+1)
∣∣E f(Sn)− E f(N)

∣∣
≥ lim inf

n→∞
ε−(p+1)

∣∣∣∣2∫ ε/2

0

f(x)η(x)dx+ 2
∑
i≥1

p(p− 1)|αi|p−2(hη)(αi)ε
3/24

∣∣∣∣.
It now remains to prove that the right-hand side of this inequality is strictly greater than
zero. Using the mean value theorem, we can write down the following equalities:∫ ε/2

0

|x|ph(x)e−x2/2
/√

2π dx =
βn√
2π
h(0)

1

(p+ 1)2p+1
εp+1, βn → 1.

Next, ∑
i≥1

1

24
p(p− 1)|αi|p−2(hη)(αi)ε

3
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=
∑
i≥1

1

24
p(p− 1)

|α̃i|p−2(
2
√
n
)p−2 (hη)(αi)ε

3

=
∑
i≥1

1

3

p(p− 1)

2p+1
|α̃i|p−2(hη)(αi)ε

p+1

=
εp+1

2p+1

∑
i≥1

1

3
p(p− 1)|α̃i|p−2(hη)(αi),

where α̃i = 2
√
nαi ∈ [2i− 1, 2i+ 1]. Then

ε−(p+1)

∣∣∣∣∣
∫ ε/2

0

f(x)η(x)dx+
∑
i≥1

p(p− 1)

24
|αi|p−2(hη)(αi)ε

3

∣∣∣∣∣
=

∣∣∣∣∣ βn√
2π

h(0)
1

(p+ 1)2p+1
+
∑
i≥1

1

3

p(p− 1)

2p+1
|α̃i|p−2(hη)(αi)

∣∣∣∣∣,∣∣∣∣∣∑
i≥1

1

3

p(p− 1)

2p+1
|α̃i|p−2(hη)(αi)

∣∣∣∣∣
≤ p(1− p)

2p+13
max
x∈[0,δ]

h(x)η(x)
∑

1≤i≤δ
√

n

1

(2i− 1)2−p

+
p(1− p)

2p+13
max
x∈R

h(x)η(x)
∑

i≥δ
√

n

1

(2i− 1)2−p

≤ p(1− p)

2p+13

h(0)√
2π

βδ

(
1 +

2p−1

1− p

)
+ ∆(δ, n),

where βδ → 1 as δ → 0, and ∆(δ, n) → 0 as n → ∞ for all fixed δ. Moreover, for all δ,
the following inequality holds:

ε−(p+1)

∣∣∣∣∫ ε/2

0

f(x)η(x)dx+
∑
i≥1

p(p− 1)

24
|αi|p−2(hη)(αi)ε

3

∣∣∣∣
≥ βn√

2π
h(0)

1

(p+ 1)2p+1
− 1

3

p(1− p)

2p+1

h(0)√
2π

βδ

(
1 +

2p−1

1− p

)
−∆(δ, n).

Taking the lower limits as n→∞ on both sides of this inequality and passing to the limit
as δ → 0 on the right-hand side, we obtain:

lim inf
n→∞

ε−(p+1)

∣∣∣∣ ∫ ε/2

0

f(x)η(x)dx+
∑
i≥1

p(p− 1)

24
|αi|p−2(hη)(αi)ε

3

∣∣∣∣
≥ 1√

2π
h(0)

1

(p+ 1)2p+1
− 1

3

p(1− p)

2p+1

h(0)√
2π

(
1 +

2p−1

1− p

)
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=
h(0)√

2π

1

2p+1

(
1

p+ 1
− 1

3
p(1− p)− 1

3
p2p−1

)
≥ 1

12

h(0)√
2π

1

2p+1
.

Theorem 1 is proven.
Proof of Theorem 2 reduces to an integral approximation problem by the classical

expressions for the local probabilities of sums of independent lattice-valued r.v.’s. The key
point of the proof (Lemma 2.2) is an application of the classical Banach–Steinhaus
theorem (the boundedness principle for linear operators in a Banach space).

First, we formulate the following auxiliary result.
Lemma 2.1. Let f ∈ Cr[0, 1] and f(0) = f ′(0) = · · · = f r−1(0) = f(1) = f ′(1) =

· · · = f r−1(1) = 0. For r = 1, these constraints are not required. Then∫ 1

0

f(x)dx−
n∑

k=1

f

(
k

n

)
1

n
= O(n−r), n→∞.

This lemma follows readily from the Euler–Maclaurin summation formula
(
see [11:

p.271]
)
.

Before formulating the main auxiliary lemma, we introduce some notation. Let 0 <
α < 1. Consider the Banach space

Ck+α[0, 1] =

{
f ∈ Ck[0, 1] :

k∑
i=0

sup
x∈[0,1]

∣∣f (k)(x)
∣∣

+ sup
x,y∈[0,1]

∣∣f (k)(x)− f (k)(y)
∣∣/|x− y|α <∞

}
,

where the expression in brackets determines the norm. We select in this space a funda-
mental subspace:

Ck+α
0 [0, 1] =

{
f ∈ Ck+α[0, 1] : f(0) = f ′(0) = · · · = fk(0)

= f(1) = f ′(1) = · · · = fk(1) = 0
}
.

Lemma 2.2. For any sequence ϕ(n) satisfying the condition limn→∞ ϕ(n) = ∞, there
exists a function f ∈ Ck+α

0 [0, 1] such that

lim sup
n→∞

ϕ(n)nk+α

∣∣∣∣∣
∫ 1

0

f(x)dx−
n∑

k=1

f

(
k

n

)
1

n

∣∣∣∣∣ = ∞.

Proof. Consider the following family of continuous linear functionals on Ck+α[0, 1]:

Fn(g) = ϕ(n)nk+α

[∫ 1

0

g(x)dx−
n∑

k=1

g

(
k

n

)
1

n

]
.
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We prove that supn ‖Fn‖∗ = ∞, where ‖ · ‖∗ is the norm in the corresponding dual space.
For this purpose, we construct a sequence of functions fn(x) as follows: fn(x) = xk+α if
x ∈ [0, 1/4n], fn(x) = |x − 1/n|k+α if x ∈ [3/4n, 1/n]. Inside the interval [1/4n, 3/4n],
we define fn(x) by the equality fn(x) = P ′(x), where P (x) is Hermit’s interpolating
polynomial defined by the following conditions (put h = 1/4n):

P (h) = 0, P ′(h) = hk+α,

P ′′(h) = (k + α)hk+α−1, . . . , P (k+1)(h) = (k + α) · · · (1 + α)hα,

P (3h) = 0, P ′(3h) = hk+α,

P ′′(3h) = (−1)(k + α)hk+α−1, . . . , P (k+1)(3h) = (−1)k(k + α) · · · (1 + α)hα.

This polynomial is constructed as follows: P (x) = P1(x) + P2(x), P1(x) =∑k+1
l=0 P

(l)(h)P1l(x), P2(x) =
∑k+1

l=0 P
(l)(3h)P2l(x), where

P1l(x) = (x− 3h)k+2 (x− h)l

l!

{
1

(x− 3h)k+2

}(k+1−l)

(h)

,

P2l(x) = (x− h)k+2 (x− 3h)l

l!

{
1

(x− h)k+2

}(k+1−l)

(3h)

.

The expression F (x)
(λ)
(a) denotes the sum of the members in Taylor’s expansion of F (x)

in the neighborhood of x = a containing all degrees of (x − a) which are less than
a natural λ. Outside the interval [0, 1/n], we continue fn(x) as a periodic function, i.e.,
fn(x + k/n) = fn(x), x ∈ [0, 1/n], 0 ≤ k ≤ n − 1. We now prove that the norm of
the function fn(x) in the space Ck+α[0, 1] is bounded by some constant not depending
on n. For proving this, it suffices to estimate this norm on the interval [0, 1/n]. The main
problem here is to estimate maxx∈[1/4n,3/4n]

∣∣P (l+1)(x)
∣∣, where 0 ≤ l ≤ k + 1. To this end,

consider a separate member, in particular, in P1(x):

S = P (m)(h)(x− 3h)k+2 (x− h)m

m!

(−k − 2) · · · (−k − r − 1)

(−2h)k+2+r
(x− h)r,

0 ≤ m ≤ k + 1, 0 ≤ r ≤ k + 1−m.

The derivative of order l + 1 of S is a sum of members of the following type:

Si = C(k,m, r, l, i)
hk+α+1−m

hk+2+r
(x− 3h)k+2−i(x− h)m+r−(l+1−i),

1 ≤ i ≤ l − 1.

Since the inequalities |x − h| ≤ 2h and |x − 3h| ≤ 2h take place for x ∈ [h, 3h], we

have |Si| ≤ C̃(k,m, r, l, i)(1/n)k+α−l, and C̃ does not depend on n. Note that the num-
ber of all such members does not depend on n and depends only on k. Therefore,
supx∈[h,3h] |f (l)(x)| ≤ Cl(1/n)k+α−l, 0 ≤ l ≤ k + 1, and, moreover,

sup
x∈[0,1/n]

∣∣f (l)(x)
∣∣ ≤ max

(
sup

x∈[0,h]

∣∣f (l)(x)
∣∣, sup

x∈[h,3h]

∣∣f (l)(x)
∣∣)
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≤ max

(
(k + α) · · · (k + α+ 1 l)

(
1

4n

)k+α−l

, Cl

(
1

n

)k+α−l
)

≤ Klh
k+α−l, 0 ≤ l ≤ k.

It remains to show that supx,y∈[0,1/n]

∣∣f (k)
n (x)−f (k)

n (y)
∣∣/|x−y|α ≤ C, where C is a constant

not depending on n. If x, y ∈ [0, 1/4n] then
∣∣f (k)

n (x)−f (k)
n (y)

∣∣/|x−y|α ≤ (k+α) · · · (1+α)
because |xα − yα| ≤ |x− y|α. If x, y ∈ [1/4n, 3/4n] then∣∣f (k)

n (x)− f
(k)
n (y)

∣∣
|x− y|α

≤ sup
t∈[1/4n,3/4n]

∣∣f (k+1)
n (t)

∣∣∣∣x− y
∣∣1−α

≤ Ck+1

(
1

n

)α−1(
1

n

)1−α

= Ck+1.

If x ∈ [0, 1/4n) and y ∈ (1/4n, 3/4n] then

|f (k)
n (x)− f

(k)
n (y)|

|x− y|α
≤ |f (k)

n (1/4n)− f
(k)
n (x)|

|x− 1/4n|α
+
|f (k)

n (1/4n)− f
(k)
n (y)|

|1/4n− y|α

≤ (k + α) · · · (1 + α) + Ck+1.

The cases of other x and y are treated by analogy. So, we have proven that

‖fn(x)‖Ck+α ≤ K.

Fn(fn) = 2ϕ(n)n1+αn

∫ 1/4n

0

xk+αdx = ϕ(n)
2

(k + α+ 1)4k+α+1
,

‖Fn‖∗ ≥ |Fn(fn)|
/
‖fn‖ ≥ ϕ(n)

2

K(k + α+ 1)4k+α+1
,

which means that supn ‖Fn‖∗ = ∞. By the Banach–Steinhaus theorem
(
[80: p.107]

)
the following two conditions are equivalent:

1) supn ‖Fn‖∗ <∞,
2) supn |Fn(f)| <∞ for all f ∈ Ck+α

0 [0, 1].
Since supn ‖Fn‖∗ = ∞, there exists a function f ∈ Ck+α

0 [0, 1] such that supn |Fn(f)| = ∞.
Lemma 2.2 is proven.

We now turn directly to the proof of the main assertion. Define a function f(x) on
the interval [0, 1] by the equality

f(x) =
√

2π ex2/2f0(x),

where f0(x) is the function in Lemma 2.1. Let f(x) = 0 for x ∈ [1,∞) and extend f onto
the negative half-line by putting f(x) = f(−x). We have (see the proof of Theorem 1):

E f(Sn) =
∞∑

i=−∞

f(iε)η(iε)
(
1 + εq1(iε) + · · ·+ εk+1qk+1(iε)

)
ε
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+
∞∑

i=−∞

f(iε)(1 + εk+3)ε o(εk+1).

Let n be such that
√
n = ε−1 is an integer. Then∣∣∣∣∣E f(N)−

∞∑
i=−∞

f(iε)η(iε)ε

∣∣∣∣∣
= 2

∣∣∣∣∣
∫ 1

0

f(x)η(x)dx−

√
n∑

i=0

f(iε)η(iε)ε

∣∣∣∣∣
= 2

∣∣∣∣∣
∫ 1

0

f0(x)dx−

√
n∑

i=0

f0(iε)ε

∣∣∣∣∣.
Since f0(x)ql(x), 1 ≤ l ≤ k + 1, satisfy the conditions of Lemma 2.1, we have

εl

∣∣∣∣∣
∫ ∞

−∞
f(x)dQl(x)−

∞∑
i=−∞

f(iε)η(iε)ql(iε)ε

∣∣∣∣∣
≤ 2εl

∣∣∣∣∣
∫ 1

0

f0(x)ql(x)dx−

√
n∑

i=0

f0(iε)ql(iε)ε

∣∣∣∣∣
= O(εk+l),

ϕ(n)ε−(k+α)

∣∣∣∣∣E f(Sn)− E f(N)

−ε
∫ ∞

−∞
f(x)dQ1(x)− · · · − εk+1

∫ ∞

−∞
f(x)dQk+1(x)

∣∣∣∣∣
≥ 2ϕ(n)ε−(k+α)

∣∣∣∣∣
∫ 1

0

f0(x)dx−

√
n∑

i=0

f0(iε)ε

∣∣∣∣∣− Cϕ(n)ε1−α.

It is clear that, without loss of generality, we may assume that lim sup
n→∞

ϕ(n)ε1−α < ∞.

The function f0(x) satisfies the conditions of Lemma 2.1, which implies the assertion of
Theorem 2.

3. Proof of Theorem 3

We use the classical truncation technique. Denote

ξ̂n,i = ξn,iI
{
|ξn,i| ≤ 1

}
− E ξn,iI

{
|ξn,i| ≤ 1

}
, i = 1, . . . , n,
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B2
n =

n∑
i=1

Dξ̂n,i, ξn,i =
1

Bn

ξ̂n,i, Sn =
n∑

i=1

ξn,i, Lt =
n∑

i=1

E |ξn,i|t.

It is clear that ξn,i, i = 1, . . . , n, satisfy the conditions of Theorem B, and, in addition,
condition 1) for f in Theorem B is fulfilled. Hence, the assertion of Theorem B for
the sum Sn holds with the following upper bound for the remainder term:

| η| ≤ CH
(
Lk+α + Lk+p+α

)
.

By equality E ξn,i = 0, it follows:

|E ξn,iI
{
|ξn,i| ≤ 1

}
| = |E ξn,iI

{
|ξn,i| > 1

}
| ≤ E |ξn,i|t

for all t ≥ 1 and every i = 1, . . . , n. It is clear that

1−B2
n =

n∑
i=1

(
E ξ2

n,iI
{
|ξn,i| > 1

}
+
(
E ξn,iI

{
|ξn,i| ≤ 1

})2) ≤ 2Lt, t ≥ 2.

We take t = k+α. Without loss of generality we may assume that Lk+α ≤ 3/8. Otherwise,
the estimate in Theorem 3 becomes trivial (use the well-known Rosenthal inequality).
Thus, hereafter we assume that Bn ≥ 1/2. It is easy to see that

llE |ξn,i|k+α ≤ C(k)E |ξn,i|k+α,E |ξn,i|k+p+α ≤ C(k)E |ξn,i|k+α, i = 1, . . . , n. (3.1)

Hence, we can obtain the estimate | η| ≤ C(k)HLk+α. Fro proving Theorem 3, we need
to estimate proximity of E f(Sn) and E f(Sn) (Lemma 3.1), as well as proximity of
the corresponding cumulants of Sn and Sn (Lemma 3.2).

Lemma 3.1. Under the conditions of Theorem 3, the following estimate holds:

|E f(Sn)− E f(Sn)| ≤ CLk+α+σ,

where σ = max{0, p− 2} and the constant C depends only on p, k, α, and H.
Proof. We use the standard arguments of Lindeberg’s operator method. Denote

T1 =
n∑

i=2

ξn,i, Tn =
n−1∑
i=1

ξn,i,Tj =

j−1∑
i=1

ξn,i +
n∑

i=j+1

ξn,i, 2 ≤ j ≤ n− 1.

Note that Tj does not depend on ξn,j and ξn,j. The well-known Marcinkiewicz–Zygmund
inequality provides the estimate E |Tj|t ≤ C(t)Lt, j = 1, . . . , n. Moreover, the function f
satisfies the Lipschitz condition

|f(x)− f(y)| ≤ C(H)|x− y|
(
1 + |x|k−3+p+α + |y|k−3+p+α

)
.

Using these arguments, we obtain the following estimate:

|E f(Sn)− E f(Sn)|

90



=

∣∣∣∣∣
n∑

j=1

E

{∫ ∞

−∞

(
f(y + ξn,j)− f(y + ξn,j)

)
dP(Tj < y)

}∣∣∣∣∣
≤ C(H)

n∑
j=1

E

{∫ ∞

−∞
|ξn,j − ξn,j|

(
1 + |y|k−3+p+α + |ξn,j|k−3+p+α

+|ξn,j|k−3+p+α
)
dP(Tj < y)

}
.

Obviously,

E |ξn,i − ξn,i| ≤ E |ξn,i − ξ̂n,i|+
1−B2

n

Bn(1 +Bn)
E |ξ̂n,i| ,

E |ξn,j − ξ̂n,j| ≤ 2E |ξn,jI
{
|ξn,j| > 1

}
|,∫ ∞

−∞
|y|k−3+p+αdP(Tj < y) ≤

∫
|y|≤1

dP(Tj < y) +

∫
|y|>1

|y|k+α+σdP(Tj < y)

≤ 1 + E |Tj|k+α+σ

for all 1 ≤ j ≤ n. Taking into account the inequalities of type (3.1), we obtain the state-
ment of Lemma 3.1.

Denote by Kr(Z) the r th cumulant of an r.v˙ Z.
Lemma 3.2. Under the conditions of Theorem 3, the following relation holds:∣∣∣∣∣ ∑

(k−2)

r∏
j=1

Ksj+2(Sn)−
∑
(k−2)

r∏
j=1

Ksj+2(Sn)

∣∣∣∣∣ ≤ CLk+α, (3.2)

where
∑

(k−2) is defined in Theorem B, and the constant C depends on k and α only.

Proof. Denote Al = E ξ l
n,1 and Bl = E ξ̂

l

n,1. By definition, we have

Kd(ξn,1)−Kd(ξ̂n,1) =
∑
[d]

C1(d)

{ d∏
l=1

Aml
l −

d∏
l=1

Bml
l

}

=
∑
[d]

C1(d)

{
(Am1

1 −Bm1
1 )

d∏
i=2

Ami
i +Bm1

1 (Am2
2 −Bm2

2 )
d∏

i=2

Ami
i

+ · · ·+ (Amd
d −Bmd

d )
d−1∏
i=1

Bmi
i

}
,

where
∑

[d] denotes the summation over all integer nonnegative numbers (m1, . . . ,md)
such that m1 + 2m2 + · · · + dmd = d, d ≤ k. If ml = 0 then, obviously, Aml

l − Bml
l = 0.

If ml ≥ 1 then, by (3.1), we can obtain the inequality

|Aml
l −Bml

l | ≤ C2(l)|Al −Bl||Al|ml−1 ≤ C3(l)E |ξ1|k+α.
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Using this inequality and the properties of the cumulants, we obtain

|Kd(ξn,1)−Kd(ξn,1)| ≤ |Kd(ξn,1)−Kd(ξ̂n,1)|+
(

1

Bd
n

− 1

)
Kd(ξ̂n,1)

≤ C4(d)E |ξn,1|k+α.

The analogous inequality is true for all r.v.’s ξn,i and ξn,i, i = 1, . . . , n. Since the summands
are independent, the following relation holds:

|Kd(Sn)−Kd(Sn)| =

∣∣∣∣∣
n∑

i=1

(
Kd(ξn,i)−Kd(ξn,i)

)∣∣∣∣∣ ≤ C5(d)Lk+α.

Therefore, as an upper bound for the left-hand side of inequality (3.2), we can take the sum∑
(k−2)

{
C5(s1 + 2)Lk+αLs1+2 · · ·Lsr+2 + · · ·+ C5(sr + 2)Ls1+2 · · ·Lsr+2Lk+α

}

≤ CLk+α

∑
(k−2)

r∏
i=1

Lsi+2

We recall that, without loss of generality, we assume Lk+α ≤ 3/8. Hence,

r∏
i=1

Lsi+2 ≤
r∏

i=1

L

si+2
k+α

k + α ≤ CLk+α.

Lemma 3.2 and Theorem 3 are proven.
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10 The central limit theorem for generalized canon-

ical Von Mises statistics

1. Basic definitions and statement of the main result

In this chapter we study the limit behavior of a wide class of von Mises statistics defined
by an arbitrary array of degenerate (canonical) kernel functions. The impetus for our
investigation is the paper by P. Major [87] where limit theorems for weighted U -statistics
are obtained. The proof of the main result of this chapter is based on a representation
of generalized von Mises statistics as multiple stochastic integrals with respect to some
empirical measures different from those previously considered in investigations of the limit
behavior of classical von Mises statistics.

Let X1, X2, . . . be independent identically distributed random variables taking values
in an arbitrary measurable space (X ,B) with distribution P on B. We consider statistics
of the following type:

M (m)
n := n−

m
2

∑
1≤i1,...,im≤n

fn

(
i1
n
, . . . ,

im
n
, Xi1 , . . . , Xim

)
, n = 1, 2, . . . , (1)

which are called generalized von Mises statistics, with the kernel functions

fn [0, 1]m ×Xm → R (2)

canonical (or degenerate), i.e.,

Efn(t1, . . . , tm, x1, . . . , xk−1, Xk, xk+1, . . . , xm) = 0 (3)

for all t1, . . . , tm ∈ [0, 1], x1, . . . , xm ∈ X , and k = 1, . . . ,m.

It is clear that we could consider an equivalent form of the statistics M
(m)
n based on

an array of kernel functions {fn,i1,...,im} without any normalization. In this case, each
kernel function would depend only on the sample {Xi}. Possibly, such a form of notation
is more natural than that in (1) but, for our purpose, it is more convenient to emphasize
dependence on the multi-index and n in the arguments of the functions fn; otherwise, we
need some additional notations.

