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ON TRANSIENCE CONDITIONS FOR

MARKOV CHAINS AND RANDOM WALKS

D. È. Denisov and S. G. Foss UDC 519.21

Abstract: We prove a new transience criterion for Markov chains on an arbitrary state space and give
a corollary for real-valued chains. We show by example that in the case of a homogeneous random walk
with infinite mean the proposed sufficient conditions are close to those necessary. We give a new proof
of the well-known criterion for finiteness of the supremum of a random walk.
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1. Introduction

This paper is a continuation of [1]. Let X = {Xn}n≥0, X0 = const, be a Markov chain (MC) time-
inhomogeneous in general and taking values in a measurable space (X , B), and let L : X → [0,∞) be
a measurable unbounded function. We study conditions under which

L(Xn)→∞ a.s. as n→∞ (1.1)

for every initial state X0. If (1.1) holds then we say that the chain is L-transient or, simply, transient.

In the case of countable MCs, conditions for transience are given in [2] under the additional assump-
tion that the jumps are bounded. In [1], conditions for transience of an MC on an arbitrary state space
were proposed in the case of possibly unbounded jumps.

We introduce some conventions and definitions. We assume that the MC {Xn} can be represented
as a stochastic recursive sequence (SRS)

Xn+1 = fn(Xn, αn), n ≥ 0,

where {αn} is a sequence of independent random variables uniformly distributed in [0, 1] and fn : X ×
[0, 1]→ X are measurable functions (the assumption that an MC can be represented as SRS is not too

restrictive, see e.g. [3]). Then, for m = 0, 1, . . . , we can define an MC
{
X
(x,m)
m+n

}
n≥0

by the initial value

X
(x,m)
m = x and the recursion

X
(x,m)
m+n+1 = fm+n

(
X
(x,m)
m+n , αm+n

)
for n = 0, 1, . . . .

Further, let ∆x,m = L
(
X
(x,m)
m+1

)
− L(x). Given a number N > 0, we define the random variables

τx,m(N) = min
{
n ≥ 1 : L

(
X
(x,m)
m+n

)
≥ N

}
.

Write a+ = max(a, 0) and a− = −min(a, 0). Denote by H the class of measurable functions h : [1,∞)

→ [1,∞) such that the integral
∫∞
1 (h(t))

−1 dt converges and the function g(t) = h(t)
t is nondecreasing

and concave.
We recall the main result of [1].
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Theorem 1.1. Suppose that there exist numbers N > 0, ε > 0, and M > 0 and a function h ∈ H

such that

(1) τx,m(N) <∞ a. s. for all x ∈ X and m ≥ 0;
(2) for all m = 0, 1, 2, . . . and all x ∈ X such that L(x) ≥ N , the following holds:

E{∆x,m · I(∆x,m ≤M)} ≥ ε;

(3) the family of the random variables {h(∆−x,m);m ≥ 0, L(x) ≥ N} is uniformly integrable.

Then for every x ∈X and every m ≥ 0

P
(
lim
n→∞

L
(
X
(x,m)
m+n

)
=∞

)
= 1. (1.2)

Note that condition (2) of Theorem 1.1 holds only if E∆−x,m <∞ for all x and m. In Section 2 of this

paper, we prove an analogous assertion which is also applicable in the case E∆−x,m =∞ (Theorem 2.1).
Then in Theorem 2.2 we give a more general transience criterion which contains the assertions of Theo-
rems 1.1 and 2.1 as particular cases. Further we show in Remark 4 that condition (1) of Theorem 2.1 is
essential.

In Section 3, we state corollaries to Theorem 2.1 for real-valued Markov chains (Theorem 3.1 and
Corollary 3.1). Then we recall the well-known criteria for a homogeneous random walk to tend to infinity
(Theorems 3.3 and 3.4) and show by example that the sufficient conditions in Theorem 2.1 are close to
those necessary. In the Appendix, we give proofs of Theorem 3.1 and Corollary 3.1 as well as new proofs
of Theorems 3.3 and 3.4.

2. Statements and Proofs of Transience Criteria

Theorem 2.1. Suppose that there exist numbers N > 0, ε > 0, and M > 0 and a measurable

function h ∈ H such that

(1) for all x ∈ X and m ≥ 0,

lim sup
n→∞

L
(
X
(x,m)
m+n

)
=∞ a.s.;

(2) for all m = 0, 1, 2, . . . and all x ∈ X such that L(x) ≥ N , the following inequality holds:

Emin
(
∆+x,m,M

)
≥ (1 + ε)Emin

(
∆−x,m,M

)
;

(3) g(M) ≥ 1 + ε, and for all m = 0, 1, 2, . . . , all x ∈ X such that L(x) ≥ N , and all t ≥M ,

P(∆x,m > t) ≥ g(t)P(∆x,m < −t).

Then for every x ∈X and every m ≥ 0

P
(
lim
n→∞

L
(
X
(x,m)
m+n

)
=∞

)
= 1. (2.1)

Remark 1. We assume that g is concave and nondecreasing (see above) to simplify the statement.
This assumption is technical and may be relaxed in various ways. For example, the assumption of
concavity of the function can be replaced by the assumption of its “slow variation.”

Remark 2. For the class of so-called ψ-irreducible MCs, the following general transience criterion
is known (see, e.g., [4, p. 174] for both the result and the definition of ψ-irreducibility). Suppose that

an MC X is ψ-irreducible. It is transient if and only if there exist a bounded nonnegative function V
and a set C with ψ(C) > 0 such that

E(V (X1)− V (x)) ≥ 0
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for all x /∈ C and ψ(D) > 0, where D = {x : V (x) > supy∈C V (y)}.
Theorem 1.1 and Theorem 2.1 can be regarded as constructive analogs of this criterion