We would like to say a few words about the history of the objects under study. The the-
ory of U -statistics appeared in the late 40s when W. Hoeffding [59] and R. von Mises [89]
began to investigate both U -statistics of the form

Un :=
1

Cm
n

∑
1≤i1<···<im≤n

g(Xi1 , . . . , Xim),

where g is a symmetric function with respect to all permutations of arguments, and
the so-called von Mises statistics

Mn := n−m
∑

1≤i1,...,im≤n

g(Xi1 , . . . , Xim).
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As a matter of fact, the asymptotic behavior, as n → ∞, of statistics Mn and Un

is the same, since they differ from each other only by presence (or absence) of elements
whose multi-index contains at least two equal coordinates. The number of elements of
such a type in these multiple sums is much less than that of other elements. Essential
differences appear only in the study of their moments. Note that we do not need the
symmetry property for the kernel functions in von Mises statistics. On the other hand,
if the distribution of Xi is continuous then we can interpret U -statistics as a particular
case of von Mises statistics with symmetric kernel functions which vanish on all subspaces
containing the main diagonal of the product sample space.

Conversely, it is easy to see that every von Mises statistic can be represented as
a finite sum of U -statistics of decreasing dimension. Moreover, every U -statistic can be
represented as a finite sum of degenerate U -statistics (see [61]). Thus, we only study
the canonical case, although a great number of papers is dedicated to the nondegenerate
case (for example, see the references in [77]).

In 1962, A. A. Filippova [52] obtained limit theorems for multiple stochastic in-
tegrals based on the classical empirical measure on the real line. In other words, she
obtained the corresponding limit theorems for degenerate von Mises statistics Mn which
admit the representation mentioned above. We would like yet to select two remarkable
papers by M. Arcones and E. Giné [3, 4], where probability inequalities, the central
limit theorem, and the law of the iterated logarithm are studied for the canonical case
including the multivariate (functional) setting (the so-called uniform limit theorems for
U -processes).

Since the 70s, the generalized U -statistics of the form

Ũn :=
1

Cm
n

∑
1≤i1<···<im≤n

gi1,...,im(Xi1 , . . . , Xim)

are studied under some properties of the whole array of symmetric kernel functions gi1,...,im .
In particular, in the generality mentioned, V. H. de la Peña [91] obtained moment

and probability inequalities for Ũn (see also [92]). In 1994, P. Major [87] proved limit
theorems for the following weighted U -statistics:

Un := n−
m
2

∑
1≤i1<···<im≤n

a(i1, . . . , im)g(Xi1 , . . . , Xim),

where a and g are symmetric functions, g is canonical, and X1 has uniform distribution on
the interval [0, 1] (the case of an arbitrary distribution on R can be reduced to the above-
mentioned case by the standard quantile transformation). In other words, an important
particular case of the problem is studied in [87].

LetA be the σ-algebra of all Borel subsets of the interval [0, 1], let Λ(·) be the Lebesgue
measure on [0, 1], and let

{
KP (A,B); A ∈ A, B ∈ B

}
be an elementary centered Gaussian

stochastic measure defined on the semiring of all rectangles A×B of the Cartesian product
[0, 1]×X and having the covariance

EKP (A,B)KP (A′, B′) = Λ(A ∩ A′)
(
P (B ∩B′)− P (B)P (B′)

)
.
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Note that existence of such a kind random process
{
KP (A,B); A ∈ A, B ∈ B

}
is pro-

vided by the classical Kolmogorov theorem. In particular, from here it follows that if some
sets A and A′ are disjoint then, for all subsets B and B′, the random variables KP (A,B)
and KP (A′, B′) are independent. Additivity (with probability 1) of the stochastic mea-
sure with respect to each argument A or B (it is equivalent to additivity of the measure
on the semiring mentioned) is rather easily verified. Say, let B and B′ be disjoint Borel
subsets of the real line. Then

E
(
KP (A,B ∪B′)−KP (A,B)−KP (A,B′)

)2
= Λ(A)

{
P (B ∩B′)

(
1− P (B ∩B′)

)
− 2P (B)

(
1− P (B ∩B′)

)
−2P (B′)

(
1− P (B ∩B′)

)
+ P (B)

(
1− P (B)

)
+P (B′)

(
1− P (B′)

)
− 2P (B)P (B′)

}
= 0.

Additivity in the first argument A is verified similarly. If the arguments A and B are
changed only within the subclass of intervals

{
[0, s]; s ∈ [0, 1]

}
, then we deal with the so-

called Kiefer process (“Brownian pocket” on the plane).
Let

{
BP (A,B); A ∈ A, B ∈ B

}
be a Wiener process on the Cartesian prod-

uct [0, 1] × X , i.eȧn elementary centered Gaussian stochastic measure on the above-
introduced semiring having covariance EBP (A,B)BP (A′, B′) = Λ(A∩A′)P (B∩B′). If the
rectangles A×B and A′×B′ are disjoint, then the corresponding values of the Wiener pro-
cess are independent. For A,B ∈

{
[0, s]; s ∈ [0, 1]

}
, the corresponding Gaussian process

with two-dimensional time parameter is called a “Wiener sheet.”
Hereafter we use the following two L2-norms ‖ · ‖∗ and ‖ · ‖n:

‖f‖2
∗ :=

∑
i1,...,im≤m

∑
j1,...,jm≤m

Ef 2(ωi1 , . . . , ωim , Xj1 , . . . , Xjm), (4)

‖f‖2
n :=

∑
i1,...,im≤m

∑
j1,...,jm≤m

Ef 2
(
ω

(n)
i1
, . . . , ω

(n)
im
, Xj1 , . . . , Xjm

)
, (5)

where ω1, . . . , ωm are independent uniformly distributed on [0, 1] random variables which

do not depend on the sample {Xj} on an extended probability space, and ω
(n)
k = [nωk]/n

for all k. As a rule, norms of the type (4) are introduced in the theory of von Mises statis-
tics (see [16, 52]). But for asymptotic analysis of distributions of generalized U -statistics,
with account taken of the above remark, it is sufficient to define only the moments

Ef 2
i1,...,im(X1, . . . , Xm).

Introduction of the second norm (5) is explained by necessity of approximation to

the initial kernel fn of statistic M
(m)
n by a new kernel independent of n. In the generality

considered, we cannot manage only with the norm ‖ · ‖∗.
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Introduce also the normalized counting measure on [0, 1] with atoms at the points
{i/n; i = 1, . . . , n} by the formula

µn(A) :=
1

n
#{i : i/n ∈ A}, A ∈ A.

It is clear that µn(A) is the distribution of the random variable ω
(n)
1 , and, as n → ∞,

the sequence {µn} converges weakly to the Lebesgue measure Λ.
Now we formulate the following condition for closeness of the kernel fn to a function f :
Condition (∗). For every ε > 0, there exist step functions fN,M on [0, 1]m × Xm,

equal to fi1,...,im,j1,...,jm on the partition element Ti1 × · · · ×Tim ×Bj1 × · · · ×Bjm , ik ≤M ,
jk ≤ N , k = 1, . . .m, such that ‖f − fN,M‖∗ ≤ ε and ‖fn − fN,M‖n ≤ ε for all n ≥ n0,
where Ti =

(
(i − 1)/M, i/M

]
, i ≤ M , the naturals n0, N , M depend only on ε and f ,

and the measurable subsets Bj, j ≤ N , form, generally speaking, an arbitrary partition
of the sample space X .

R e m a r k 1. Condition (∗) means that the functions under consideration can be
approximated in the norms ‖ ·‖∗ and ‖ ·‖n by the same step functions which are constant
on parallelepipeds of a special type. For instance, in the case X = [′,∞] and P = Λ, this
condition holds whenever the kernel functions are Riemann square integrable on the cube
[0, 1]2m and on all its intersections with the linear subspaces containing the main diagonal
(of course, under the condition regarding closeness of the functions in the above-introduced
norms). Here we can consider intervals of the type (a, b] as the partition elements Bj.
In the case fn(t,X) = sn(t )g(X) (under the corresponding notations of the vector@-
valued arguments) we can require Riemann integrability only of the component sn(t )
and its L2-limit. Moreover, if sn(t ) = a

(
[nt1], . . . , [ntm]

)
(for example, see [87]), then

we do not need norms like ‖ · ‖n in Condition (∗). It is sufficient to postulate there only
convergence of the sequence fn to f

(
or sn(t ) to the corresponding limit

)
in the norm

‖ · ‖∗.
Theorem. Let M

(m)
n be defined by (1)–(3) and let Condition (∗) be fulfilled. Then, as

n→∞,

M (m)
n ⇒

∫
f(t1, . . . , tm, x1, . . . , xm)KP (dt1, dx1) · · ·KP (dtm, dxm)

d
=

∫
f(t1, . . . , tm, x1, . . . , xm)BP (dt1, dx1) · · ·BP (dtm, dxm), (6)

where the 2m-fold integrals with integrability domain [0, 1]m × Xm are understood to be
stochastic (L2-limits of the corresponding integral sums), the symbol ⇒ denotes weak

convergence of distributions of random variables, and the symbol
d
= denotes equality of

distributions.
R e m a r k 2. The theorem generalizes the main result in [87] for

fn(t1, . . . , tm, x1, . . . , xm) = a
(
[nt1], . . . , [ntm]

)
g(x1, . . . , xm)
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under the condition that a
(
[nt1], . . . , [ntm]

)
→ A(t1, . . . , tm) in L2[0, 1]m, where

A(t1, . . . , tm) is an arbitrary continuous function, and Xi are uniformly distributed
on [0, 1]. Here the continuity condition for A(t1, . . . , tm) can be replaced by the weaker
condition of its Riemann integrability (see Remark 1).

Formulate another useful consequence of the above theorem.
Corollary. Let the canonical kernels fn in (1), continuous on [0, 1]2m, converge

uniformly to a function f . Then (6) holds for P = Λ.

2. Auxiliary propositions

Introduce the following atomic stochastic measure (point process) defined on the semir-
ing of all canonical rectangles in [0, 1]×X :

Sn(A,B) :=
1√
n

∑
i: i/n∈A

(
I(Xi ∈ B)− P (B)

)
,

where A ∈ A, B ∈ B, I(·) is the indicator function of an event. The atoms of this
measure have the form (i/n, Xi), i = 1, . . . , n. By the Fubini theorem it is easy to obtain
the following representation of von Mises statistics with canonical kernels which is a key
for understanding the specific character of their limit behavior:

Proposition 1. The statistic M
(m)
n admits representation as the following 2m-fold

stochastic integral on [0, 1]m ×Xm:

M (m)
n =

∫
fn(t1, . . . , tm, x1, . . . , xm)Sn(dt1, dx1) · · ·Sn(dtm, dxm).

Now denote by A0 the subclass of subsets in A satisfying the following conditions:
µn(A) → Λ(A), µn(B) → Λ(B) and, moreover, as n → ∞, µn(A ∩ B) → Λ(A ∩ B)
for all A,B ∈ A0. Note that, if the subsets A and B are Jordan measurable, then
these conditions hold. In general, fulfillment of the first and the second conditions
does not imply that of the third. As an example, we can consider the Borel subsets
A = [0, 1/2] and B = R[0, 1/2] ∪ Ir[1/2, 1], where R[·] and Ir[·] denote the subsets of all
rational and irrational numbers of the intervals indicated. Here the values µn(A), µn(B),
and µn(A ∩ B) tend to 1/2 (the Lebesgue measure of the sets A and B) as n → ∞.
However, Λ(A ∩B) = 0.

Consider the random processes{
Sn(A,B); A ∈ A0, B ∈ B

}
and

{
KP(A,B); A ∈ A′, B ∈ B

}
.

Proposition 2. As n→∞,

Sn(· , ·) ⇒ KP (· , ·),

where the symbol ⇒ means weak convergence of finite-dimensional distributions of random
processes;

E
(
Sr1

n (A1, B1) · · ·Srd
n (Ad, Bd)

)
→ E

(
Kr1

P (A1, B1) · · ·Krd
P (Ad, Bd)

)
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for all natural rj and all Aj ∈ A0, Bj ∈ B, j = 1, . . . , d.
Proof. The first statement follows from the multivariate central limit theorem.

We must only emphasize that, for all A1, A2 ∈ A0 and B1, B2 ∈ B, we have

ESn(A1, B1)Sn(A2, B2)

=
1

n
E

{ ∑
i: i/n∈A1

(
I(Xi ∈ B1)− Λ(B1)

) ∑
j: j/n∈A2

(
I(Xj ∈ B2)− Λ(B2)

)}

=
1

n
E

( ∑
i: i/n∈A1∩A2

(
I(Xi ∈ B1)− Λ(B1)

))2

= µn(A1 ∩ A2)
(
Λ(B1 ∩B2)− Λ(B1)Λ(B2)

)
→ Λ(A1 ∩ A2)

(
Λ(B1 ∩B2)− Λ(B1)Λ(B2)

)
.

To prove the second statement we note that, because of additivity in each of the
two arguments of the stochastic measures under consideration and independence of their
values for the pairwise disjoint subsets Aj, the problem can be reduced to the case in
which A1 = · · · = Ad and the subsets Bj are pairwise disjoint.

It is well known that, generally speaking, weak convergence does not imply moment
convergence. But this assertion holds if the prelimit random variables are uniformly
integrable. The last requirement is fulfilled if we prove that every absolute moment of
the random variable Sn(A,B) is uniformly bounded in n. It immediately implies uniform
boundedness of all mixed moments of the type E

(
Sr1

n (A,B1) · · ·Srd
n (A,Bd)

)
, i.e,̇ it provides

the uniform integrability mentioned above. In order to justify this, we apply the so-called
poissonization, i.eṙeplacement of the empirical measure Sn(· , ·) by the corresponding
Poisson point process, say, as in [16]. In this case, if the value maxj Λ(Bj) is sufficiently
small, then, without loss of generality, we may assume that, for all N ≥ N0(d) (see [16]),∣∣Sr1

n (A,B1) · · ·Srd
n (A,Bd)

∣∣ ≤ CE
∣∣Qr1

λ (B1) · · ·Qrd
λ (Bd)

∣∣
= C

∏
j≤d

E
∣∣Qrj

λ (Bj)
∣∣ ≤ C

( ∏
j≤d

EQ
2rj

λ (Bj)

)1/2

,

where the constant C depends only on N0(d) and maxj≤N Λ(Bj); Qλ(·) = 1√
n

(
Q̃λ(·) −

λ(·)
)
, with λ(·) = Λ(·)µn(A)n; by Q̃λ(·) we denote the Poisson point process with mean

measure λ(·), i.e,̇ Q̃λ(B1), . . . , Q̃λ(Bd) are independent random variables for pairwise
disjoint subsets {Bj}.

Finally, using the estimate E
(
Qλ(Bj)

)s ≤ µn(A)s/2s!Λ(Bj) proven in [16] for an ar-
bitrary natural s we obtain the required result. The proposition is proven.

For the centered Gaussian random processes indicated below, we can easily verify coin-
cidence of the covariances which implies the following proposition well-known in the case
A,B ∈

{
[0, s]; s ∈ [0, 1]

}
:
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Proposition 3. For all A ∈ A and B ∈ B,

KP (A,B)
d
= BP (A,B)− P (B)BP (A,X ).

3. Proof of the Theorem

Consider the two-dimensional array of step functions satisfying Condition (∗):{
fN,M(t1, . . . , tm, x1, . . . , xm) :=

M∑
i1,...,im=1

N∑
j1,...,jm=1

fi1,...,imj1,...,jm

×
m∏

k=1

I(tk ∈ Tik)I(xk ∈ Bjk
); N,M ≥ 1

}
,

where, as before, Ti =
(
(i− 1)/M, i/M

]
, i ≤M , and the measurable subsets B1, . . . , BN

form, generally speaking, an arbitrary partition of the sample space X . Introduce the fol-
lowing notations:

J
(n)
M,N :=

M∑
i1,...,im=1

N∑
j1,...,jm=1

fi1,...,im,j1,...,jmSn(Ti1 , Bj1) · · ·Sn(Tim , Bjm), (7)

JM,N :=
M∑

i1,...,im=1

N∑
j1,...,jm=1

fi1,...,im,j1,...,jmKP (Ti1 , Bj1) · · ·KP (Tim , Bjm). (8)

As a consequence of Proposition 2, we obtain J
(n)
M,N ⇒ JM,N as n→∞. In what follows, as

N,M →∞, we must prove, first, uniform in n convergence to zero of the second moment
of the difference J

(n)
M,N −M

(m)
n , and, second, existence of an L2-limit of the integral sums

introduced in (8).

Evaluate the moment δ := E
(
J

(n)
M,N−M

(m)
n

)2
. First, note that, without loss of general-

ity, we may assume the step function fN,M to be canonical
(
i.e,̇ to satisfy (3)

)
. Otherwise,

we can reduce it to the canonical form by a special centering as in [61]. For example,
in the two-dimensional case, we can transform a function ϕ(x, y) to the canonical by
the transformation

ϕ̃(x, y) = ϕ(x, y)− Eϕ(X1, y)− Eϕ(x,X1) + Eϕ(X1, X2).

It is easy to see that this mapping transforms the step function fN,M to a new step function
and accuracy of this replacement in the norm ‖·‖∗ has the same order ε (up to a factor
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depending only on m). Moreover, in this case, J
(n)
M,N in (7) can be represented by (1),

where the function fn must be replaced by fN,M . Then

δ =
1

nm

∑
ī

∑
j̄

E

(
fn

(
ī

n
,X ī

)
− fM,N

(
ī

n
,X ī

))

×

(
fn

(
j̄

n
,X j̄

)
− fM,N

(
j̄

n
,X j̄

))
, (9)

where the natural abbreviation is used for the vector@-valued sample and the multi-index.
Further, because of degeneracy of the kernels fn and fM,N , the moments in (9) are

different from zero only in the case when each of the coordinates of the 2m-variate vector
(̄i, j̄) coincides at least with another coordinate, i.e,̇ the multiplicity of each coordinate is
greater than 1. Hence the double sum in (9) has at most nm nonzero summands. Using
the Cauchy–Bunyakovskĭı inequality twice (for the second time, for the nm-points uniform
distribution) we finally obtain

δ ≤ 1

nm

∑
ī

E

(
fn

(
ī

n
,X ī

)
− fM,N

(
ī

n
,X ī

))2

. (10)

Now we split the multiple sum in (10) into sums in which coincidence is fixed for certain
groups of coordinates of the multi-index. For example, in the three@-dimensional case,
the multiple sum over i1, i2, i3, where each index ik varies from 1 to n, splits into the fol-
lowing five sums: a triple sum over i1 6= i2 6= i3, three double sums over i1 6= i2 = i3
and all permutations of the indices, and a sum over the main diagonal i1 = i2 = i3.
Moreover, in the m-dimensional case, the number of these sums can be estimated from
above by mm. Each of these sums can be easily evaluated by the corresponding moment
on the right-hand side of (5)

(
the definition of ‖·‖n

)
, which was to be proven.

Now we establish existence of the L2-limit for the sequence JM,N as N,M → ∞.
To verify the Cauchy criteria it is sufficient to prove the relation

lim
N,M→∞

E
(
JM,N

)2
= 0

as N,M → ∞ whenever ‖fN,M‖∗ → 0. First, we evaluate the moment E
(
J

(n)
M,N

)2
, which

is of interest in its own right. In order to do it, we use the above-indicated poissonization
inequality that is true for all even moments of the random variable J

(n)
M,N (for details,

see [3”, Section 2]):

E
(
J

(n)
M,N

)2 ≤ C̃
∑

i1,...,im

∑
j1,...,jm

∑
i1,...,i′m

∑
j1,...,j′m

∣∣fi1,...,im,j1,...,jmfi′1,...,i′m,j′1,...,j′m

∣∣
×E

{
Qλi1

(Bj1) · · ·Qλim
(Bjm)Qλi′1

(Bj′1
) · · ·Qλi′m

(Bj′m)
}
, (11)
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where N ≥ N0, the constant C̃ depends only on m, N0, and maxj≤N P (Bj); Qλp(·) =
1√
n

(
Q̃λp

(·)−λp(·)
)
, with λp(·) = P (·)µn(Tp)n; here we again denote by Q̃λp

(·) the Poisson

point process introduced in the proof of Proposition 2 and having mean measure λp(·);
thus, Q̃λp

(B1), . . . , Q̃λp
(Bk) are independent random variables for pairwise disjoint sub-

sets {Bj}. Moreover, we suppose that the stochastic signed measures Qλp1
(·), . . . ,Qλps

(·)
are independent for pairwise different p1, . . . , ps. From [3] and relation (12) below, we
conclude that all mixed moments on the right-hand side of (11) are nonnegative.

Further, because of the above arguments, each mixed moment in (11) admits the fol-
lowing representation:

E
{
Qλi1

(Bj1) · · ·Qλim
(Bjm)Qλi′1

(Bj′1
) · · ·Qλi′m

(Bj′m)
}

=
∏

l

∏
d

E
(
Qλl

(Bd)
)r(l,d)

, (12)

where the products in (12) are taken over l ∈ {i1, . . . , im, i′1, . . . , i′m} and d ∈
{j1, . . . , jm, j′1, . . . , j′m} (without account taken of the multiplicity of the indices
{ik, i′k} and {jk, j′k}

)
; r(l, d) is the number of pairs (i, j) in the Cartesian product

{i1, . . . , im, i′1, . . . , i′m} × {j1, . . . , jm, j′1, . . . , j′m} satisfying the condition i = l and j = d.
It is important to emphasize that, by the definition of r(l, d) and because of centering
the Poisson point process Qλ(·), the following two-sided inequality holds: 2 ≤ r(l, d) ≤
(2m)2. Thus, using the above-mentioned estimate E

(
Qλp(B)

)s ≤ µn(Tl)
s/2s!P (B) (see

[16]), we obtain the inequality

E
(
Qλl

(Bd)
)r(l,d) ≤ C0(f,m)µn(Tl)P (Bd).

Substituting the last estimate in (12), we finally obtain from (11) the upper bound

E
(
J

(n)
M,N

)2 ≤ C1‖fN,M‖2
n, (13)

where C1 is a constant independent of n. Passing to the limit in (13) as n → ∞, we
obtain by Proposition 2 the required final upper bound:

E
(
JM,N

)2
= lim

n→∞
E
(
J

(n)
M,N

)2 ≤ C1‖fN,M‖2
∗. (14)

Note that convergence of the norm on the right-hand side of (13) to the corresponding
limit on the right-hand side of (14) follows immediately from the structure of the step
function fN,M . In other words, we have proven that {JM,N ; M,N = 1, 2, . . . } is a Cauchy
sequence and, hence, it has a limit as M,N →∞ in the Hilbert space of random variables
with finite second moments. Therefore, in this space, there exists a limit point J which
actually represents the first multiple stochastic integral in (6):

J :=

∫
f(t1, . . . , tm, x1, . . . , xm)K(dt1, dx1) · · ·KP (dtm, dxm).
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R e m a r k 3. To prove inequality (14) we actually do not need results similar to
inequality (13). We can directly estimate the mixed moments

EKr1
P (A,B1) · · ·Krd

P (A,Bd)

which appear in calculating the second moment of the random variable JM,N (see the proof
of Proposition 2). In order to use the corresponding decoupling arguments for the mixed
moments, we can use Proposition 3 instead of poissonization. This allows us to reduce
the problem to analyzing the multilinear forms of moments of the type EBr

P (A,B) =
(r − 1)!!P (A)r/2, where r ≥ 2. Whence, upper bound (14) will be immediately obtained.

R e m a r k 4. Construction of integrals of nonrandom functions with respect to
stochastic measures with orthogonal (uncorrelated) values on disjoint subsets was in-
dependently proposed in 1940 by A. N. Kolmogorov [72–74] and H. Cramér [34]. This
construction is based on the Hilbert-space technique (for example, see [54]). More partic-
ular schemes of constructing stochastic integrals with respect to increments of a Wiener
process is contained in the classical paper by N. Wiener. Multiple stochastic integrals
on orthogonal Gaussian random measures (the Itô–Wiener-type integrals) were studied
in [67, 85]. The Hilbert-space technique of the above-cited papers can be transferred
to constructing stochastic integrals (including multiple integrals) of nonrandom functions
with respect to stochastic measures which are not necessarily orthogonal. Such an inte-
gral can be correctly defined if the second moment exists of the integrand with respect
to the marginal projection of the total variation of the symmetric measure defined by
the relation m(A,B) := Eµ(A)µ(B). For example, for a Brownian bridge W 0(·) on
the interval [0, 1], we have∣∣m(A,B)

∣∣∗ = Λ(A ∩B) + Λ(A)Λ(B),

where
∣∣m(A,B)

∣∣∗ is the value of the total variation of m(· , ·) on the Cartesian product

A×B. The projection of this measure is calculated by the formula
∣∣m(A, [0, 1]

)∣∣∗ = 2Λ(A).
The last relation provides a correct definition of the stochastic integrals with respect to
W 0(·) if the second moment

(
in the Lebesgue measure on [0, 1]

)
of the kernel exists.

Of course, we can use the well-known representation of the Brownian bridge W 0(·) via
a Wiener process (for example, this follows from Proposition 3) and reduce constructing
the corresponding stochastic integral to the Wiener construction (cf. [91]). A similar re-
mark can be made regarding the construction of more general multiple stochastic integrals
than those of [67, 85].

So, we have proven the following limit transitions:

J
(n)
M,N =⇒

n→∞
JM,N

↓ ↓
M (m)

n J

where the vertical arrows denote L2-convergence of the corresponding integral sums;
the left vertical arrow denotes uniform convergence in n. Whence, the weak convergence
M

(m)
n ⇒ J follows, as n→∞.
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By Proposition 3 and condition (3) on the kernel functions, we can easily obtain
another representation of the random variable J . To this end, we can consider the integral
sums JM,N and, next, pass to the corresponding limit:

J =

∫
f(t1, . . . , tm, x1, . . . , xm)K(dt1, dx1) · · ·KP (dtm, dxm)

d
=

∫
f(t1, . . . , tm, x1, . . . , xm)BP (dt1, dx1) · · ·BP (dtm, dxm).

Therefore, the theorem is proven.
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11 Limit theorems for canonical Von Mises statistics

based on dependent observations

1. Statement of the main results

In the chapter we study limit behavior of canonical Von Mises statistics based on
samples from a sequence of weakly dependent stationary observations satisfying ψ-mixing
condition. The approach is based on representation of such statistics as multiple stochastic
integrals with respect to the corresponding normalized empirical product-measure as well
as on the results in [23]. These results allow us to interpret the corresponding limit random
element as a multiple stochastic integral of the kernel of the statistic under consideration
with respect to a Gaussian noise which plays a role of the weak limit for the above-
mentioned normalized empirical measures.

Let {Xi; i ∈ Z} be a stationary sequence of random variables taking values in an
arbitrary measurable space {X,A} and having a marginal distribution P . Consider a
measurable function f(t1, . . . , td) : Xd → R. Define Von Mises statistics (or V -statistics)
by the formula

Vn := n−d/2
∑

1≤i1,...,id≤n

f(Xi1 , . . . , Xid), n = 1, 2, . . . , (1)

where d ≥ 2 and the subscripts ik independently take all the integers from 1 to n, and
the function f satisfies the degeneracy condition

Ef(t1, . . . , tk−1, Xk, tk+1, . . . , td) = 0 (2)

for all t1, . . . , td ∈ X and k = 1, . . . , d. The function f is called a kernel of a Von Mises
statistic, and the statistics with degenerate kernels are called canonical.

In the case of independent observations {Xi} such statistics were studied in the second
half of the last century. (see in [77] the references and examples of such statistics ). For
the first time some limit theorems for these statistics were obtained by Von Mises [89]
and Hoeffding [59], and , moreover, in these papers, there were introduced the so-called
U -statistics:

Un := n−d/2
∑

1≤i1 6=···6=id≤n

f(Xi1 , . . . , Xid) (3)

or
U0

n := n−d/2
∑

1≤i1<···<id≤n

f0(Xi1 , . . . , Xid), (4)

where, as a rule, the kernel f0 in (4) is symmetric with respect to all permutations of
the arguments. Notice that to obtain the same limit behavior as that for V -statistics the

factor n−d/2 in (4) is replaced by
(
Cd

n

)−1/2
.

The main distinction of U -statistics from V -statistics is absence of the so-called diag-
onal subspaces in the region of summation in multiple sums in (3) and (4), i.e., absence
of subscripts of multiplicities greater than 1 in the definitions (3) and (4).
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Under unrestricted conditions on the sample distribution and on the kernels this dis-
tinction is not essential since the number of various vector subscripts (i1, . . . , id) with
the coordinates having multiplicity greater than 1 in the sums above has the order
O(nl), l < d, where l is the number of free coordinates ik (in other words, the dimension of
the corresponding diagonal subspace). Therefore, under supplementary moment restric-
tions on the kernel f , we can easily prove equivalence in probability of representations (1)
and (3) . Moreover, it is easy to see that the representations (3) and (4) of U -statistics,
are equivalent: If we set in (4)

f0(t1, . . . , td) :=
∑

f(ti1 , . . . , tid),

where summation is taken over all permutations i1, . . . , id of the numbers
1, . . . , d, then we reduce representation (3) to (4).

If the sample distribution P has no atoms then the corresponding U -statistic in (4)
coincides in distribution up to the factor (d!)−1 with the corresponding Von Mises statistic
with the symmetric kernel vanishing on all the diagonal subspaces of Xd. This comment
is the central in the limit theory of U -statistics. Notice also that each U -statistic can
be represented as a finite linear combination of canonical U -statistics of all dimensions
from 1 to d. It is the so-called Hoeffding decomposition (for detail, see [77, 61]). This
fact allows us to reduce an asymptotic analysis of arbitrary U - and V -statistics to that
for canonical ones. Essential preference of canonical V -statistics over U -statistics is the
integral representation below.

The stochastic process

Sn(B) = n−
1
2

n∑
i=1

(I(Xi ∈ B)− P (B)), B ∈ A,

is called normalized empirical measure (a signed random measure) based on the observa-
tions X1, . . . , Xn. It is well known (for example, see [77, 21]) that the statistic Vn admits
a representation as the d-fold stochastic integral which is path-wise determined as the
classical Lebesgue integral with respect to a finite signed measure (since the stochastic
part of Sn(·) is a pure atomic measure):

Vn =

∫
Xd

f(x1, . . . , xd)Sn(dx1) . . . Sn(dxd). (5)

It is known (see [59, 21, 52]) that, in the IID case, under the condition∑
1≤j1,...,jd≤d

Ef 2(Xj1 , . . . , Xjd
) <∞,

the weak limit of the sequence Vn can be interpreted as a multiple stochastic integral which,
under some additional restrictions, (say, if the distribution P has a bounded density) with
the corresponding Itô — Wiener multiple stochastic integral (see [77, 67, 47]):

Vn
d→
∫
Xd

f(t1, . . . , td)WP (dt1) . . .WP (dtd) (6)
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as n → ∞, where, hereinafter, the symbol “
d→” denotes weak convergence of the cor-

responding distributions, and WP (A) is a “White noise” with the structure function P ,
i. e., it is an elementary stochastic orthogonal Gaussian measure on A with mean zero
and the covariance EWP (A)WP (B) = P (A ∩ B). Notice that the integral in (6) cannot
be path-wise defined almost surely without some supplementary restrictions on the kernel
since the White noise has an unbounded total variation almost surely for any nonatomic
sample distributions P , say, in Rk.

Our goal is to prove limit theorems in a similar form as that in (6) in the case when
the observations are weakly dependent. We know only few results in this direction. First
of all, we note the paper [48] in which, in the case d = 2, the following representation of
the limit random variable for statistics (3) was obtained:

∞∑
k=1

λk

(
τ 2
k − 1

)
, (7)

where {λk} are eigenvalues of the integral operator with the kernel f which are addi-
tionally assumed to be summable, and {τk} is a Gaussian sequence with the covariance
function depending on these eigenvalues as well as on the covariance function of the initial
stationary sequence {Xi} satisfying ϕ-mixing condition.

As a consequence of the main result of the paper we prove that the random variable in
(7) may be interpret as a bivariate multiple stochastic integral with respect to a Gaussian
process with nonorthogonal increments. Such integrals were introduced in [23].

Notice that, in the IID case, the random variables {τk} are independent as well,
and, in this case, the representation (7) was obtained in [89]. Latter it was extended
on the statistics of an arbitrary dimension (see [109]), and, moreover, there was proved
another interpretation of the limit random variables as multiple stochastic integrals of
type (6) (see) [47, 52, 67]. It seems that the second interpretation of the limit law is
more constructive than the first one since, as a rule, we cannot explicitly study the sets
of eigenvalues and eigenfunctions of the above-mentioned integral operator for the kernel
from a sufficiently wide class.

In the special case when the observations are defined by a nonrandom transform of
a Gaussian stationary sequence, under another dependency restriction, limit behavior of
canonical U -statistics was investigated in [43]. So, in this paper, other phenomena are
studied and the limit random variables are described as nonrandom transforms of the
classical multiple Itô–Wiener stochastic integrals.

Finally, we note that a normalized inner product squared of sums of weakly dependent
random variables taking values in a Hilbert space admits representation (1) in the case
d = 2. This particular case has been studied in detail (for example, see [116]). In this
case relation (6) follows from the corresponding central limit theorem.

We now introduce the main restrictions on parameters of the problem under consid-
eration. Denote by Fk

j the sigma-field of the events generated by the random variables
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Xj, . . . , Xk, j ≤ k. For every m ≥ 1 we define the coefficient

ψ(m) := sup

{∣∣∣∣ P(AB)|
P(A)P(B)

− 1

∣∣∣∣ ; A ∈ Fk
−∞, B ∈ F∞

k+m, P(A)P(B) > 0

}
. (8)

It is clear that the sequence {ψ(m)} is not increase. A stationary sequence of random
variables is called a sequence with ψ-mixing if lim

m→∞
ψ(m) = 0. Such dependency conditions

were studied in [13, 94, 111]. If a sequence of random variables satisfies ψ-mixing then it
satisfies ϕ-mixing as well.

We also note that, under ψ-mixing condition, relation (8) implies absolutely continuity
of any finite dimensional distribution with respect to the corresponding product-measure
generated by the marginal distribution. For instance, if the random variable X1 has the
[0, 1]-uniform distribution then the pair (X0, Xm) has an absolutely continuous distribu-
tion on the square [0, 1]2 with a density bounded by the constant 1+ψ(m). An analogous
statement for every finite family {Xi1 , . . . , Xim} is easily deduced by induction.

Main assumptions and definitions.
I. X = [0, 1].
II. The stationary sequence of random variables {Xi; i ∈ Z} satisfies ψ-mixing condi-

tion.
III. The random variable X0 has the [0, 1]-uniform distribution.

Notice that, in the univariate case, without loss of generality we can study the [0, 1]-
uniform sample distribution since by the corresponding quantile transform we can reduce
any sample distribution to the [0, 1]-uniform one. Thus, after the corresponding redeter-
mination of the kernel, we deal with a new V -statistic based on a stationary connected
observations with [0, 1]-uniform marginal distribution.

Denote by Fk(t, s) the joint distribution function of the couple (X0, Xk). Due to the
comment above every distribution function Fk(t, s) has a density which is denoted by
pk(t, s). By (8) these densities are uniformly bounded on the square [0, 1]2.

Introduce a centered Gaussian process with the covariance function

EY (t)Y (s) = min(t, s)− ts+
∑
k≥1

(Fk(t, s) + Fk(s, t)− 2ts) . (9)

where t, s ∈ [0, 1]. Notice that the definition (8) and summability condition of the coef-
ficients ψ(k) (it follows from condition (15) below) provide absolute summability of the
function series on the right-hand side of (9) as well as its uniform boundedness on [0, 1]2.

Gaussian processes with the covariance of the form (9) represent weak limits of the
sequence of the classical empirical processes Sn((−∞, t)) under some dependency condi-
tions of the random variables {Xk}. In particular, such weak convergence is valid if the
sequence {Xk} satisfies ϕ-mixing condition (hence, and for ψ-mixing sequences as well)
under the following restrictions on the corresponding coefficients: (see [12]):∑

k≥1

ψ1/2(k) <∞. (10)
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We need a result from [23] regarding definition of multiple stochastic integrals with
product-noises generated by increments of Gaussian processes like Y (t).

Introduce some notation we need. Let µ be a noise generated by increments of the
above-mentioned Gaussian process Y (t) on the interval [0, 1]:

µ((t, t+ δ]) = Y (t+ δ)− Y (t), µ([0, δ]) = Y (δ)− Y (0).

Consider the function space

S0 :=
{
f :

∑
1≤j1,...,jd≤d

Ef 2(X∗
j1
, . . . , X∗

jd
) <∞

}
,

where {X∗
j } are independent [0, 1]-uniformly distributed random variables. In this space

we define the combined L2-norm

‖f‖2 :=
∑

1≤j1,...,jd≤d

Ef 2(X∗
j1
, . . . , X∗

jd
). (11)

Notice that the normed function space S0 is embedded to the normed space S introduced
in [23]. This embedding follows from conditions I–III and from uniform boundedness (due
to (8) and condition II) on the square [0, 1]2 of the function

b(t, s) :=
∑
k≥1

|pk(t, s) + pk(s, t)− 2|

which plays a key role in the construction of the corresponding stochastic integral in [23].
Therefore, we immediately deduce from [23] the following statement.

Theorem 1. Let f ∈ S0. Then there exists a sequence of step functions of the form

fN(x1, . . . xd) :=
N∑

j1,...,jd=1

fj1,...,jd

d∏
k=1

I(xk ∈ Bjk
) (12)

such that, as N → ∞, they converge to f in the norm (11) of the function space S0,
where, for each k ≤ d, measurable (in the Lebesgue sense) subsets {Bjk

} form a partition
of the interval [0, 1]. Moreover, as N →∞, the sequence

η(fN) :=
N∑

j1,...,jd=1

fj1,...,jd

d∏
k=1

µ(Bjk
) (13)

mean-square converges to some limit random variable η(f) which does not depend on the
sequence fN .

The random variable η(f) is called d-fold stochastic integral of a function f with
respect to a noise generated by increments of a stochastic process Y (t):

η(f) :=

∫
Xd

f(t1, . . . , td) dY (t1) . . . dY (td). (14)
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We now formulate the main result of the paper.
Theorem 2. Let the conditions I–III be fulfilled and

Ψ(d) :=
∑
k≥1

ψ(k)k2d−2 <∞. (15)

Then, for any f ∈ S0,

Vn
d→→

∫
Xd

f(t1, . . . , td)dY (t1) . . . dY (td) (16)

as n→∞.

2. Proof of Theorem 2

First of all, we prove a few auxiliary statements. We need the following elementary
assertion ([77, 94]).

Lemma 1. Let random variables ξ and η are measurable with respect to the σ-field
Fk
−∞ and F∞

k+m (m ≥ 1) accordingly, and, moreover, E|ξ| <∞ and E|η| <∞. Then

|Eξη − EξEη| ≤ ψ(m)E|ξ|E|η|. (17)

Put Ĩk(A) := I(Xk ∈ A) − P (A), A ∈ A; hereinafter the marginal distribution P is
the Lebesgue measure on the interval [0, 1].

Lemma 2. For any natural numbers q and l1, . . . , lq as well as for any pair-wise
disjoint measurable subsets A1, . . . , Aq ⊆ [0, 1] the following inequality holds

E
∣∣Ĩ l1

k (A1) . . . Ĩ
lq
k (Aq)

∣∣ ≤ (q + 1)P (A1) . . . P (Aq). (18)

Proof. We will use induction on q.
1. The case q = 1. It is clear that

E
∣∣Ĩ l1

k (A)
∣∣ ≤ E|Ĩk(A)| ≤ 2P (A).

2. Assume that inequality (18) is true for some q ≥ 1. We then prove that it is true
for q + 1. We have

E
∣∣Ĩ l1

k (A1) . . . Ĩ
lq+1

k (Aq+1)
∣∣ ≤ E|Ĩk(A1) . . . Ĩk(Aq+1)|

≤ E|Ĩk(A1) . . . Ĩk(Aq)Ik(Aq+1)|+ P (Aq+1) E|Ĩk(A1) . . . Ĩk(Aq)|

= E|(−1)qP (A1) . . . P (Aq)Ik(Aq+1)|+ P (Aq+1) E|Ĩk(A1) . . . Ĩk(Aq)|

≤ P (A1) . . . P (Aq+1) + P (Aq+1)(q + 1)P (A1) . . . P (Aq).
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The next to last equality above is valid due to the fact that the subsets A1, . . . , Aq+1 are
pair-vise disjoint. The last inequality is valid due to the induction condition. Thus,

E
∣∣Ĩ l1

k (A1) . . . Ĩ
lq+1

k (Aq+1)
∣∣ ≤ (q + 2)P (A1) . . . P (Aq+1).

The Lemma is proved.
Lemma 3. Let q1 < · · · < qs be arbitrary natural numbers. Consider arbitrary s

collections of measurable subsets of the unit interval: {A1, . . . Aq1}, . . . , {Aqs−1+1, . . . Aqs},
where within every collection the subsets are pair-wise disjoint. Put

νki
:= Ĩ

lqi−1+1

ki
(Aqi−1+1) . . . Ĩ

lqi
ki

(Aqi
).

Then for any natural numbers k1 < · · · < ks and l1, . . . , lq1 , . . . , lqs there is the following
estimate:

E|νk1 . . . νks | ≤ C(ψ(1), s, qs)P (A1) . . . P (Aqs), (19)

where the constant C(·) depends only on the arguments indicated.
Proof. By (18) we have

E|νki
| ≤ (qi − qi−1 + 1)P (Aqi−1+1) . . .P(Aqi

).

It is clear that the random variables νki
satisfy ψ-mixing condition. Using (17) we then

obtain

E|νk1 . . . νks |≤
s−1∏
j=1

(1 + ψ(kj+1 − kj))E|νk1| . . .E|νks |≤C(ψ(1), s, qs)P (A1) . . . P (Aqs).

The Lemma is proved.

A key auxiliary statement to prove the main result is estimating mixed moments of
the form ESn(A1) . . . Sn(A2d).

Lemma 4. Let d be a natural number and l1, . . . , lq be a collection of natural numbers
such that l1 + · · · + lq = 2d, d ≥ 2 and let A1, . . . , Aq be pair-wise disjoint measurable
subsets of the interval [0, 1]. Under condition (15) the following estimate is valid:∣∣ESl1

n (A1) . . . S
lq
n (Aq)

∣∣ ≤ C(d,Ψ(d))P (A1) . . . P (Aq), (20)

where the constant C(·) depends only on the arguments indicated.
Proof. We start with the following simple estimate:∣∣ESl1

n (A1) . . . S
lq
n (Aq)

∣∣
≤ n−d

∑
k1,...,k2d≤n

|EĨk1(A1) . . . Ĩkl1
(A1) . . . Ĩk2d−lq+1

(Aq) . . . Ĩk2d
(Aq)|,

where the subscripts ki independently take all integers from 1 to n.
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The initial sum on the right-hand side of this inequality can be estimated by a finite
sum of the following diagonal subsums∑

k1<···<kr≤n

|Eνk1 . . . νkr |; (21)

we denoted here νki
:= Ĩ

s1(i)
ki

(A1) . . . Ĩ
sq(i)
ki

(Aq), where the integers sj(i) are defined by the
corresponding “diagonal subspace” of the subscripts in the initial multiple sum and they
satisfy the conditions 0 ≤ sj(i) ≤ lj for all i ≤ r and j ≤ q, as well as

∑
i≤r

∑
j≤q

sj(i) = 2d.

Let r ≤ d. Estimating by (19) each summand in (21) and taking the normalized factor
n−d and the number of summands in (21) into account we obtain the upper bound we
need.

In the sequel we do not indicate (say, as in Lemma 3) an obvious dependency of
constants C or Ci on parameters of the problem under consideration. At the same time
we use the subscripts only in the case when we need to distinguish some constants. Due
to monotonicity of the function Ψ(·) we can conclude that the final constant depends only
on the values d and Ψ(d).

Let now r > d. We call the random variable νki
short product if

∑
j≤q

sj(i) = 1, i. e.,

νki
= Ĩki

(Aqi
) for some qi ≤ q. Notice that if νki

is a short product then

Eνki
= 0

.
To evaluate the sum in (21) we now consider an auxiliary multiple sum of the form∑

kv1<···<kv2≤n

|Eνkv1
. . . νkv2

|, (22)

where 1 ≤ v1 < v2 ≤ r, and the value v := v2−v1+1 is the dimension of the corresponding
multiple sum and νki

are defined in (21). Introduce the following notation: ej(i) :=
min{1, sj(i)}. We first prove the following assertion: If, in the summands in (22), there
are at least m shorts products, where 0 ≤ m ≤ v, then the following upper bound is valid:∑

kv1<···<kv2≤n

|Eνkv1
. . . νkv2

| ≤ Cnv−m/2
∏
j≤q

P (Aj)
αj(v1,v2), (23)

where αj(v1, v2) :=
v2∑

i=v1

ej(i). Notice that the set-function αj(a, b) is additive on intervals

[a, b].
We prove this assertion by induction on m for all v1 and v2 such that v ≥ m and

v ≤ r.
Let m = 1, i. e., the expectations in (22) contain at least one short product. Denote

it by νkl
, where kv1 ≤ kl ≤ kv2 . First we note that, in terms of the notation above, we can
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reformulate the statement of Lemma 3 for the absolute moment of each random product
in (22) in such a way:

E|νkv1
. . . νkv2

| ≤ C
∏
j≤q

P (Aj)
αj(v1,v2).

Taking this estimate into account we evaluate by (17) and (19) every summand in (22)
setting ξ := νkv1

. . . νkl
η := νkl+1

. . . νkv2
:∑

kv1<···<kv2≤n

|Eνkv1
. . . νkv2

|

≤
∑

kv1<···<kv2≤n

ψ(kl+1 − kl)E|νkv1
. . . νkl

|E|νkl+1
. . . νkv2

|

+
∑

kv1<···<kl≤n

|Eνkv1
. . . νkl

|
∑

kl+1<···<kv2≤n

E|νkl+1
. . . νkv2

|

≤ C1n
v−1
∏
j≤q

P (Aj)
αj(v1,v2)

∑
i≥1

ψ(i)

+C2n
v2−l

∏
j≤q

P (Aj)
αj(l+1,v2)

∑
kv1<···<kl≤n

ψ(kl − kl−1)E|νk1 . . . νkl−1
|E|νkl

|

≤ (C3n
v−1 + C4n

v2−lnl−v1)
∏
j≤q

P (Aj)
αj(v1,v2) ≤ C5n

v−1/2
∏
j≤q

P (Aj)
αj(v1,v2),

which required. In this chain of relations the second inequality is valid due to (17) and
the equality Eνkl

= 0 as well.
We now assume that the upper bounds∑

kv1<···<kv2≤n

|Eνkv1
. . . νkv2

| ≤ Cnv−z/2
∏
j≤q

P (Aj)
αj(v1,v2)

are true for all integers z < m, where z is the minimal possible number of short products
in the expectations under consideration, and for all possible dimensions v : z ≤ v ≤ r
of multiple sums of the form (22), and, moreover, the moments in (22) contain at least
m shorts products. Denote these products by νkj1

, . . . , νkjm
. Consider m − 1 pairs of

neighboring products: νkjs
, νkjs+1

, s = 1, . . . ,m − 1 Denote by t1, . . . , tm−1 differences
between the subscripts in these pairs. We have∑

kv1<···<kv2≤n

|Eνkv1
. . . νkv2

| ≤ R1 + · · ·+Rm−1,

where the sum Rs is taken over the set of subscripts

Is := {(kv1 , . . . , kv2) : kv1 < · · · < kv2 ≤ n, ts = max ti}.
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We now estimate by (17) each summand in Rs setting

Rs ≤
∑
Is

ψ(kjs+1 − kjs)E|νkv1
. . . νkjs

|E|νkjs+1
. . . νkv2

|

+
∑

kv1<···<kjs

|Eνkv1
. . . νkjs

|
∑

kjs+1<···<kv2

|Eνkjs+1
. . . νkv2

|. (24)

Consider the first sum on the right-hand side of (24). By (19) we have∑
Is

ψ(kjs+1 − kjs)E|νkv1
. . . νkjs

|E|νkjs+1
. . . νkv2

| ≤ C
∏
j≤q

P (Aj)
αj(v1,v2)

∑
Is

ψ(ts)

≤ C
∏
j≤q

P (Aj)
αj(v1,v2)nv−(m−1)

∑
ti: ti≤ts

ψ(ts)

≤ C
∏
j≤q

P (Aj)
αj(v1,v2)nv−m+1

∑
k

ψ(k)km−2

≤ CΨ(m/2)nv−m+1 ≤ C1n
v−m/2

∏
j≤q

P (Aj)
αj(v1,v2).

Notice that the last inequality is valid for m ≥ 2.
Consider now the product of the sums on the right-hand side of (24). Let the sum-

mands of the first sum contain m1 short products indicated above, and, in the summands
of the second sum, there are m−m1 short products indicated above. By the construction
we have 1 ≤ m1 ≤ m − 1. Hence, for these sums, we can use the induction condition.
Finally, we have ∑

kv1<···<kjs

|Eνkv1
. . . νkjs

|
∑

kjs+1<···<kv2

|Eνkjs+1
. . . νkv2

|

≤ Cnjs−m1/2nv−js−(m−m1)/2
∏
j≤q

P (Aj)
αj(v1,v2) ≤ C1n

v−m/2
∏
j≤q

P (Aj)
αj(v1,v2),

which required. Thus, for Rs, we obtained the upper bound we need. It implies the
estimate in (23). The induction is over.

To finish the proof of Lemma 4 we should note that, first, by the definition, αj(1, r) ≥ 1
for all j ≤ q, and, second, in the case r > d, the summands in (21) contain at least 2(r−d)
short products. So, we should put in (23) v1 := 1, v2 := r, m := 2(r − d) and v := r. It
means that, for the sum in (21), the following upper bound is valid:∑

k1<···<kr≤n

|Eνk1 . . . νkr | ≤ Cnd
∏
j≤q

P (Aj)
αj(1,r) ≤ CndP (A1) . . . P (Aq).

The Lemma is proved.
R e m a r k. Under a stronger restriction on the coefficient ψ(·) the statement of

Lemma 4 is also contained in [111] (in addition, see [77]). However, the proof in [111] was
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carried out only in the case d = 2, and the corresponding constant in the upper bound in
[111] contains the factor (1+ψ(0))2. It is easy to see that if the marginal distribution has
a continuous component (for example, if it is the Lebesgue measure on [0, 1]) or infinitely
many atoms then ψ(0) = ∞. To verify this property we may put in (8) A = B, where A is
an event from the σ-field F0

0 . So, under the above-mentioned restrictions on the marginal
P

ψ(0) ≥ sup
A∈F0

0 , P (A)>0

(1/P (A)− 1) = ∞.

We now study the integral sums for the integral representation of V -statistics in (5),
where we substitute the step functions fN for the initial kernel:

In
N :=

∑
j1,...,jd≤N

fj1,...,jd

d∏
k=1

Sn(Bjk
) =

∫
Xd

fN(x1, . . . , xd)
d∏

k=1

Sn(dxk). (25)

Lemma 5. Let step functions of the form (12) converge to f in the norm of the func-
tion space S0. Then the random variables (25) mean-square converge to the corresponding
Von Mises statistic (5) uniformly on n.

Proof It suffices to prove the Cauchy property of the sequence {In
N} uniformly on n as

N →∞.
Put fM,N(x1, . . . , xd) := fN(x1, . . . , xd)− fM(x1, . . . , xd). Observe that the step func-

tions fN(x1, . . . , xd) and fM(x1, . . . , xd) can be represented as finite linear combinations
of indicator-type functions of the minimal collections of pair-wise disjoint subsets gener-
ated both families of subsets in the definition of fN and fM . Denote these subsets by
the symbols Aj. We also denote by fN,M

j1,...,jd
the corresponding values of the step functions

fM,N(x1, . . . , xd) on elements of the above-mentioned universal partition. We then have

E(In
N − In

M)2 = E

( ∫
Xd

fM,N(x1, . . . , xd)
d∏

k=1

Sn(dxk)

)2

=
∑

j1,...,j2d

fN,M
j1,...,jd

fN,M
jd+1,...,j2d

ESn(Aj1) . . . Sn(Aj2d
)

≤ C
∑

i1,...,i2d≤d

E|fM,N(X∗
i1
, . . . , X∗

id
)fM,N(X∗

id+1
, . . . , X∗

i2d
)|.

Notice that the last inequality follows from (20) since the mixed moment
ESn(Aj1) . . . Sn(Aj2d

) can be represented in the form as in Lemma 4 (taking multiplicities
of subscripts jk into account). Using the Cauchy —Bunyakowsky inequality as well as
the elementary evaluation of the sum on the right-hand side of the previous inequality we
obtain the upper bound

E
(
In
N − In

M

)2 ≤ C‖fM,N‖2 = C‖fM − fN‖2.
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The right-hand side of the last inequality does not depend on n and vanishes asM,N →∞
since, by the condition of the Theorem, the sequence fN converges in the norm of the
function space S0. Hence it is a Cauchy sequence. Thus we proved the Cauchy property
(in the mean-square norm) of the sequence {In

N} uniformly on n. So, we proved the
uniform mean-square convergence of the integral sums (based on the empirical measure)
to the corresponding stochastic integral, i.e., to Von Mises statistic of the form (5). The
Lemma is proved.

Lemma 6. The sequence of random variables In
N introduced in (25) converges in

distribution to the random variable η(fN) in (13) as n→∞.
Proof. This assertion is a direct consequence of the multivariate central limit theorem

for finite-dimensional distributions of the standard empirical processes based on stationary
connected observations with ϕ- or ψ-mixing. Notice that this multivariate theorem follows
from the univariate version for stationary sequences of weakly dependent random variables
if we take the classical Cramér—Wold method into account. This method allows us to
reduce the multivariate case to the univariate one (for example, see [12, 94]). Notice also
that to apply the multivariate central limit theorem for empirical processes we need the
condition ∑

k≥1

ψ1/2(k) <∞

which follows from condition (15) in the case d = 2, due to the Cauchy—Bunyakowsky
inequality: ∑

k≥1

ψ1/2(k) ≤
∑
k≥1

ψ(k)k2
∑
k≥1

k−2.

On the other hand, this condition and Lemma 1 provide fulfillment of the conditions of
Theorem 6 in [94] (the central limit theorem for stationary sequences of numerical random
variables)

The next elementary assertion is contained, in fact, in [12]. We formulate it in a more
convenient form.

Lemma 7Let ξ, ξ1, ξ2, . . . be a sequence of random variables taking values in an
arbitrary measurable space (X,B) and defined on a probability space (Ω,A,P). Let

F := {F} be a family of B-measurable functionals in X such that F (ξn)
d→ →F (ξ)

as n → ∞. Assume that there exist numerical random variables η, η1, η2, . . . defined on
(Ω,A,P) such that for some sequence Fk ∈ F , as k → ∞, the following relations are
valid:

(a) Fk(ξ) → η in the mean-square norm,
(b) Fk(ξn) → ηn in the mean-square norm uniformly on n.

Then ηn
d→→η.

Proof of Theorem 2. We set in the notation of Lemma 7

η := η(f) =

∫
Xd

f(t1, . . . , td) dY (t1) . . . dY (td), ηn := Vn,

ξ := µ(·), Fk(ξ) := η(fk), ξn := Sn(·), Fk(ξn) := In
k .
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We consider F as the class of all multilinear transforms of the form (25) which are de-
fined of all elementary stochastic measures. Without loss of generality we assume the
all the random variables under consideration are defined on a common probability space
(for instance, we may assume that the random process Y (t) and the sequence {Xi} are
independent). Convergence (a) follows from Theorem 1 and convergence (b) follows from

Lemma 5. Finally, the weak convergence F (ξn)
d→→F (ξ) was proved in Lemma 6.

Thus, Theorem 2 is proved.
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12 The functional limit theorem for the canonical

U-processes based on dependent trials

1. Main Definitions and Notions

From the mid-1950s the functional limit theorem is available, i.e., the invariance prin-
ciple for the partial sum processes based on the sequences of independent and weakly
dependent random variables (for example, see [12, 31, 53]). In the 1980s the limit theory
(including the invariance principle) was created for a more general object, the so-called
U -statistics and Von Mises’ statistics (V -statistics) of arbitrary order which are based on
independent trials (for example, see [42, 44, 104, 109]). To study the limit behavior of
noncanonical U - and V -statistics, as a rule we reduce the problems to the asymptotic anal-
ysis of the sums of random variables. But in the case of canonical statistics, the study is
much complicated. For independent observations, the limit distribution of such statistics
can be represented as the distribution of a polynomial of infinite sequence of independent
Gaussian random variables (see [109]) or as the distribution of a multiple stochastic inte-
gral with the integrating Wiener product-measure (see [44]). The respective weak limits
in the functional limit theorem can be represented as either the analogous polynomials of
independent Wiener processes (see [104]) or a one-parameter family of multiple stochastic
integrals with the integrating Gaussian product-measure generated by the so-called Kiefer
two-parametric process (see [42]).

In the case of weakly dependent observations, the asymptotic behavior of canonical
U - and V -statistics is essentially complicated in comparison with the case of independent
observations. First of all, this remark relates to description of the limit distribution as
a multiple stochastic integral (see [24]). In the case of dependent trials, the approach
is worth noting that is based on the orthogonal series technique (see [25, 109]) that was
firstly applied to independent trials and canonical statistics of second order in 1947 in
the classical paper by Von Mises [89]. Later this result was extended to the canonical
statistics of arbitrary order (see [109]).

Recall some principal points of the above-mentioned approach in the case of weakly
dependent observations under φ-mixing condition (for detail, see [25]).

Let X1, X2, . . . be a stationary sequence of random variables defined on some proba-
bility space (Ω, F,P). Denote by F the distribution of X1. Consider f ∈ L2(R

m, Fm),
where Fm is the product-measure with marginal F . Then the following series expansion
is valid (see [11]):

f(t1, . . . , tm) =
∞∑

k1=0

· · ·
∞∑

km=0

fk1...kmek1(t1) . . . ekm(tm), (1)

and this series converges in L2(R
m, Fm); here {ekj

} is an orthonormal basis for L2(R, F )
and, without loss of generality, we can assume that e0 ≡ 1. Then Eej(X1) = 0, j ≥ 1, by
orthogonality with e0, and Eei(X1)ej(X1) = δi,j for all i 6= j.

Denote by {X∗
i } the sequence of independent copies of X1. If the expansion co-

efficients {fk1...km} are absolutely summable then, by B. Levi’s theorem and the simple
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estimate E|ek1(X
∗
1 ) . . . ekm(X∗

m)| ≤ 1, the series in (1) almost surely converges after re-
placement of the nonrandom arguments t1, . . . , tm with the random variables X∗

1 , . . . , X
∗
m.

Definition 1. A function f(t1, . . . , tm) ∈ L2(R
m, Fm) is called canonical (or degenerate)

if
Ef(y1, . . . , yi−1, X1, yi+1, . . . , ym) = 0

for all yj ∈ R and i ∈ {1, . . . ,m}, where the cases i = 1 and i = m correspond to the
extreme positions of the coordinate X1 of the vector argument of f .

Note the important property of canonical functions (see [25]):
Proposition 1 If f(t1, . . . , tm) is canonical then e0 is absent in (1), i.e.,

f(t1, . . . , tm) =
∞∑

k1=1

· · ·
∞∑

km=1

fk1...kmek1(t1) . . . ekm(tm). (2)

Define the canonical U-statistic of a sample of size n from a stationary sequence of
observations:

Un := n−m/2
∑

1≤i1 6=

· · ·
∑

6=im≤n

f(Xi1 , . . . , Xim),

where f is canonical.
In the chapter we study the sequence of U -statistics

Un(t) := n−m/2
∑

1≤i1 6=

· · ·
∑

6=im≤[nt]

f(Xi1 , . . . , Xim), t ∈ [0, 1],

as a stochastic process in D[0, 1] which is called a U-process.
The asymptotic behavior of canonical U -statistics has been thoroughly studied. For

instance, in the case of independent observations it was proved in [109] that

Un
d→

∞∑
k1=0

· · ·
∞∑

km=0

fk1...km

∞∏
j=1

Hvj(k1,...,km)(τj), (3)

where {τj} is a sequence of independent random variables having the standard normal
distribution, vj(i1, . . . , im) is the number of the subscripts among i1, . . . , im that equal j,
and Hk(x) are the classical Hermite polynomials defined by the formula

Hk(x) = (−1)k exp(x2/2)
dk

dxk
exp(−x2/2), k ≥ 0.

In [25], an analog of (3) was obtained for observations under α- and ϕ-mixing conditions.
In the chapter we study only stationary sequences {Xi} satisfying ϕ-mixing. Recall the

corresponding definition. Denote by Mk
j , with j ≤ k, the σ-field of the events generated

by Xj, . . . , Xk.
Definition 2. A sequence of random variables X1, X2, . . . satisfies ϕ-mixing if

ϕ(i) := sup
k≥1

sup
A∈Mk

1 B∈M∞
k+1P(A)>0

|P(AB)−P(A)P(B)|
P(A)

→ 0 as i→∞.
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In the sequel we will assume that

∞∑
k=1

ϕ(k)1/2 <∞.

Notice that this well-known condition provides the central limit theorem for the corre-
sponding stationary sequence of random variables (for example, see [12]).

To study dependent observations, the principle difficulty occurs: After replacement of
the nonrandom arguments (t1, . . . , tm) with the dependent random variables (X1, . . . , Xm),
equality in (2) may be false with positive probability (see the corresponding counterex-
ample in [25]). Introduce some restriction on the joint distributions of the dependent
random variables {Xi}, which provides possibility of the above-mentioned replacement in
(2) of nonrandom arguments with random arguments (see [25]):

(AC) For every collection of pairwise distinct subscripts (j1, . . . , jm) the distribution of
the random vector (Xj1 , . . . , Xjm) is absolutely continuous with respect to the distribution
of (X∗

1 , . . . , X
∗
m).

For instance, Condition (AC) is fulfilled for any stationary sequence under the so-called
ψ-mixing (see [24, 25]). Moreover, it is easy to define some sequence of moving averages
based on a sequence of [0, 1]-uniformly distributed independent random variables such
that m elements from the sequence of moving averages have bounded density of the joint
distribution, which means the fulfilment of Condition (AC).

As noted above, the condition
∞∑

k1=1

· · ·
∞∑

km=1

|fk1...km| <∞ (4)

implies convergence of (2) almost surely with respect to the distribution of (X∗
1 , . . . , X

∗
m).

Hence, under Condition (AC), the convergence is valid almost surely with respect to the
distribution of the random vector (Xj1 , . . . , Xjm). In other words, under Condition (AC),
we can substitute in (2) the random variables Xj1 , . . . , Xjm for nonrandom arguments
t1, . . . , tm for all pairwise distinct subscripts j1, . . . , jm.

Thus, under the fulfilment of Condition (AC) and (4), every U -statistic can be repre-
sented as the following series converging with probability 1:

Un(t) = n−m/2
∑

1≤i1 6=

· · ·
∑

6=im≤[nt]

∞∑
k1=0

· · ·
∞∑

km=0

fk1...kmek1(Xi1) . . . ekm(Xim)

= n−m/2

∞∑
k1=0

· · ·
∞∑

km=0

fk1...km

∑
1≤i1 6=

· · ·
∑

6=im≤[nt]

ek1(Xi1) . . . ekm(Xim).

Further arguments are quite similar to those in the case of independent observations.
They are reduced to sequential extraction of statistics with splitting kernels from the
multiple sum on the right-hand side of the identity above. Indeed, the expression

n−m/2
∑

1≤i1 6=

· · ·
∑

6=im≤[nt]

ek1(Xi1) . . . ekm(Xim)
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is represented as a linear combination of products of the following values:

n−1/2

[nt]∑
i=1

ek(Xi), n−1

[nt]∑
i=1

ek1(Xi)ek2(Xi), . . . , n
−l/2

[nt]∑
i=1

ek1(Xi) · · · ekl
(Xi).

The proof is pure combinatoric and does not depend on the joint distribution of {Xi}
(see [109]).

Below we presume that the basis {ej(t)} in (2) satisfies the following additional re-
striction to be of use in proving various limit theorems for dependent random variables
(see [25]):

sup
i

E|ei(X1)|m <∞. (5)

Introduce a sequence of dependent Wiener processes {wi(t)} with joint covariance

Ewk(t1)wk(t2) = min(t1, t2)

(
1 + 2

∞∑
j=1

Eek(X1)ek(Xj+1)

)
; (6)

Ewk(t1)wl(t2) = min(t1, t2)

( ∞∑
j=1

Eek(X1)el(Xj+1) +
∞∑

j=1

Eel(X1)ek(Xj+1)

)
, l 6= k.

Finiteness of the series in (6) follows from the above-mentioned condition on the mixing
coefficient (see [12]). The sequence of dependent Wiener processes {wi(t)} with joint co-
variance (6) exists due to the Kolmogorov extension theorem (for example, see [27, 31])
and it will play the role of the weak limit as n → ∞ for the sequence of stochastic pro-
cesses

{
n−1/2

∑[nt]
j=1 ei(Xj); i ≥ 1

}
. Notice that, for every fixed N , the multidimensional

stochastic process
{
n−1/2

∑[nt]
j=1 ei(Xj); 1 ≤ i ≤ N

}
C-converges to {wi(t); 1 ≤ i ≤ N} as

n → ∞ by the corresponding invariance principle. Note that we consider the case when
the coefficient of min(t1, t2) in (6) vanishes. In other words, it is convenient for us to
interpret the zero function on [0, 1] as a Wiener process with zero variance. It is worth
noting that the class of all degenerate distributions is a set of limit points for the class of
Gaussian distributions in the weak convergence topology.

Recall that we say about C-convergence of k-dimensional stochastic processes {ξn(t)}
having the paths in Dk[0, 1] with the Skorokhod product-topology, to an a.s. continuous
process ξ(t) if, for every measurable functional g(·) continuous at the points of Ck[0, 1] in
the sup-norm, the sequence g(ξn) converges in distribution to the random variable g(ξ)
(see [28]).

Closing this section, we formulate some important statement that is an analog of the
classical Rosenthal’s moment inequality for sums of independent random variables.

Theorem 1 [119] Let {ξi} be a sequence of centered random variables with finite
moments of order t ≥ 2 satisfying ϕ-mixing, and moreover ϕ :=

∑∞
k=1 ϕ

1/2(2k) < ∞.
Then, for t ≥ 2,

E max
1≤k≤n

|Sk|t ≤ (tc(ϕ))t

(
n∑

i=1

E|ξi|t +

( n∑
i=1

E|ξi|2
)t/2

)
,
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where the constant c(ϕ) depends only on ϕ.

2. The Functional Limit Theorem for U-Processes

Introduce the random process

U(t) :=
∞∑

k1=1

· · ·
∞∑

km=1

fk1...kmt
m/2

∞∏
j=1

Hvj(k1,...,km)(t
−1/2wj(t)). (7)

Theorem 2Let a stationary sequence of random variables {Xi} satisfy ϕ-mixing, with
the restrictions (5) and

∑∞
k=1 ϕ(k)1/2 <∞. For the canonical kernel f ∈ L2(R

m, Fm), let
(4) and (AC) be fulfilled.

Then, as n→∞, the sequence of stochastic processes Un(t) C-converges to the stochas-
tic process U(t) defined in (7), and the corresponding multiple series a.s. converges for
every t ∈ [0, 1], and moreover it is continuous in t.

Proof. To prove the C-convergence we need to verify convergence of the finite-
dimensional distributions and the property of density of the family of prelimit distributions
with respect to the uniform topology (for example, see [12]).

I. Convergence of the finite-dimensional distributions. We prove that, as
n→∞,

(Un(t1), . . . , Un(tq))
d→ (U(t1), . . . , U(tq)),

where t1, . . . , tq is an arbitrary finite collection of points from [0, 1].
Introduce the corresponding partial sum in the definition of Un(t):

UN
n (t) := n−m/2

N∑
k1=1

· · ·
N∑

km=1

fk1...km

∑
1≤i1 6=

· · ·
∑

6=im≤[nt]

ek1(Xi1) . . . ekm(Xim),

and the analogous partial sum for U(t):

UN(t) :=
N∑

k1=1

· · ·
N∑

km=1

fk1...kmt
m/2

∞∏
j=1

Hvj(k1,...,km)(t
−1/2wj(t)).

Firstly, given a natural N , we establish the convergence(
UN

n (t1), . . . , U
N
n (tq)

) d→ (UN(t1), . . . , U
N(tq)).

Consider the statistic

UN
n (t) := n−m/2

N∑
k1=1

· · ·
N∑

km=1

fk1...km

∑
1≤i1 6=

· · ·
∑

6=im≤[nt]

ek1(Xi1) . . . ekm(Xim)

that is represented as a finite linear combination of U -statistics of the form

UN
n (ek1 , . . . , ekm)(t) := n−m/2

∑
1≤i1 6=

· · ·
∑

6=im≤[nt]

ek1(Xi1) . . . ekm(Xim).
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Further, by the arguments similar to those in the case of independent observations,
we represent the last U -statistic as a sum of Von Mises’ statistics where summation is
taken over all different collections (not necessarily pairwise distinct) of the subscripts
j1, . . . , jm. Next, changing the order of summation, we reduce the problem to studying
the polynomials of the following stochastic processes:

n−1/2

[nt]∑
i=1

ek(Xi), n
−1

[nt]∑
i=1

ek1(Xi)ek2(Xi), . . . , n
−l/2

[nt]∑
i=1

ek1(Xi) · · · ekl
(Xi).

For all 2 < l ≤ m, as n→∞, these sums converge in probability to 0 since, by condition
(5) and Hölder’s inequality, the value E|ek1(Xi) · · · ekl

(Xi)| is finite. Therefore, by the law
of large numbers for weakly dependent random variables, we have

n−1

[nt]∑
i=1

ek1(Xi) · · · ekl
(Xi)

p→ tEek1(Xi) · · · ekl
(Xi).

Hence, for l > 2, we obtain

n−l/2

[nt]∑
i=1

ek1(Xi) · · · ekl
(Xi)

p→ 0

for all t ∈ [0, 1].
Thus, the summands containing such sums as factors, also converge in probability

to zero. If l = 2 then we can also apply the law of large numbers to the sums under
consideration. By the orthonormality of the basis, the limits of these values equal tδk1,k2 ,
where δk1,k2 is the Kronecker delta. Thus, the limiting result for the partial sums under
consideration is similar to that in the case of independent observations (see [4]):

UN
n (t)

d→ UN(t) =
N∑

k1=1

· · ·
N∑

km=1

fk1...kmt
m/2

∞∏
j=1

Hvj(k1,...,km)(t
−1/2wj(t)).

From here we see that, as n→∞,(
UN

n (t1), . . . , U
N
n (tq)

) d→ (UN(t1), . . . , U
N(tq)),

where the dependent Wiener processes {wj(t)} have joint Gaussian distributions with
covariances defined in (6). This assertion is a direct consequence of the multivariate
central limit theorem for stationary sequences of random variables with mixing since, in
this case, we can use the classical Cramér–Wold method (see [12]).

II. Density of the distributions of U-processes. We need to prove that

lim
∆→0

lim sup
n→∞

P (sup
t
|Un(t+ ∆)− Un(t)| > c) = 0.
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First we prove the analogous assertion for UN
n :

lim
∆→0

lim sup
n→∞

P
(
sup

t

∣∣UN
n (t+ ∆)− UN

n (t)
∣∣ > c

)
= 0.

If the density property is valid for every stochastic process (distribution) from a finite
collection then it holds for the sum of these processes. Therefore, we study this property
separately for every stochastic process which forms the truncated statistic UN

n . Note that
the statistic

UN
n (t) = n−m/2

N∑
k1=0

· · ·
N∑

km=0

∑
1≤i1 6=

· · ·
∑

6=im≤[nt]

fk1...kmek1(Xi1) . . . ekm(Xim)

consists of finitely many sums of the form

Sm(t) ≡ Sn(m, k1, . . . , km)(t) := n−m/2
∑

1≤i1 6=

· · ·
∑

6=im≤[nt]

ek1(Xi1) . . . ekm(Xim),

where the indices 1 ≤ k1, . . . , km ≤ N are arbitrary.
Notice that E supt |Sm(t)| < C(m) <∞. Indeed, adding and subtracting the diagonal

elements of the sum Sm(t), we obtain a finite linear combination of the following products:

S
(1)
1 (t) . . . S

(j)
1 (t), 1 ≤ j ≤ m,

where S
(j)
1 (t) = n−1/2

∑
i≤[nt] ej(Xi). Using Theorem 1, we have

E sup
t

∣∣S(1)
1 (t) . . . S

(j)
1 (t)

∣∣ ≤ (E sup
t

∣∣S(1)
1 (t)

∣∣j . . .E sup
t

∣∣S(j)
1 (t)

∣∣j)1/j
<∞.

Prove the density for the family of the distributions of Sn(m, . . . )(t) by induction on
m. For m = 1, the statement is contained in [12].

Assume that the statement was proved for all m ≤ l. Now, prove this assertion for
m = l + 1. Use the identity

n−(l+1)/2
∑

1≤i1 6=

· · ·
∑

6=il+1≤[nt]

ek1(Xi1) . . . ekl
(Xil)ekl+1

(Xil+1
)

= n−l/2
( ∑

1≤i1 6=

· · ·
∑

6=il≤[nt]

ek1(Xi1) . . . ekl
(Xil)

)
n−1/2

[nt]∑
il+1=1

ekl+1
(Xil+1

)

−n−1

[nt]∑
i=1

ek1(Xi)ekl+1
(Xi)n

−(l−1)/2
∑

1≤i2 6=

· · ·
∑

6=il≤[nt]

ek2(Xi2) . . . ekl
(Xil)− · · ·

−n−1

[nt]∑
i=1

ekl
(Xi)ekl+1

(Xi)n
−(l−1)/2

∑
1≤i1 6=

· · ·
∑

6=il−1≤[nt]

ek1(Xi1) . . . ekl−1
(Xil−1

).

123



It is more convenient to rewrite this relation as follows:

Sn(l + 1, k1, . . . , kl+1)(t) = Sn(l, k1, . . . , kl)(t)Sn(1, kl+1)(t)

−Sn(l − 1, k2, . . . , kl)θ
1
n(t)− · · · − Sn(l − 1, k1, . . . , kl−1)θ

l
n(t), (8)

where θj
n(t) = n−1

∑[nt]
i=1 ekj

(Xi)ekl+1
(Xi) and by definition S0(t) ≡ 1.

First we note that, using (8), one can establish by induction on l the uniform
stochastic boundedness of the stochastic processes Sn(l, k1, . . . , kl)(t), i.e., we mean the
relation

lim
K→∞

P( sup
0≤t≤1

|Sn(l, k1, . . . , kl)(t)| > K) = 0.

The induction base (l = 1) is straightforward from Theorem 1 and the simple relation
(the law of large numbers for weakly dependent identically distributed random variables)

sup
0≤t≤1

∣∣θj
n(t)

∣∣ ≤ n−1

n∑
i=1

|ekj
(Xi)ekl+1

(Xi)|
p→ E|ekj

(X1)ekl+1
(X1)| <∞ as n→∞. (9)

Now, prove the density of the distributions (for all n) of all pairwise products of the
stochastic processes in (8) by induction on l once again. For example, consider the
product Sn(l, ·)(t)Sn(1, ·)(t) (the other pairwise products in (8) are studied similarly). In
view of the elementary representation

Sl(t+ ∆)S1(t+ ∆)− Sl(t)S1(t) = (Sl(t+ ∆)− Sl(t))S1(t+ ∆) + Sl(t)(S1(t+ ∆)− S1(t)),

we can conclude that the density property for the product of two processes is valid if this
property is fulfilled for each of these two processes, and moreover, each of these processes
is stochastically bounded uniformly in t ∈ [0, 1] which was proved. The induction base
follows from Theorem 1. The induction step from l to l + 1 is immediate from (8) and
the fact that the stochastic processes n1/2θj

n(t) are the classical partial sum processes (the
so-called random broken lines) for which, under the above conditions, the density of their
distributions has been proved (see [12]).

Estimate the first moment of the uniform norm of the tail statistic (multiple series):

E sup
t

∣∣Un(t)− UN
n (t)

∣∣ = E sup
t

∣∣∣ ∑
max(kj)≥N+1

. . .
∑

fk1...kmSn(m, . . . )(t)
∣∣∣

≤
∑

max(kj)≥N+1

· · ·
∑

|fk1...km|E sup
t
|Sn(m, . . . )(t)| ≤ C(m)

∞∑
max(kj)=N+1

|fk1...km|.

Thus, for every ε > 0, by the relation
∑∞

k1=1 · · ·
∑∞

km=1 |fk1...km| < ∞, there exists a
natural N such that ∑

max(kj)≥N+1

. . .
∑

|fk1...km| < ε.
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Then the following is valid:

P (sup
t
|Un(t+ ∆)− Un(t)| > c)

≤ P
(
sup

t

∣∣UN
n (t+ ∆)− UN

n (t)
∣∣+ 2 sup

t

∣∣Un(t)− UN
n (t)

∣∣ > c
)

≤ P
(
sup

t

∣∣UN
n (t+ ∆)− UN

n (t)
∣∣ > c/3

)
+ P

(
sup

t

∣∣Un(t)− UN
n (t)

∣∣ > c/3
)

≤ P
(
sup

t

∣∣UN
n (t+ ∆)− UN

n (t)
∣∣ > c/3

)
+ 3c−1E sup

t

∣∣Un(t)− UN
n (t)

∣∣
≤ P

(
sup

t

∣∣UN
n (t+ ∆)− UN

n (t)
∣∣ > c/3

)
+ 3c−1εC(m).

Hence,
lim
∆→0

lim sup
n→∞

P (sup
t
|Un(t+ ∆)− Un(t)| > c) ≤ 3c−1εC(m).

Since ε is arbitrary, we conclude that

lim
∆→0

lim sup
n→∞

P (sup
t
|Un(t+ ∆)− Un(t)| > c) = 0.

We should only prove a.s. continuity of the limit stochastic process U(t). Since, for
all j, the relation

E|wj(t+ δ)− wj(t)|4 = E|wj(δ)|4 = Cδ2

is valid then, for all l ≤ m, we obtain

E
∣∣wl

j(t+ δ)− wl
j(t)
∣∣4 = E|wj(t+ δ)− wj(t)|4

∣∣wl−1
j (t+ δ) + · · ·+ wl−1

j (t)
∣∣4

≤
(
E|wj(t+ δ)− wj(t)|8E

∣∣wl−1
j (t+ δ) + · · ·+ wl−1

j (t)
∣∣8)1/2 ≤ C1(δ

4)1/2 = C1δ
2. (10)

It is clear that multiplication of the stochastic process wl
j(t) by any nonrandom Lip-

schitz function cannot essentially change (10) which is true up to a constant factor
on the right-hand side of this inequality. So, multiplying these stochastic processes by
tk, t ∈ [0, 1] (in the representation of U -processes under consideration, there are only the
factors tk with integer k ≥ 0), we obtain some new stochastic processes that satisfy the
above-mentioned estimate in (10). Summing the values tkwl

j(t) with the corresponding

scalar coefficients, we obtain the expression tvj(k1,...,km)/2Hvj(k1,...,km)(t
−1/2wj(t)). Since, for

all j, k1, . . . , km, the order of polynomial vj(k1, . . . , km) does not exceed m, there is a
constant C such that

E|(t+ δ)vj(k1,...,km)/2Hvj(k1,...,km)((t+ δ)−1/2wj(t+ δ))

−tvj(k1,...,km)/2Hvj(k1,...,km)(t
−1/2wj(t))|4 ≤ C2δ

2.

For the product of finitely many these processes, we then have

Yk1,...,km(t) = tm/2

∞∏
j=1

Hvj(k1,...,km)(t
−1/2wj(t)). (10)
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By finiteness of the moments

E|tvj(k1,...,km)/2Hvj(k1,...,km)(t
−1/2wj(t))|l, l ≤ m,

and Hölder’s inequality, we have

E|Yk1,...,km(t+ δ)− Yk1,...,km(t)|4 ≤ C3δ
2.

Notice that, in the infinite product in (10), there is only a finite collection of the factors
that do not equal to 1 since, for j > max ki, all factors of this product are equal to 1 (i.e.,
to the first Hermit polynomial). Denote

∆0 = E|U(t+ δ)− U(t)|4 = E

∣∣∣∣ ∞∑
k1=1

· · ·
∞∑

km=1

fk1...km(Yk1,...,km(t+ δ)− Yk1,...,km(t))

∣∣∣∣4.
For convenience, we replace the multi-index (k1, . . . , km) with the symbol k̃ and denote

4Yk̃ := Yk̃(t+ δ)− Yk̃(t).

Applying Hölder’s inequality, we finally obtain

∆0 ≤
∑
k̃1

∑
k̃2

∑
k̃3

∑
k̃4

|fk̃1
fk̃2
fk̃3
fk̃4
|E|4Yk̃1

4Yk̃2
4Yk̃3

4Yk̃4
|

≤
∑
k̃1

∑
k̃2

∑
k̃3

∑
k̃4

|fk̃1
fk̃2
fk̃3
fk̃4
|(E|4Yk̃1

|4E|4Yk̃2
|4E|4Yk̃3

|4E|4Yk̃4
|4)1/4

≤
∑
k̃1

∑
k̃2

∑
k̃3

∑
k̃4

|fk̃1
fk̃2
fk̃3
fk̃4
|Kδ2 = Kδ2

( ∞∑
k1=1

· · ·
∞∑

km=1

|fk1...km|
)4

.

So, by the classical Kolmogorov’s criterion (see [1]), the a.s. continuity of U(t) is imme-
diate from here.

The theorem is proven.
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13 Gaussian approximation to the partial sum pro-

cesses of moving averages

1. Introduction

We study approximation to the partial sum processes of moving averages of inde-
pendent identically distributed (i.i.d.) observations to some Gaussian processes. The
approximation of this kind is studied for a long time (for example, see [35, 64]) and is
justified by the explicit applied character of the models under consideration. Note that
the moving averages mentioned below and based on a sequence of i.i.d. random variables
comprise a constructively defined sequence of stationary connected random variables. In
general, the inter dependence of these random variables may be strong enough. In par-
ticular, for moving averages, the classical strong (or uniformly strong) mixing condition
may fail here (see [64, 114]).

In [76] some approximation was studied to the above-mentioned partial sum processes
by a fractional Brownian motions with Hurst parameters H > 1/2, where some rates
of convergence were obtained in Donsker’s and Strassen’s invariance principles. In this
paper we obtain analogous convergence rates for all 0 < H < 1 in the above-mentioned
invariance principles. Moreover, in Strassen’s invariance principle we slightly extend the
class of limit Gaussian processes. Also, for H < 1/2, in Donsker’s invariance principle we
weaken the moment restrictions on the initial sequence of i.i.d. random variables in [35]
for convergence in distribution of the normalized partial sum processes to a fractional
Brownian motion.

Let {ξk; k ∈ Z} be i.i.d. random variables with mean zero and variance one, where Z
is the set of all integer numbers. Consider the sequence of random variables {Xj; j ∈ Z}
defined by the formula

Xj =
∞∑

k=−∞

aj−kξk; (1)

these random variables are called moving averages of the initial sequence {ξk; k ∈ Z} (see
[113]). The following well-known condition guarantees convergence with probability 1 of
the series on the right-hand side of (1):

0 <
∑
k∈Z

a2
k <∞. (2)

In the sequel we assume (2) to be fulfilled. Define the partial sum process of moving
averages (1):

S0 = 0, Sn =
n∑

i=1

Xi, n = 1, 2, . . . .

This random process will be approximated by the following Gaussian process on the
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positive half-line [0,∞):

BH(t) = σL
−1/2
H

( ∞∫
0

((t+s)H−1/2g(t+s)−sH−1/2g(s)) dW̃ (s)+

t∫
0

(t−s)H−1/2g(t−s) dW (s)

)
,

(3)
where

σ2 = DBH(1), LH =
1

2H
+

∞∫
0

((1 + s)H−1/2 − sH−1/2)2 ds,

W̃ (s) and W (s) are two independent versions of the standard Wiener process, 0 < H < 1,
and g is a slowly varying function with the following properties:

(a) g(x) is differentiable on the half-line [0,∞); moreover,

g′(x) = o(g(x)/x) as x→∞;

(b) g(x) and g′(x) are monotone and g(x) is sign-preserving on the half-line [0,∞).
For example, it is easy to verify that every (positive or negative) power of the m-

iterated logarithm for each natural m satisfies these conditions.
Note that if g ≡ 1 in (3) then the random process BH(t) is a fractional Brownian

motion (see [88]), i.e., a centered Gaussian process with covariance function

R(t, s) =
σ2

2
(t2H + s2H − |t− s|2H).

In the sequel we will denote this process by B0
H . It is easy to see that, in the case H =

1/2, we deal with a Wiener process. Recall the well-known property (H-homogeneity)
of a fractional Brownian motion (see [88]): For every λ > 0, the finite-dimensional
distributions of the random processes

{
B0

H(λt)
}

and
{
λHB0

H(t)
}

coincide. Moreover, the
random process B0

H has stationary increments. These properties of B0
H allow us to relate

it to a class of objects called fractals whose every “distinguished” fragment (say, part of
a trajectory) is similar in a sense to the whole object.

Denote

Am = a0 + · · ·+ am if m ≥ 0 and A−1 = 0,−(am+1 + · · ·+ a−1) if m < −1. (4)

For each fixed n ≥ 0 and some α > 2 independent of n, we assume that, as |l| → ∞, the
following condition holds:

|An+l − Al| = O(|l|−1/α), (5)

implying in view of (2) that ∑
l∈Z

(An+l − Al)
2 <∞. (6)

We note that the series in (6) coincides with DSn (for details, see Subsection 2.2). If, as
l → ∞, the quantity |An+l − Al| tends monotonically to zero then (5) follows from (6)
because, in this case, |An+l − Al| = o(|l|−1/2).
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R e m a r k 1. In the sequel we will speak about the nontrivial (or substantial)
estimates for closeness of the processes Sn and BH(n) if, as n→∞, the following holds:

Sn −BH(n) = o(
√

DBH(n)) a. s.

In other words, the substantial estimates for closeness should be essentially less than the
random variables under consideration. But in this case (see the proof of Theorem 1 below),
absolutely the same statement is valid for the Gaussian analog of the process Sn, when the
random variables ξk in (1) are the standard Gaussian (moreover, the numerical value DSn

will be the same), i.e., in the above-mentioned asymptotic relation, we may consider Sn

as a Gaussian sequence. It follows that, first, as n→∞, the distributions of the random
variables Sn/

√
DBH(n) converge weakly to the standard normal law; and second, for

each n, the random variable Sn/
√

DSn has the standard normal distribution. Whence
we obtain the following necessary condition for the above-mentioned approximation to be
valid: DSn ∼ DBH(n) as n→∞.

Proposition 1 The following is valid:

DBH(n) ∼ σ2g2(n)n2H as n→∞.

By Proposition 1 we can rewrite the above-mentioned necessary condition as follows:

DSn =
∑
k∈Z

(An−k − A−k)
2 ∼ σ2g2(n)n2H as n→∞. (H)

In addition to the sequence {Am} in (4), we need also the following notation connected
with the initial coefficients {ai}:

∆(1)
n =

∞∑
m=0

(
An+m − Am − σL

−1/2
H (n+m+ 1)H−1/2g(n+m+ 1)

+σL
−1/2
H (m+ 1)H−1/2g(m+ 1)

)2
;

∆(2)
n =

n∑
m=1

(
An−m − A−m − σL

−1/2
H (n−m+ 1)H−1/2g(n−m+ 1)

)2
;

∆(3)
n =

∑
m>n

(An−m − A−m)2; ∆n = ∆(1)
n + ∆(2)

n + ∆(3)
n ;

∆+
α,n =

∞∑
m=1

max{m1/α, n1/α}|an+m − am|;

∆−
α,n =

∞∑
m=1

max{m1/α, n1/α}|an−m − a−m|; ∆α,n = ∆+
α,n + ∆−

α,n.

In the sequel we will interpret a relation of the type ψ(t) = O(f(t)) a. s., where ψ(t) is a
random process and f(t) is a certain nonrandom nonnegative function, as fulfillment of the
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inequality |ψ(t)| ≤ Cf(t) for all t ≥ t0 (where, in general, t0 depends on an elementary
event) and some nonrandom positive constant C that is called the O-symbol constant ;
moreover, this constant may be absolute as well as dependant on some parameters of
the problem under consideration. We will indicate the type of dependence in stating the
claims to follow.

Theorem 1. Let (5) be valid and E|ξ0|α <∞ for some α > 2. Then, as t→∞, the
following holds:

S[t] −BH(t) = ε(t)∆α,[t] +O
(√

∆[t] log t+ σL
−1/2
H

(
Υ

1/2
H + Φ

1/2
H CH

)√
log t

)
a. s.,

where limt→∞ ε(t) = 0 a. s.; moreover, if the distribution of the random variable ξ0 is fixed
then this convergence is uniform over all other parameters of the problem;

ΥH =

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g(s+ 1))2 ds+

∞∫
0

s2H−1(g(s+ 1)− g(s))2 ds,

ΦH =
1

4H
(g(1))2 +

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g(s+ 1))2 ds+

∞∫
0

s2H−1(g′(s))2 ds,

if g increases;

ΥH =

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g(s))2 ds+

∞∫
0

s2H−1(g(s+ 1)− g(s))2 ds,

ΦH =
1

4H
(g(0))2 + (g(0))2

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2 ds+

∞∫
0

s2H−1(g′(s))2 ds,

if g decreases; CH =
∑∞

k=1 2−kHk1/2; moreover, the O-symbol constant is absolute.
R e m a r k 2. In the case H > 1/2 and g ≡ 1 an analog of Theorem 1 is proven in

[76], where there is no specification of the O-symbol constant.

In the statements below the O-symbol constant, in general, depends on the sequence
{ak; k ∈ Z}.

Proposition 2. Let the sequence {ak; k ∈ Z} satisfy the following conditions:

ak = 0, k < 0;

ak − σL
−1/2
H (k + 1)H−1/2g(k + 1) + σL

−1/2
H kH−1/2g(k) = O(kγ−3/2g(k)), γ < H; (7)

Ak − σL
−1/2
H (k + 1)H−1/2g(k + 1) = O(kβ−1/2g(k)), 0 < β < H,

as k →∞. Then, as n→∞,
(i) If H > 1/2 then ∆α,n = O(g(n)nH−1/2+1/α); ∆n = O(g2(n)nmax{2β,2γ});
(ii) If H < 1/2 then ∆α,n = O(n1/α); ∆n = O(g2(n)nmax{2β,2γ});
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(iii) if H = 1/2 and
∑n

k=0 |ak| = O(g(n)) for increasing g or
∑∞

k=0 |ak| <∞ for
decreasing g then ∆α,n = O(g(n)n1/α) or ∆α,n = O(n1/α) for increasing or decreasing g;
∆n = O(g2(n)nmax{2β,2γ}).

Corollary 1. Let the conditions of Theorem 1 and Proposition 2 be fulfilled. Then,
as t→∞,

(i) In the case H > 1/2,

S[t] −BH(t) = o(g(t)tH−1/2+1/α) +O(tmax{β,γ}g(t)
√

log t) a. s.;

(ii) In the case H < 1/2,

S[t] −BH(t) = o(t1/α) +O(tmax{β,γ}g(t)
√

log t) a. s.;

(iii) In the case H = 1/2, if g increases then

S[t] −BH(t) = o(g(t)t1/α) +O(tmax{β,γ}g(t)
√

log t) a. s.;

(iv) In the case H = 1/2, if g decreases then

S[t] −BH(t) = o(t1/α) +O(tmax{β,γ}g(t)
√

log t) a. s.

Rema r k 3 Condition (7) implies Condition (5). In items (i), (iii), and (iv) of Corol-
lary 1 we have nontrivial estimates and Condition (H) is valid. In item (ii) we have
substantial estimates in the case α ≥ 1/H for g(t) � 1 as t → ∞. In the case when
g(t) → 0 as t→∞, these estimates are substantial for α > 1/H.

In the statements below we prove Donsker’s invariance principle for the processes
under consideration. We also estimate the corresponding convergence rate (regarding
other limit theorems for the sums of moving averages, see [63] for example).

Define the normalized partial sum process on the interval [0, 1]:

Zn,H(t) =
S[nt]

nH
.

Theorem 2. Let DSn ∼ σ2n2H as n → ∞. Moreover, let E|ξ0|α < ∞, where
α ≥ 2 and αH > 1. Then, as n → ∞, the distributions of the random processes Zn,H(t)
C-converge in D[0, 1] to the distribution of a fractional Brownian motion B0

H(t).
Recall that C-convergence inD[0, 1] is weak convergence of distributions of measurable

functionals on D[0, 1] (in the Skorokhod topology) which are continuous in the uniform
topology only at the points of C[0, 1] (see [28]).

R ema r k 4. In the case H > 1/2 the claim is proved in [76]. Necessity of the condition
DSn ∼ σ2n2H in Theorem 2 is proved in [35], where, in addition, C-convergence is proved
in the case H < 1/2 under more restrictive moment conditions than those in Theorem 2.

R ema r k 5 Under the conditions of Corollary 1 in the case H < 1/2 and α = 1/H, it
is possible to define the processes Zn,H(t) on a common probability space together with
a fractional Brownian motion so that, as n→∞,

sup
t∈[0,1]

∣∣Zn,H(t)−B0
H(nt)/nH

∣∣ = o(1) a. s.
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Since, for each n, the random processes B0
H(nt)/nH and B0

H(t) coincide in distribution,
we deduce from this relation the claim of Theorem 2 for the particular case mentioned
above for H < 1/2 and α = 1/H.

Put δn = supt∈[0,1] ∆[nt].
Theorem 3 Assume the following:
(i) H ≥ 1/2, E|ξ0|α < ∞ for some α > 2, and ai = 0 for all i < 0. Moreover,

let, for all i ≥ N ≥ 1, the inequalities ai ≥ ai+1 ≥ 0, ai ≤ CiH−3/2, and
∑n

i=0 |ai| ≤
C1(n+ 1)H−1/2 be valid for n ≥ 0. Then there exists a probability space such that

P
(

sup
t∈[0,1]

∣∣Zn,H(t)−B0
H(t)

∣∣ ≥ n−H
√

(H + 1) log n(8
√

2Υ0
H +

√
2δn + 2

√
2σCH)

+n−
α−2

2(α+1) (C1(2
H+3/2 + 1) + C(1− 2H−3/2+1/α)−2)

)
≤ 6n−H + Cξn

− α−2
2(α+1) (2 + α/(α− 1))

for all n ≥ N .
(ii) Let H ≤ 1/2 and E|ξ0|α < ∞ for some α > 1/H. Moreover, let ai = 0 for all

i < 0, ai ≤ ai+1 ≤ 0 and |ai| ≤ CiH−3/2 for all i ≥ N ≥ 1, and also
∑n

i=0 |ai| ≤ C1 for
n ≥ 0. Then there exists a probability space such that

P
(

sup
t∈[0,1]

∣∣Zn,H(t)−B0
H(t)

∣∣ ≥ n−H
√

(H + 1) log n(8
√

2Υ0
H +

√
2δn + 2

√
2σCH)

+5C1n
−αH−1

α+1 + Cn−
α−2

2(α+1) (1− 2H−3/2+1/α)−2
)

≤ 6n−H + 2Cξn
−αH−1

α+1 + Cξα(α− 1)−1n−
α−2

2(α+1)

for all n ≥ N , where Cξ is a constant depending only on the distribution of ξ0,

CH =
∞∑

k=1

2−kHk1/2, Υ0
H =

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2 ds.

Note that if ai = 0 for all i < 0 and, in addition, a0 = σL
−1/2
H and ai = σL

−1/2
H ((i +

1)H−1/2− iH−1/2) for i > 0 then ∆n = δn = 0. We now obtain some estimates for δn under
more general restrictions on the coefficients {ai, i ∈ Z}. These estimates are valid for all
H ∈ (0, 1).

Proposition 3 Let ai = 0 for all i < 0. Then, as n→∞,
(i) If

∞∑
k=0

(
Ak − σL

−1/2
H (k + 1)H−1/2

)2
<∞

then
δn = O(1);
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(ii) If ∣∣An − σL
−1/2
H (n+ 1)H−1/2

∣∣ = O(nβ−1/2), 0 < β < H,

and ∣∣an − σL
−1/2
H ((n+ 1)H−1/2 − nH−1/2)

∣∣ = O(nγ−3/2), γ < H,

then
δn = O(nmax{2γ,2β}).

R e m a r k 6. Under the conditions of items (i) or (ii) of Proposition 3 the relation
n−H

√
δn log n → 0 is valid as n → ∞. In this case we obtain a nontrivial convergence

rate in Theorem 3.

R e m a r k 7. Let
∑

k∈Z |ak| <∞. Then it is easy to deduce the following identity:

n−1DSn = n−1
∑
k∈Z

(An−k − A−k)
2 = n−1

∑
k∈Z

(ak+1 + · · ·+ ak+n)2

=
∑
k∈Z

a2
k + 2

n∑
j=1

∑
k∈Z

ak+jak − 2n−1

n∑
j=1

j
∑
k∈Z

ak+jak.

Moreover, by Kronecker’s lemma (see [93, p. 328]) the rightmost double sum of this
identity vanishes as n→∞. Thus, assuming the absolute summability of {ak}, we have

lim
n→∞

n−1DSn = σ2 =
(∑

k∈Z

ak

)2

.

Moreover, if σ2 > 0 then condition (H) is valid for H = 1/2. Hence, under the conditions
of Theorem 2 (i.e., if E|ξ0|α <∞ for some α > 2) for absolutely summable coefficients {ai}
the above-mentioned C-convergence to a Wiener process is valid if only

∑
k∈Z ak 6= 0. Note

that, under the finiteness of the fourth moment of the random variable ξ0, an analogous
proposition follows from [35].

For example, we can apply these arguments to the simplest particular case in which
ai = 0 for all i < 0 and i > m, where m is a fixed natural number (in this case, {Xj; j ≥ 1}
are m-dependent random variables), and σ =

∑m
i=0 ai 6= 0.

R e m a r k 8. If the second moment of ξ0 exists then in [12, pp. 255 and 264] there
are given some sufficient conditions guaranteeing the C-convergence of Zn,1/2 to a Wiener
process. In particular, the article [12] contains the following additional restriction on the
coefficients {ak}:

∞∑
l=1

(∑
|i|>l

a2
i

)1/2

<∞. (8)

It is clear that this implies the absolute summability of {ai} of Remark 7. Further, (8)
was slightly weaken as follows:

∞∑
l=1

((∑
i>l

ai

)2

+
(∑

i>l

a−i

)2)
<∞.
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In particular, the last condition implies the conditional convergence of
∑
ai. Note that,

in this case, the following holds:

lim
n→∞

n−1DSn =
(∑

k∈Z

ak

)2

,

which is actually assumed in Theorem 2. As an example we may consider the coefficients
ai = 0 for i ≤ 0 and ai = (−1)i/i for i ≥ 1.

However, if the series tail
∑

|i|≥k ai decreases slowly enough then the above-mentioned

two conditions of [12] may not be fulfilled. Say, the sequence ai = σ0(i
−1/2 − (i+ 1)−1/2)

for i > 0, a0 = σ0, and ai = 0 for i < 0 does not satisfy these conditions, but it enjoys the
conditions of Remark 7, i.e., for these coefficients {ai} the above-mentioned C-convergence
to a Wiener process is valid (but under somewhat stronger moment restrictions than those
in [12]).

2. Proof of the Main Results.

2.1. Proof of Proposition 1. We consider only the case of g increasing. The case
of g decreasing is settled by analogy. We have

DBH(n) = σ2L−1
H n2Hg2(n)

( 1∫
0

s2H−1g2(ns)/g2(n) ds

+

∞∫
0

((1 + s)H−1/2g(n(1 + s))/g(n)− sH−1/2g(ns)/g(n))2 ds

)
. (9)

Consider the first summand on the right-hand side of (9). By the Lebesgue dominated
convergence theorem,

1∫
0

s2H−1g2(ns)/g2(n) ds→ 1/(2H) as n→∞.

We now split the second integral on the right-hand side of (9) into the following two:∫∞
0

=
∫ 1

0
+
∫∞

1
. Estimate the first integral:

1∫
0

((1 + s)H−1/2g(n(1 + s))/g(n)− sH−1/2g(ns)/g(n))2 ds

≤ 2

1∫
0

((1 + s)2H−1g2(2n)/g2(n) + s2H−1) ds;
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moreover, the sequence {g2(2n)/g2(n)} is bounded. Hence we construct an integrable
majorant for the integrand. Thus, by the Lebesgue dominated convergence theorem,

lim
n→∞

1∫
0

((1 + s)H−1/2g(n(1 + s))/g(n)− sH−1/2g(ns)/g(n))2 ds

=

1∫
0

((1 + s)H−1/2 − sH−1/2)2 ds. (10)

We now estimate the second integral:

∞∫
1

((1 + s)H−1/2g(n(1 + s))/g(n)− sH−1/2g(ns)/g(n))2 ds

≤ 2

∞∫
1

((1 + s)H−1/2 − sH−1/2)2g2(n(1 + s))/g2(n) ds

+2

∞∫
1

s2H−1(g(n(1 + s))− g(ns))2/g2(n) ds. (11)

Consider the first summand on the right-hand side of (11). It is clear that

∞∫
1

((1 + s)H−1/2 − sH−1/2)2g2(n(1 + s))/g2(n) ds ≤ 2

∞∫
1

s2H−3g2(ns)/g2(n) ds.

For the second summand in (11) we obtain the following simple estimate:

∞∫
1

s2H−1(g(n(1 + s))− g(ns))2/g2(n) ds ≤ C

∞∫
1

s2H−3g2(ns)/g2(n) ds, n ≥ 1,

where C is a positive constant. So, we have

∞∫
1

((1 + s)H−1/2g(n(1 + s))/g(n)− sH−1/2g(ns)/g(n))2 ds

≤ (4 + 2C)

∞∫
1

s2H−3g2(ns)/g2(n) ds. (12)
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We now study the right-hand side of (12). Using the L’Hospital principle we have

lim
n→∞

∞∫
1

s2H−3g2(ns)/g2(n) ds = lim
n→∞

((g2(n)n2H−2)−1

∞∫
n

g2(s)s2H−3 ds)

= lim
n→∞

(2− 2H − 2ng′(n)/g(n))−1 = (2− 2H)−1 =

∞∫
1

s2H−3 lim
n→∞

g2(ns)/g2(n) ds.

Thus, the functions {s2H−3g2(ns)/g2(n)}n≥1 are uniformly integrable. Therefore, we con-
struct a uniformly integrable majorant for the sequence of functions

{((1 + s)H−1/2g(n(1 + s))/g(n)− sH−1/2g(ns)/g(n))2}n≥1.

Hence,

lim
n→∞

∞∫
1

((1 + s)H−1/2g(n(1 + s))/g(n)− sH−1/2g(ns)/g(n))2 ds

=

∞∫
1

((1 + s)H−1/2 − sH−1/2)2 ds. (13)

¿From (10) and (13) we have

lim
n→∞

∞∫
0

((1 + s)H−1/2g(n(1 + s))/g(n)− sH−1/2g(ns)/g(n))2 ds

=

∞∫
0

((1 + s)H−1/2 − sH−1/2)2 ds.

The proof of the lemma is complete.

2.2. Proof of Theorem 1. We will follow the scheme of proving the corresponding
result in [76]. Put n = [t]. By (6) it is easy to deduce the representation

Sn =
∑
k∈Z

(An−k − A−k)ξk.

We now split Sn into the two summands Sn and S̃n:

Sn =
∞∑

k=0

(An+k − Ak)ξ−k, S̃n =
∞∑

k=1

(An−k − A−k)ξk.

Put

γk = W (k)−W (k − 1), k = 1, 2, . . . , γ−k = W̃ (k + 1)− W̃ (k), k = 0, 1, . . . ,
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where W (s) and W̃ (s) are two independent versions of the standard Wiener process.
Moreover, introduce the following notations:

Gn =
∞∑

k=0

(An+k − Ak)γ−k, G̃n =
∞∑

k=1

(An−k − A−k)γk, Gn = Gn + G̃n.

These random variables are Gaussian analogs of the sums Sn, S̃n, and Sn respectively.
It is well known (see [30]) that if E|ξ0|α < ∞ for some α > 2 then the sequences

{ξk, γk; k ≥ 1} and {ξ−k, γ−k; k ≥ 0} can be defined on a common probability space so
that

n∑
k=1

ξk −
n∑

k=1

γk = o(n1/α) a. s.,
n−1∑
k=0

ξ−k −
n−1∑
k=0

γ−k = o(n1/α) a. s. as n→∞. (14)

In the sequel we assume that the sequences of the random variables {ξk, γk; k ∈ Z} are
defined on a common probability space in such a way.

Lemma 1 As n→∞ the following is valid: |Sn −Gn| = o(∆α,n) a. s.
Proof. Introduce the following notations:

S
(l)

n =
l∑

k=0

(An+k − Ak)ξ−k, G
(l)

n =
l∑

k=0

(An+k − Ak)γ−k, σk =
k−1∑
i=0

ξ−i, k ≥ 1.

It is clear that ξ−k = σk+1 − σk. By the Abel formula (a discrete analog of the formula of
integration by parts), we then obtain

S
(l)

n =
l∑

i=1

σi(ai − an+i) + σl+1(An+l − Al).

In absolutely the same manner, we deduce the representation

G
(l)

n =
l∑

i=1

%i(ai − an+i) + %l+1(An+l − Al),

where %k =
∑k−1

i=0 γ−i, k ≥ 1. In this case,

S
(l)

n −G
(l)

n =
l∑

i=1

δi(ai − an+i) + δl+1(An+l − Al),

where δm = σm − %m. ¿From (14) and (5) it follows that

δl+1(An+l − Al) → 0 a. s. as l→∞.

Hence, with probability 1,

Sn −Gn =
∞∑
i=1

δi(ai − an+i).
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Further, the following inequality is valid:

|Sn −Gn| ≤ sup
k≥n

(k−1/α max
m≤k

|δm|)∆+
α,n.

Indeed, we have

|Sn −Gn| ≤
n−1∑
k=1

|δk||an+k − ak|+
∞∑

k=n

|δk||an+k − ak|

=
n−1∑
k=1

δk
n1/α

n1/α|an+k − ak|+
∞∑

k=n

δk
k1/α

k1/α|an+k − ak|

≤ max

{
sup
k≤n

|δk|
n1/α

, sup
k≥n

|δk|
k1/α

}
∆+

α,n ≤ sup
k≥n

(
maxm≤k |δm|

k1/α

)
∆+

α,n.

Since

sup
k≥n

(
maxm≤k |δm|

k1/α

)
= o(1) a. s. as n→∞;

therefore, |Sn−Gn| = o(∆+
α,n) a. s. By analogy we obtain |S̃n−G̃n| = o(∆−

α,n) a. s. Hence,

|Sn −Gn| = o(∆α,n) a. s. as n→∞.

The proof of the lemma is complete.

Introduce the sequence of random variables:

B0 = 0, Bn = σL
−1/2
H

( n∑
k=1

(n− k + 1)H−1/2g(n− k + 1)γk

+
∞∑

k=0

((n+ k + 1)H−1/2g(n+ k + 1)− (k + 1)H−1/2g(k + 1))γ−k

)
, n ≥ 1.

Lemma 2. Bn is finite with probability 1 for every n.
Proof. It suffices to show that

∞∑
k=0

((n+ k + 1)H−1/2g(n+ k + 1)− (k + 1)H−1/2g(k + 1))2 <∞.

Indeed, we have

∞∑
k=0

((n+ k + 1)H−1/2g(n+ k + 1)− (k + 1)H−1/2g(k + 1))2

≤ 2
∞∑

k=0

((n+ k + 1)H−1/2 − (k + 1)H−1/2)2g2(n+ k + 1)
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+2
∞∑

k=0

(k + 1)2H−1(g(n+ k + 1)− g(k + 1))2. (15)

The first series on the right-hand side of (15) converges due to the estimate

((n+ k + 1)H−1/2 − (k + 1)H−1/2)2 = O(k2H−3) as k →∞.

The second series on the right-hand side of (15) converges as well since

(g(n+ k + 1)− g(k + 1))2 = O(g2(k + 1)/(k + 1)2) as k →∞,

and, for sufficiently large arguments, each slowly varying function has a power majorant
with an arbitrarily small positive exponent (for example, see [51]). The proof of the lemma
is complete.

Lemma 3. As n→∞ the following is valid: |Gn −Bn| = O(
√

∆n log n) a. s.
Proof. We have ∆n = D(Gn − Bn). Since Gn − Bn has Gaussian distribution, we

obtain the inequality

P (|Gn −Bn| ≥ 2
√

∆n log n) ≤ exp{−(2
√

∆n log n)2/(2∆n)} = n−2.

Using the Borel–Cantelli lemma, we arrive at the claim.
Lemma 4. As n→∞, we have

|Bn −BH(n)| = O(σL
−1/2
H Υ

1/2
H

√
log n) a. s.,

where

ΥH =

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g(s+ 1))2 ds+

∞∫
0

s2H−1(g(s+ 1)− g(s))2 ds,

if g increases;

ΥH =

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g(s))2 ds+

∞∫
0

s2H−1(g(s+ 1)− g(s))2 ds,

if g decreases.
Proof. Put

B∗
n =

n∑
k=1

(n− k + 1)H−1/2g(n− k + 1)γk

+
∞∑

k=0

((n+ k + 1)H−1/2g(n+ k + 1)− (k + 1)H−1/2g(k + 1))γ−k,

B∗(n) =

n∫
0

(n− s)H−1/2g(n− s) dW (s)
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+

∞∫
0

((n+ s)H−1/2g(n+ s)− sH−1/2g(s))dW̃ (s).

The quantity B∗
n has the following representation as a stochastic integral:

n∫
0

(n− [s])H−1/2g(n− [s]) dW (s)

+

∞∫
0

((n+ [s] + 1)H−1/2g(n+ [s] + 1)− ([s] + 1)H−1/2g([s] + 1))dW̃ (s).

We now study the variance D(B∗
n −B∗(n)). We have

D(B∗
n −B∗(n)) ≤

n∫
0

((n− s)H−1/2g(n− s)− (n− [s])H−1/2g(n− [s]))2 ds

+2

∞∫
0

(sH−1/2g(s)− ([s] + 1)H−1/2g([s] + 1))2 ds

+2

∞∫
0

((n+ s)H−1/2g(n+ s)− (n+ [s] + 1)H−1/2g(n+ [s] + 1))2 ds. (16)

Consider the first summand on the right-hand side of (16):

n∫
0

((n− [s])H−1/2g(n− [s])− (n− s)H−1/2g(n− s))2 ds

≤ 2

n∫
0

(g(n− [s]))2((n− [s])H−1/2 − (n− s)H−1/2)2 ds

+2

n∫
0

(n− s)2H−1(g(n− [s])− g(n− s))2 ds. (17)

Estimate the first summand on the right-hand side of (17). Since s ≤ n− [n− s] < s+ 1,
we obtain the inequality

n∫
0

(g(n− [s]))2((n− [s])H−1/2 − (n− s)H−1/2)2 ds

140



=

n∫
0

(g(n− [n− s]))2((n− [n− s])H−1/2 − sH−1/2)2 ds

≤
n∫

0

(g(n− [n− s]))2((s+ 1)H−1/2 − sH−1/2)2 ds. (18)

Estimate the second summand on the right-hand side of (17):

n∫
0

(n− s)2H−1(g(n− [s])− g(n− s))2 ds =

n∫
0

s2H−1(g(n− [n− s])− g(s))2 ds

≤
n∫

0

s2H−1(g(s+ 1)− g(s))2 ds. (19)

We consider now the second summand on the right-hand side of (16):

∞∫
0

(([s] + 1)H−1/2g([s] + 1)− sH−1/2g(s))2 ds ≤ 2

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g([s] + 1))2 ds

+2

∞∫
0

s2H−1(g(s+ 1)− g(s))2 ds. (20)

In turn, the third summand on the right-hand side of (16) admits the estimate

∞∫
0

((n+ s)H−1/2g(n+ s)− (n+ [s] + 1)H−1/2g(n+ [s] + 1))2 ds

=

∞∫
n

(([s] + 1)H−1/2g([s] + 1)− sH−1/2g(s))2 ds

≤ 2

∞∫
n

((s+ 1)H−1/2 − sH−1/2)2(g([s] + 1))2 ds+ 2

∞∫
n

s2H−1(g([s] + 1)− g(s))2 ds. (21)

Further, we note that |g([s]+1)−g(s)| ≤ |g(s+1)−g(s)|. Moreover, g([s]+1) ≤ g(s+1)
if g increases, and g([s] + 1) ≤ g(s) if g decreases. Combining these upper bounds for the
right-hand sides in (18)–(21), we obtain the following inequality:

D(B∗
n−B∗(n)) ≤ 8

∞∫
0

((s+1)H−1/2−sH−1/2)2(g(s+1))2 ds+8

∞∫
0

s2H−1(g(s+1)−g(s))2 ds,
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if g increases;

D(B∗
n −B∗(n)) ≤ 8

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g(s))2 ds+ 8

∞∫
0

s2H−1(g(s+ 1)− g(s))2 ds,

if g decreases.
We prove that the integral

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g(s+ 1))2 ds

exists. Indeed, as s → ∞, we have ((s + 1)H−1/2 − sH−1/2)2 = O(s2H−3) and g(s +
1)/g(s) → 1. Thus the integral

∫∞
1
s2H−3(g(s))2 ds exists (see the properties of slowly

varying functions in [13]) that implies existence of the integral

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g(s+ 1))2 ds.

Finally, by Borel–Cantelli lemma we infer the claim.

In the sequel we need the following (see [81])
Lemma 5. Let {ξ(t); 0 ≤ t ≤ 1} be a centered Gaussian process. Moreover, ξ(0) = 0

and E(ξ(t)− ξ(s))2 ≤ C|t− s|2H for some H > 0. Then, for all x ≥ 0,

P ( sup
t∈[0,1]

|ξ(t)| > x) ≤ 4 exp
{
−C−2

H x2(8C)−1
}
,

where CH =
∑∞

k=1 2−kHk1/2.
Lemma 6. As t→∞ the following is valid:

BH(t)−BH([t]) = O
(
Φ

1/2
H CH

√
log t

)
a. s.,

where

ΦH =
1

4H
(g(1))2 +

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g(s+ 1))2 ds+

∞∫
0

s2H−1(g′(s))2 ds,

if g increases;

ΦH =
1

4H
(g(0))2 + (g(0))2

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2 ds+

∞∫
0

s2H−1(g′(s))2 ds,

if g decreases, and CH =
∑∞

k=1 2−kHk1/2.
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Proof. Let t ∈ [n, n+ 1], n ≥ 0. Put

ξ(t) =

t∫
0

(t− s)H−1/2g(t− s)dW (s) +

∞∫
0

((t+ s)H−1/2g(t+ s)− sH−1/2g(s))dW̃ (s)

−
n∫

0

(n− s)H−1/2g(n− s)dW (s)−
∞∫

0

((n+ s)H−1/2g(n+ s)− sH−1/2g(s))dW̃ (s).

Estimate the moment E(ξ(v + n)− ξ(u+ n))2, u ≤ v, where u, v ∈ [0, 1]. We have

E(ξ(v + n)− ξ(u+ n))2 ≤
v+n∫

u+n

(v + n− s)2H−1(g(v + n− s))2 ds

+

u+n∫
0

((v + n− s)H−1/2g(v + n− s)− (u+ n− s)H−1/2g(u+ n− s))2 ds

+

∞∫
0

((v + n+ s)H−1/2g(v + n+ s)− (u+ n+ s)H−1/2g(u+ n+ s))2 ds. (22)

For the first summand on the right-hand side of (22) the following equality holds:

v+n∫
u+n

(v + n− s)2H−1(g(v + n− s))2 ds =

v−u∫
0

s2H−1(g(s))2 ds.

¿From this it follows that

v−u∫
0

s2H−1(g(s))2 ds ≤ 1

2H
(g(1))2(v − u)2H , (23)

if g increases, and
v−u∫
0

s2H−1(g(s))2 ds ≤ 1

2H
(g(0))2(v − u)2H , (24)

if g decreases.
Consider the second summand on the right-hand side of (22):

u+n∫
0

((v + n− s)H−1/2g(v + n− s)− (u+ n− s)H−1/2g(u+ n− s))2 ds
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≤ 2

u+n∫
0

(((v − u+ s)H−1/2 − sH−1/2)2(g(v − u+ s))2 ds

+2

u+n∫
0

s2H−1(g(v − u+ s)− g(s))2 ds. (25)

Finally, the third summand on the right-hand side of (22) admits the upper bound

∞∫
0

((v + n+ s)H−1/2g(v + n+ s)− (u+ n+ s)H−1/2g(u+ n+ s))2 ds

≤ 2

∞∫
u+n

((v − u+ s)H−1/2 − sH−1/2)2(g(v − u+ s))2 ds

+2

∞∫
u+n

s2H−1(g(v − u+ s)− g(s))2 ds. (26)

Combining the right-hand sides of (25) and (26), we obtain an upper bound for the sum
of the second and third summands on the right-hand side of (22):

2

∞∫
0

((v−u+s)H−1/2−sH−1/2)2(g(v−u+s))2 ds+2

∞∫
0

s2H−1(g(v−u+s)−g(s))2 ds. (27)

Consider the first integral in (27):

∞∫
0

((v − u+ s)H−1/2 − sH−1/2)2(g(v − u+ s))2 ds

= (v − u)2H

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g((v − u)(s+ 1)))2 ds.

Whence we have the estimates

∞∫
0

((v − u+ s)H−1/2 − sH−1/2)2(g(v − u+ s))2 ds

≤ (v − u)2H

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2(g(s+ 1))2 ds, (28)
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if g increases, and

∞∫
0

((v − u+ s)H−1/2 − sH−1/2)2(g(v − u+ s))2 ds

≤ (v − u)2H(g(0))2

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2 ds, (29)

if g decreases.
Estimate the second integral in (27):

∞∫
0

s2H−1(g(v − u+ s)− g(s))2 ds ≤ (v − u)2

∞∫
0

s2H−1(g′(s))2 ds. (30)

Combining the upper bounds in (23), (24), (28)–(30) we have

E(ξ(v + n)− ξ(u+ n))2

≤ (v−u)2H

(
1

2H
(g(1))2+2

∞∫
0

((s+1)H−1/2−sH−1/2)2(g(s+1))2 ds

)
+2(v−u)2

∞∫
0

s2H−1(g′(s))2 ds

≤ (v−u)2H

(
1

2H
(g(1))2+2

∞∫
0

((s+1)H−1/2−sH−1/2)2(g(s+1))2 ds+2

∞∫
0

s2H−1(g′(s))2 ds

)
,

if g increases, and
D(ξ(v + n)− ξ(u+ n))

≤ (v−u)2H

(
1

2H
(g(0))2+2(g(0))2

∞∫
0

((s+1)H−1/2−sH−1/2)2 ds

)
+2(v−u)2

∞∫
0

s2H−1(g′(s))2 ds

≤ (v− u)2H

(
1

2H
(g(0))2 + 2(g(0))2

∞∫
0

((s+ 1)H−1/2 − sH−1/2)2 ds+ 2

∞∫
0

s2H−1(g′(s))2 ds

)
,

if g decreases. Finally, by Lemma 5 and by the Borel–Cantelli lemma (letting x =
4
√

2(ΦH log n)1/2CH), we complete the proof.

The claim of Theorem 1 follows from the lemmas above.
2.3. Proof of Proposition 2 and Corollary 1.
Proof of Proposition 2. At first we prove item (i).
Lemma 7. The following is valid: |ak| = O(g(k)kH−3/2) as k →∞.
Proof. Indeed,

|(k + 1)H−1/2g(k + 1)− kH−1/2g(k)| = |g(k + 1)((k + 1)H−1/2 − kH−1/2)
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+kH−1/2(g(k + 1)− g(k))| ≤ g(k + 1)|(k + 1)H−1/2 − kH−1/2|+ kH−1/2|g(k + 1)− g(k)|.
Hence,

|(k + 1)H−1/2g(k + 1)− kH−1/2g(k)| = O(g(k)kH−3/2) as k →∞.

From this the claim of the lemma follows.
Lemma 8. The following is valid:

n∑
k=0

|ak| = O(g(n)nH−1/2) as n→∞.

Proof. Consider the case when g increases. Obviously, there exists a constant C such
that |ak| ≤ Cg(k + 1)(k + 1)H−3/2 for all k ≥ 0. Moreover, the sequence g(k)kH−3/2 is
monotone decreasing for all sufficiently large k ≥ N . So,

n∑
k=0

|ak| ≤ C
n+1∑
k=1

g(k)kH−3/2 =
N∑

k=1

g(k)kH−3/2 +
n+1∑

k=N+1

g(k)kH−3/2

≤
N∑

k=1

g(k)kH−3/2 +

n+1∫
N

g(x)xH−3/2dx. (31)

Consider the last summand on the right-hand side of (31):

n+1∫
N

g(x)xH−3/2dx = g(n+ 1)
(n+ 1)H−1/2

H − 1/2
− g(N)

NH−1/2

H − 1/2
−

n+1∫
N

xH−1/2

H − 1/2
g′(x)dx.

Hence,

n+1∫
N

g(x)xH−3/2

(
1 +

xg′(x)

(H − 1/2)g(x)

)
dx = g(n+ 1)

(n+ 1)H−1/2

H − 1/2
− g(N)

NH−1/2

H − 1/2
.

We can choose the number N so that
∣∣ xg′(x)
(H−1/2)g(x)

∣∣ ≤ 1/2 for x ≥ N . Whence we obtain

n+1∫
N

g(x)xH−3/2 dx ≤ 2g(n+ 1)
(n+ 1)H−1/2

H − 1/2
.

The case when g decreases is settled in a similar manner. The proof of the lemma is
complete.

We now estimate ∆α,n. First of all, we note that

∆α,n = n1/α

n−1∑
k=−n

|ak − ak+n|+
∞∑

k=n

k1/α|ak − ak+n|. (32)
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Estimate the first summand on the right-hand side of (32). We have

n1/α

n−1∑
k=−n

|ak − ak+n| ≤ 2n1/α

2n−1∑
k=0

|ak| = O(g(n)nH−1/2+1/α).

Consider now the second summand on the right-hand side of (32):

∞∑
k=n

k1/α|ak − ak+n| ≤
2n−1∑
k=n

k1/α|ak|+
∞∑

k=2n

|ak|(k1/α − (k − n)1/α)

≤ (2n− 1)1/αng(n)nH−3/2 +
∞∑

k=2n

C1k
H−3/2g(k)n(1/α)(k − n)1/α−1

≤ (2n− 1)1/αng(n)nH−3/2 +
∞∑

k=n

C1(k + n)H−3/2g(k + n)n(1/α)k1/α−1

≤ (2n− 1)1/αng(n)nH−3/2 +
∞∑

k=n

C1k
H−3/2g(k)n(1/α)k1/α−1, (33)

where C1 is some constant (see Lemma 7). Consider the last summand on the right-hand
side of (33). We have (see the proof of Lemma 8)

∞∑
k=n

kH−3/2g(k)k1/α−1 ≤
∞∫

n−1

xH−3/2+1/α−1g(x)dx = O(g(n)nH−3/2+1/α) as n→∞.

Thus,
∞∑

k=n

k1/α|ak − ak+n| = O(g(n)nH−1/2+1/α) as n→∞.

Whence we deduce that
∆α,n = O(g(n)nH−1/2+1/α).

We now prove item (ii) of Proposition 2. We have |ak| = O(g(k)kH−3/2), k →∞ (the
proof is absolutely the same as in the case H > 1/2). Also,

∑∞
k=0 |ak| < ∞. We then

estimate ∆α,n. As in the case H > 1/2 we separately study the sums

n1/α

n−1∑
k=−n

|ak − ak+n|,
∞∑

k=n

k1/α|ak − ak+n|. (34)

For the first sum in (34) the upper bound is elementary:

n1/α

n−1∑
k=−n

|ak − ak+n| ≤ 2n1/α

2n−1∑
k=0

|ak| = O(n1/α) as n→∞.
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Consider the second sum in (34). We have

∞∑
k=n

k1/α|ak − ak+n| ≤
2n−1∑
k=n

k1/α|ak|+
∞∑

k=2n

|ak|(k1/α − (k − n)1/α)

≤ (2n− 1)1/α

2n−1∑
k=n

|ak|+ (2n)1/α

∞∑
k=2n

|ak| = O(n1/α) as n→∞.

Therefore, ∆α,n = O(n1/α) as n→∞.
We now prove item (iii) of Proposition 2. We consider only the case when g increases.

The case when g decreases is settled in the same manner as in item (ii). Consider the
first sum in (34):

n1/α

n−1∑
k=−n

|ak − ak+n| ≤ 2n1/α

2n−1∑
k=0

|ak| = O(g(n)n1/α) as n→∞.

Estimate the second sum in (34):

∞∑
k=n

k1/α|ak − ak+n| =
2n−1∑
k=n

k1/α|ak|+
∞∑

k=2n

|ak|(k1/α − (k − n)1/α)

≤ C(2n− 1)1/α

2n−1∑
k=n

g(k)/k + C
∞∑

k=n

g(k)/k((n+ k)1/α − k1/α)

≤ C(2n− 1)1/α

2n−1∑
k=n

g(k)/k + Cn
∞∑

k=n

g(k)k1/α−2 = O(g(n)n1/α) as n→∞,

where C is a constant (see Lemma 7). So, in the conditions of item (iii),

∆α,n = O(g(n)n1/α) as n→∞, if g increases;

∆α,n = O(n1/α) as n→∞, if g decreases.

We prove in all three cases above that ∆n = O(g2(n)nmax{2β,2γ}) as n → ∞. Introduce
the notations:

α0 = a0 − σL
−1/2
H g(1),

αn = an − σL
−1/2
H ((n+ 1)H−1/2g(n+ 1)− nH−1/2g(n)), n ≥ 1,

βn = An − σL
−1/2
H (n+ 1)H−1/2g(n+ 1), n ≥ 0.

Note that

∆n =
∞∑

m=0

(βn+m − βm)2 +
n−1∑
m=0

β2
m. (35)
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At first we consider the second summand on the right-hand side of (35):

n−1∑
m=0

β2
m ≤ C

n∑
k=1

k2β−1g2(k) = O(n2βg2(n)) as n→∞,

where C is a constant (see (7)). We now consider the first summand on the right-hand
side of (35):

∞∑
m=0

(βn+m − βm)2 ≤
n−1∑
m=0

(βn+m − βm)2 +
∞∑

m=n

(βn+m − βm)2

≤ 2
2n−1∑
m=0

β2
m +

∞∑
m=n

(βn+m − βm)2. (36)

By analogy with the above,

2n−1∑
m=0

β2
m = O(n2βg2(n)) as n→∞.

Further, we have

|βn+m − βm| ≤
m+n∑

k=m+1

|αk| ≤ C1ng(m)mγ−3/2,

where C1 is a constant (see (7)). Hence,

∞∑
m=n

(βn+m − βm)2 ≤ C2
1n

2

∞∑
m=n

g2(m)m2γ−3 = O(g2(n)n2γ) as n→∞.

Therefore,
∆n = O(g2(n)nmax{2β,2γ}) as n→∞,

which yields the claim.
Corollary 1 follows from Proposition 2 and Theorem 1.

2.4. Proof of Theorem 2. Put

Ak,n(t) = n−H

−k+[nt]∑
j=−k+1

aj, V 2
n = DSn.

Then the following representation is valid:

Zn,H(t) =
∑
k∈Z

Ak,n(t)ξk.

We need some auxiliary statements.
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Lemma 9. [64, p. 456] For all k ∈ Z, the following is valid:

|ak+1 + · · ·+ ak+n| ≤
(

4Vn

∑
k∈Z

|ak|2
(

1 +
1

2Vn

))1/2

.

Lemma 10. For all 1 ≥ t ≥ τ ≥ 0 we have

EZn,H(t)Zn,H(τ) → EB0
H(t)B0

H(τ) as n→∞.

Proof. Indeed,

E(Zn,H(t)− Zn,H(τ))2 = n−2H
∑
i∈Z

(−i+[nt]−[nτ ]∑
j=−i+1

aj

)2

=
([nt]− [nτ ])2H

n2H

V 2
[nt]−[nτ ]

([nt]− [nτ ])2H
.

Whence we obtain

E(Zn,H(t)− Zn,H(τ))2 → σ2(t− τ)2H = E
(
B0

H(t)−B0
H(τ)

)2
.

Using the convergence of the second moments of the one-dimensional projections of the
random processes Zn,H(t) we deduce the equality

2EZn,H(t)Zn,H(τ) = E(Zn,H(t))2+E(Zn,H(τ))2−E(Zn,H(t)−Zn,H(τ))2 → 2EB0
H(t)B0

H(τ).

The proof of the lemma is complete.
Lemma 11. For all 1 ≥ t ≥ τ ≥ 0 there is a positive constant K depending only on

{ai} such that ∑
k∈Z

(Ak,n(t)− Ak,n(τ))2 ≤ K
([nt]− [nτ ])2H

n2H
.

Proof We have

∑
k∈Z

(Ak,n(t)− Ak,n(τ))2 =
([nt]− [nτ ])2H

n2H

V 2
[nt]−[nτ ]

([nt]− [nτ ])2H
.

Since V 2
n /n

2H → σ2 as n→∞, we complete the proof.
Lemma 12 [93, p. 86]. Let {Xk}k=1,...,n be independent centered random variables and

E|Xk|α <∞ for all k and some α ≥ 2. Put

Sn =
n∑

k=1

Xk, Mα,n =
n∑

k=1

E|Xk|α, Bn =
n∑

k=1

EX2
k .
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Then
E|Sn|α ≤ c(α)

(
Mα,n +Bα/2

n

)
,

where c(α) is a positive constant depending only on α.
Lemma 13. The following inequality is valid:

E|Zn,H(t)− Zn,H(τ)|α ≤ C

(
[nt]− [nτ ]

n

)αH

,

where C is a constant depending on the distributions of ξ0, α, and {ai}.
Proof. By Lemma 12 and the Fatou theorem we obtain

E

∣∣∣∣∑
k∈Z

(Ak,n(t)− Ak,n(τ))ξk

∣∣∣∣α

≤ c(α)
(∑

k∈Z

|Ak,n(t)− Ak,n(τ)|αE|ξ0|α +
(∑

k∈Z

(Ak,n(t)− Ak,n(τ))2
)α/2)

≤ c(α)(1 + E|ξ0|α)
(∑

k∈Z

(Ak,n(t)− Ak,n(τ))2
)α/2

.

Note that we applied here the following elementary inequality:∑
k∈Z

|bk|γ ≤
(∑

k∈Z

|bk|
)γ

, γ ≥ 1.

Using Lemma 11, we complete the proof.
Lemma 14. Let 1 ≥ t3 ≥ t2 ≥ t1 ≥ 0. Then the following inequality is valid:

E|Zn,H(t3)− Zn,H(t2)|α/2|Zn,H(t2)− Zn,H(t1)|α/2 ≤ C(t3 − t2)
αH ,

where C is a positive constant depending on α, {ai}, and the distribution of ξ0.
Proof. By the Cauchy–Bunyakovskĭı inequality we obtain

E|Zn,H(t3)− Zn,H(t2)|α/2|Zn,H(t2)− Zn,H(t1)|α/2

≤ (E|Zn,H(t3)− Zn,H(t2)|α)1/2(E|Zn,H(t3)− Zn,H(t2)|α)1/2

≤ C1

nαH
([nt3]− [nt2])

αH/2([nt2]− [nt1])
αH/2 ≤ C1

nαH
([nt3]− [nt1])

αH

≤ C1(t3 − t1 + 1/n)αH ,

where C1 is the constant in Lemma 13. If t3−t1 ≥ 1/n then, using the previous inequality,
we obtain the following upper bound:

E|Zn,H(t3)− Zn,H(t2)|α/2|Zn,H(t2)− Zn,H(t1)|α/2 ≤ C12
αH(t3 − t1)

αH .
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If t3 − t1 < 1/n then

E(|Zn,H(t3)− Zn,H(t2)|α/2|Zn,H(t2)− Zn,H(t1)|α/2) = 0,

since either the pair t1 and t2 or the pair t3 and t2 lies on an interval of the form [(i −
1)/n, i/n). The proof of the lemma is complete.

From Lemma 14 it follows that the family of distributions of the random processes
{Zn,H}n≥1 is tight if αH > 1 (see [12]).

Lemma 15 [76]. Let {bni;n ≥ 1, i ∈ Z} be an array of real numbers, and let {ζni;n ≥
1, i ∈ Z} be an array of random variables satisfying the following conditions:

L1. limn→∞
∑

i∈Z b
2
ni = 1;

L2. limn→∞ supi∈Z |bni| = 0;
L3. For every n ≥ 1 the sequence {ζni, i ∈ Z} consists of i.i.d. random variables with

mean zero and variance 1.
L4. limK→∞ supn≥1 Eζ2

n0I(|ζn0| > K) = 0.
Then the sums

∑
i∈Z bniζni converge in distribution to a standard Gaussian random vari-

able as n→∞.
Lemma 16. The finite-dimensional distributions of random processes Zn,H(t) con-

verge to the corresponding finite-dimensional distributions of random process B0
H(t) as

n→∞.
Proof. It suffices to prove that

∑l
i=1 ciZn,H(ti) converges in distribution to∑l

i=1 ciB
0
H(ti) for every finite set of numbers {ci; i = 1 . . . l}. So, we observe first that

zn ≡
l∑

i=1

ciZn,H(ti) =
∑
k∈Z

l∑
i=1

ciAk,n(ti)ξk.

Further (see Lemma 10)

Ez2
n =

l∑
i,j=1

cicjE(Zn,H(ti)Zn,H(tj)) →
l∑

i,j=1

cicjE
(
B0

H(ti)B
0
H(tj)

)

= E

(
l∑

i=1

ciB
0
H(ti)

)2

as n→∞.

Use the notation

δ2 = E

(
l∑

i=1

ciB
0
H(ti)

)2

, z1n = zn/δ.

Then

Ez2
1n =

∑
k∈Z

(
l∑

i=1

ci/δAk,n(ti)

)2

→ 1 as n→∞.
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Now, under the conditions of Lemma 15 put

bnk =
l∑

i=1

ci/δAk,n(ti), ζnk = ξk.

It is easy to see that, in this case, Condition L1 is valid.
Using Lemma 9 we find, as n→∞, that

sup
k

∣∣∣∣ l∑
i=1

(ciAk,n(ti))

∣∣∣∣ = O(n−H/2).

Hence, Condition L2 is valid. It is easy to verify that Conditions L3 and L4 hold as well.
So, the random variables zn converge in distribution to a normal random variable with

mean zero and variance δ2. The proof of the lemma is complete.

The claim of Theorem 2 follows from Lemmas 14 and 16.

2.5. Proof of Theorem 3. Put

γ
(n)
k = W (k/n)−W ((k − 1)/n), k ≥ 1, γ

(n)
−k = W̃ ((k + 1)/n)− W̃ (k/n), k ≥ 0.

Denote by
{
G

(n)
l , l ≥ 0

}
the corresponding partial sums of moving averages in (1) for

these Gaussian random variables
{
γ

(n)
k , k ∈ Z

}
; and by

Γn,H(t) =
G

(n)
[nt]

nH−1/2
,

the corresponding normalized partial sum process.
We split the proof into the auxiliary lemmas below.
Lemma 17 [30]. Let {ξk; k ≥ 1} be i.i.d. random variables, Eξ1 = 0,Dξ1 = 1 and

E|ξ1|α <∞ for some α > 2. Then there exists a Wiener process W such that

P
(
sup
k≤n

|
∑
j≤k

ξk/
√
n−W (k/n)| ≥ x(n)n−1/2

)
≤ Cξnx

−α(n),

where x(n) →∞ as n→∞, and the constant Cξ depends only on the distribution of ξ0.
Put

ξ
(n)
i =

ξi√
n
, i ∈ Z, S

(n)
k =

Sk√
n
, k ≥ 0;

S
(n)

k =
∞∑
i=0

(Ak+i − Ai)ξ
(n)
−i , k ≥ 0; S

(n)
0 = 0, S

(n)
k =

k∑
i=1

Ak−iξ
(n)
i , k ≥ 1;

G
(n)

k =
∞∑
i=0

(Ak+i − Ai)γ
(n)
−i , k ≥ 0; G

(n)
0 = 0, G

(n)
k =

k∑
i=1

Ak−iγ
(n)
i , k ≥ 1.
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Further, we have

S
(n)
[nt] = S

(n)

[nt] + S
(n)
[nt], G

(n)
[nt] = G

(n)

[nt] +G
(n)
[nt].

In Lemmas 18–20 below we assume the conditions of the first part of Theorem 3 to
be fulfilled.

Lemma 18. The following equality is valid:

P
(

sup
t∈[0,1]

∣∣S(n)
[nt] −G

(n)
[nt]

∣∣n−H+1/2 ≥ C1n
− α−2

2(α+1)
)
≤ Cξn

− α−2
2(α+1) .

Proof Put

σ
(n)
i =

i∑
j=1

ξ
(n)
i , %

(n)
i =

i∑
j=1

γ
(n)
i .

Using the Abel formula, we obtain the representations

S
(n)
[nt] =

[nt]∑
i=1

σ
(n)
i a[nt]−i, G

(n)
[nt] =

[nt]∑
i=1

%
(n)
i a[nt]−i.

Hence,

∣∣S(n)
[nt] −G

(n)
[nt]

∣∣ =

∣∣∣∣ [nt]∑
i=1

(σ
(n)
i − %

(n)
i )a[nt]−i

∣∣∣∣ ≤ sup
1≤i≤n

∣∣σ(n)
i − %

(n)
i

∣∣ n−1∑
i=0

|ai|

≤ sup
1≤i≤n

∣∣σ(n)
i − %

(n)
i

∣∣C1n
H−1/2.

By Lemma 17 we have

P
(

sup
t∈[0,1]

∣∣S(n)
[nt] −G

(n)
[nt]

∣∣n−H+1/2 ≥ C1n
H−1/2n−Hx)

≤ P( sup
1≤i≤n

∣∣σ(n)
i − %

(n)
i

∣∣ ≥ xn−1/2) ≤ Cξnx
−α.

Letting x = n
3

2(α+1) we arrive at the claim of the lemma.
Lemma 19. For all n ≥ N the following inequality is valid:

P
(

sup
t∈[0,1]

∣∣S(n)

[nt] −G
(n)

[nt]

∣∣n−H+1/2 ≥ n−
α−2

2(α+1) (2H+3/2C1 + C(1− 2H−3/2+1/α)−2)
)

≤ Cξn
− α−2

2(α+1) (1 + α/(α− 1)).

Proof. We have

S
(n)

[nt] =
n−1∑
i=0

(A[nt]+i − Ai)ξ
(n)
−i +

∞∑
i=n

(A[nt]+i − Ai)ξ
(n)
−i . (37)
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We now represent the second summand on the right-hand side (37) as

∞∑
i=n

(A[nt]+i − Ai)ξ
(n)
−i =

∞∑
k=1

n2k−1∑
i=n2k−1

(A[nt]+i − Ai)ξ
(n)
−i .

Put

S
(k−1)
i (n) =

i∑
j=n2k−1

ξ
(n)
−j , G

(k−1)
i (n) =

i∑
j=n2k−1

γ
(n)
−j , i = n2k−1, . . . , n2k − 1.

Further, by the Abel formula we obtain

n2k−1∑
i=n2k−1

(A[nt]+i − Ai)ξ
(n)
−i =

n2k−2∑
i=n2k−1

(ai+1 − a[nt]+i+1)S
(k−1)
i (n)

+(A[nt]+n2k−1 − An2k−1)S
k−1
n2k−1

(n).

Thus, ∣∣∣∣∣
n2k−1∑

i=n2k−1

(A[nt]+i − Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣∣
≤ sup

n2k−1≤i≤n2k−1

∣∣S(k−1)
i (n)−G

(k−1)
i (n)

∣∣(An2k−1 − An2k−1

−(A[nt]+n2k−1 − A[nt]+n2k−1) + A[nt]+n2k−1 − An2k−1)

= sup
n2k−1≤i≤n2k−1

∣∣S(k−1)
i (n)−G

(k−1)
i (n)

∣∣(A[nt]+n2k−1 − An2k−1).

Since an ≤ CnH−3/2; therefore,

A[nt]+n2k−1 − An2k−1 ≤ Cn(n2k−1)H−3/2 = CnH−1/22(k−1)(H−3/2).

So, ∣∣∣∣ n2k−1∑
i=n2k−1

(A[nt]+i − Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣
≤ sup

n2k−1≤i≤n2k−1

∣∣S(k−1)
i (n)−G

(k−1)
i (n)

∣∣CnH−1/22(k−1)(H−3/2).

Hence (see Lemma 17),

P

(
sup

t∈[0,1]

∣∣∣∣ n2k−1∑
i=n2k−1

(A[nt]+i −Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣n−H+1/2 ≥ Cn−1/22(k−1)(H−3/2)x(2k−1)1/αk
1+ε
α

)

≤ P
(

sup
n2k−1≤i≤n2k−1

∣∣S(k−1)
i (n)−G

(k−1)
i (n)

∣∣ ≥ x√
n

(2k−1)1/αk
1+ε
α

)
≤ Cξ

n

xαk1+ε
.
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Therefore,

P

(
sup

t∈[0,1]

∣∣∣∣ ∞∑
i=n

(A[nt]+i − Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣n−H+1/2

≥ C
x√
n

∞∑
k=1

2(k−1)(H−3/2+1/α)k
1+ε
α

)
≤ Cξ

n

xα

∞∑
k=1

1

k1+ε
.

Putting ε = α− 1 and x = n
3

2(α+1) and using the elementary facts

∞∑
k=1

1

kα
≤ α

α− 1
,

∞∑
k=1

k2(k−1)(H−3/2+1/α) = (1− 2H−3/2+1/α)−2,

we obtain the inequality

P

(
sup

t∈[0,1]

∣∣∣∣ ∞∑
i=n

(A[nt]+i − Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣n−H+1/2 ≥ Cn−
α−2

2(α+1) (1− 2H−3/2+1/α)−2

)

≤ Cξn
− α−2

2(α+1)α/(α− 1). (38)

We now study the first summand on the right-hand side of (37). Put

σ
(n)
i =

i∑
j=0

ξ
(n)
−j , %

(n)
i =

i∑
j=0

γ
(n)
−j , i = 0, . . . , n− 1.

Using the Abel formula once again we have

n−1∑
i=0

(A[nt]+i − Ai)ξ
(n)
−i =

n−2∑
i=0

σ
(n)
i (ai+1 − a[nt]+i+1) + σ

(n)
n−1(A[nt]+n−1 − An−1);

n−1∑
i=0

(A[nt]+i − Ai)γ
(n)
−i =

n−2∑
i=0

%
(n)
i (ai+1 − a[nt]+i+1) + %

(n)
n−1(A[nt]+n−1 − An−1).

Therefore, ∣∣∣∣ n−1∑
i=0

(A[nt]+i − Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣ ≤ 4 sup
0≤i≤n−1

∣∣σ(n)
i − %

(n)
i

∣∣ 2n−1∑
i=0

|ai|.

By the conditions of Theorem 3,

2n−1∑
i=0

|ai| ≤ C12
H−1/2nH−1/2.

So,

P

(
sup

t∈[0,1]

∣∣∣∣ n−1∑
i=0

(A[nt]+i − Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣n−H+1/2 ≥ xC12
H+3/2nH−1/2n−H

)
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≤ P
(

sup
0≤i≤n−1

∣∣σ(n)
i − %

(n)
i

∣∣ ≥ xnH−1/2n−H
)
≤ Cξnx

−α.

Letting x = n
3

2(α+1) we obtain the upper bound

P

(
sup

t∈[0,1]

∣∣∣∣ n−1∑
i=0

(A[nt]+i−Ai)
(
ξ

(n)
−i −γ

(n)
−i

)∣∣∣∣n−H+1/2 ≥ C12
H+3/2n−

α−2
2(α+1)

)
≤ Cξn

− α−2
2(α+1) . (39)

Finally, combining inequalities (38) and (39) we infer the claim of Lemma 19.

Lemmas 18 and 19 imply the following
Lemma 20. There exists a probability space such that

P( sup
t∈[0,1]

|Zn,H(t)− Γn,H(t)| ≥ n−
α−2

2(α+1) (C1(2
H+3/2 + 1) + C(1− 2H−3/2+1/α)−2))

≤ Cξn
− α−2

2(α+1) (2 + α/(α− 1))

for all n ≥ N .
In Lemmas 21–23 we assume the conditions of the second part of Theorem 3 to be

fulfilled.
Lemma 21. The following inequality is valid:

P
(

sup
t∈[0,1]

∣∣S(n)
[nt] −G

(n)
[nt]

∣∣n−H+1/2) ≥ C1n
−αH−1

α+1

)
≤ Cξn

−αH−1
α+1 .

Proof Put

σ
(n)
i =

i∑
j=1

ξ
(n)
i , %

(n)
i =

i∑
j=1

γ
(n)
i .

Then ∣∣S(n)
[nt] −G

(n)
[nt]

∣∣ =

∣∣∣∣ [nt]∑
i=1

(
σ

(n)
i − %

(n)
i

)
a[nt]−i

∣∣∣∣
≤ sup

1≤i≤n

∣∣σ(n)
i − %

(n)
i

∣∣ [nt]−1∑
i=0

|ai| ≤ sup
1≤i≤n

∣∣σ(n)
i − %

(n)
i

∣∣C1.

Whence using Lemma 17, we deduce the upper bound

P
(

sup
t∈[0,1]

∣∣S(n)
[nt] −G

(n)
[nt]

∣∣n−H+1/2 ≥ C1n
−Hx

)
≤ P

(
sup

1≤i≤n

∣∣σ(n)
i − %

(n)
i

∣∣ ≥ xn−1/2
)
≤ Cξnx

−α.

Letting x = n
H+1
α+1 we arrive at the claim of the lemma.
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Lemma 22. The following inequality holds:

P
(

sup
t∈[0,1]

∣∣S(n)

[nt] −G
(n)

[nt]

∣∣n−H+1/2 ≥ 4C1n
−αH−1

α+1 + Cn−
α−2

2(α+1) (1− 2H−3/2+1/α)−2
)

≤ Cξn
−αH−1

α+1 + Cξn
− α−2

2(α+1)α/(α− 1)

for all n ≥ N .
Proof. Consider the second summand on the right-hand side of (37) for which the

Gaussian approximation is deduced by analogy with that in the proof of Lemma 19:

P

(
sup

t∈[0,1]

∣∣∣∣ ∞∑
i=n

(A[nt]+i − Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣n−H+1/2 ≥ Cn−
α−2

2(α+1) (1− 2H−3/2+1/α)−2

)

≤ Cξn
− α−2

2(α+1)α/(α− 1) (40)

for all n ≥ N . We now consider the first summand on the right-hand side of (37). As in
the proof of Lemma 19, put

σ
(n)
i =

i∑
j=0

ξ
(n)
−j , %

(n)
i =

i∑
j=0

γ
(n)
−j , i = 0, . . . , n− 1.

By the Abel formula we obtain the representations

n−1∑
i=0

(A[nt]+i − Ai)ξ
(n)
−i =

n−2∑
i=0

σ
(n)
i (ai+1 − a[nt]+i+1) + σ

(n)
n−1(A[nt]+n−1 − An−1);

n−1∑
i=0

(A[nt]+i − Ai)γ
(n)
−i =

n−2∑
i=0

%
(n)
i (ai+1 − a[nt]+i+1) + %

(n)
n−1(A[nt]+n−1 − An−1).

Therefore, ∣∣∣∣∣
n−1∑
i=0

(A[nt]+i − Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣∣ ≤ 4 sup
0≤i≤n−1

∣∣σ(n)
i − %

(n)
i

∣∣ 2n−1∑
i=0

|ai|.

Since
∑2n−1

i=0 |ai| ≤ C1, we have

P

(
sup

t∈[0,1]

∣∣∣∣∣
n−1∑
i=0

(A[nt]+i − Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣∣n−H+1/2 ≥ 4xC1n
−H

)

≤ P
(

sup
0≤i≤n−1

∣∣σ(n)
i − %

(n)
i

∣∣n−H+1/2 ≥ xn−H
)
≤ Cξnx

−α.

Letting x = n
H+1
α+1 we obtain the estimate

P

(
sup

t∈[0,1]

∣∣∣∣ n−1∑
i=0

(A[nt]+i − Ai)
(
ξ

(n)
−i − γ

(n)
−i

)∣∣∣∣n−H+1/2 ≥ 4C1n
−αH−1

α+1

)
≤ Cξn

−αH−1
α+1 . (41)
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Combining (40) and (41), we complete the proof.

As a consequence of Lemmas 21 and 22 we obtain the following
Lemma 23. There exists a probability space such that

P( sup
t∈[0,1]

|Zn,H(t)− Γn,H(t)| ≥ 5C1n
−αH−1

α+1 + Cn−
α−2

2(α+1) (1− 2H−3/2+1/α)−2)

≤ 2Cξn
−αH−1

α+1 + Cξn
− α−2

2(α+1)α/(α− 1)

for all n ≥ N .
Introduce the sequence of random variables

B
(n)
0 = 0, B

(n)
k =

k∑
i=1

(k − i+ 1)H−1/2γ
(n)
i

+
∞∑
i=0

((k + i+ 1)H−1/2 − (i+ 1)H−1/2)γ
(n)
−i , k ≥ 1.

Lemma 24. The following inequality is valid:

P
(

sup
t∈[0,1]

n−H+1/2
∣∣G(n)

[nt] −B
(n)
[nt]

∣∣ ≥ n−H
√

2δn(H + 1) log n
)
≤ n−H .

Proof. We have

P
(
max

{
n−H+1/2

∣∣G(n)
1 −B

(n)
1

∣∣, . . . , n−H+1/2
∣∣G(n)

n −B(n)
n

∣∣} ≥ n−Hψn

)
≤

n∑
k=1

P
(∣∣G(n)

k −B
(n)
k

∣∣ ≥ n−1/2ψn

)
≤ n exp

(
−ψ2

n/2δn
)
.

Putting
ψn =

√
2δn(H + 1) log n

we complete the proof.
Lemma 25. The following inequality is valid:

P
(

sup
t∈[0,1]

∣∣Bn
[nt]n

−H+1/2 −B0
H([nt]/n)

∣∣ ≥ 8n−H
√

2Υ0
H(H + 1) log n

)
≤ n−H .

Proof. First of all we note that the value B
(n)
k /nH−1/2 can be represented as the

stochastic integral

k/n∫
0

(k/n− [ns]/n)H−1/2dW (s) +

∞∫
0

((k/n+ ([ns] + 1)/n)H−1/2

159



−(([ns] + 1)/n)H−1/2)dW̃ (s).

Then (see the proof of Lemma 4),

n2HE
(
B0

H(k/n)− n1/2−HBn
k

)2 ≤ 64Υ0
H , 0 ≤ k ≤ n.

Putting ψn = 8
√

2Υ0
H(H + 1) log n, we complete the proof.

Lemma 26. The following inequality is valid:

P
(

sup
t∈[0,1]

∣∣B0
H(t)−B0

H([nt]/n)
∣∣ ≥ 2

√
2σn−HCH

√
(H + 1) log n

)
≤ 4n−H ,

where CH =
∑∞

k=1 2−kHk1/2.
Proof. We have

sup
t∈[0,1]

∣∣B0
H(t)−B0

H([nt]/n)
∣∣ = max

k=1...n

{
sup

t∈[ k−1
n

, k
n

]

∣∣B0
H(t)−B0

H([nt]/n)
∣∣}.

Using the stationarity of the increments of the process B0
H(t) as well as its H-homogeneity

(i.e., B0
H(nt)

d→ nHB0
H(t)) and the upper bound E(B0

H(t) − B0
H(s))2 ≤ σ2|t − s|H (see

Lemma 5), we deduce the following estimate:

P
(

sup
t∈[0,1]

∣∣B0
H(t)−B0

H([nt]/n)
∣∣ ≥ n−Hψn

)
≤

n∑
k=1

P
(

sup
t∈[ k−1

n
, k
n

]

∣∣B0
H(t)−B0

H([nt]/n)
∣∣ ≥ n−Hψn

)
≤ nP

(
sup

t∈[0, 1
n

)

∣∣B0
H(t)

∣∣ ≥ n−Hψn

)
= nP

(
sup

t∈[0,1]

∣∣B0
H(t)

∣∣ ≥ ψn

)
≤ 4n exp

(
−C−2

H ψ2
n/σ

2
)
.

Putting ψn = 2
√

2σCH

√
(H + 1) log n, we complete the proof.

Lemmas 24–26 yield
Lemma 27. For all H ∈ (0, 1) we have the inequality

P
(

sup
t∈[0,1]

∣∣n−H+1/2G
(n)
[nt] −B0

H(t)
∣∣

≥ n−H
√

(H + 1) log n(8
√

2Υ0
H +

√
2δn + 2

√
2σCH)

)
≤ 6n−H .

The claim of Theorem 3 follows from Lemmas 20, 23, and 27.

2.6. Proof of Proposition 3. Introduce the notations:

α0 = a0 − σL
−1/2
H , αn = an − σL

−1/2
H ((n+ 1)H−1/2 − nH−1/2), n ≥ 1;
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βn = An − σL
−1/2
H (n+ 1)H−1/2, n ≥ 0.

Prove item (i). Note that in the case under consideration we have

∆n =
∞∑

m=0

(βn+m − βm)2 +
n−1∑
m=0

β2
m. (42)

Denote by ∆
(1)
n the first sum on the right-hand side of (42); and by ∆

(2)
n , the second sum.

We have

∆(1)
n ≤ 2

∞∑
m=0

β2
n+m + 2

∞∑
m=0

β2
m = 2

∞∑
m=n

β2
m + 2

∞∑
m=0

β2
m.

Therefore,

∆n ≤ 4
∞∑

m=0

β2
m <∞.

We now prove item (ii). We have

∆
(2)
[nt] = α2

0 +

[nt]−1∑
l=1

β2
l ≤ α2

0 + ψn = O(n2β) as n→∞,

where ψn = O(
∑n−1

l=1 l
2β−1) = O(n2β) (see the conditions of Proposition 3). Represent the

value ∆
(1)
[nt] as follows:

∆
(1)
[nt] =

∞∑
m=0

(β[nt]+m − βm)2 =
n−1∑
m=0

(β[nt]+m − βm)2 +
∞∑

m=n

(β[nt]+m − βm)2. (43)

Estimate the first summand on the right-hand side of (43):

n−1∑
m=0

(β[nt]+m − βm)2 ≤ 4

n+[nt]−1∑
m=0

β2
m ≤ 4

2n−1∑
m=0

β2
m = O(n2β) as n→∞.

We now estimate the second summand on the right-hand side of (43):

|β[nt]+m − βm| ≤
[nt]+m∑
l=m+1

|αl| ≤ C[nt]mγ−3/2, m ≥ 1;

∞∑
m=n

(β[nt]+m − βm)2 = O

(
n2

∞∑
m=n

m2γ−3

)
= O(n2γ) as n→∞,

where C is a positive constant. So, δn = O(nmax{2γ,2β}) as n→∞ which was to be proved.
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[57] Harremoës, P. and Ruzankin, P. S., 2004, Rate of convergence to Poisson law
in term of information divergence. IEEE Trans. Inform. Theory, 50 (9), 2145–2149.

[58] Hipp, C Edgeworth expansions for integrals of smooth functions. Ann. Probab., 5,
No. 6, 1004–1011 (1977).

[59] Hoeffding, W. A class of statistics with asymptotically normal distribution, Ann.
Math. Statist., 1948, Vol. 19, p. 293–325.

165



[60] Hoeffding, W. (1956). On the distribution of the number of successes in indepen-
dent trials. Ann. Math. Statist. 27 713–721.

[61] Hoeffding, W. The strong law of large numbers for U -statistics, 1961, Univ.
North Carolina Inst. Statist. Mimeo. Series, Vol. 302.
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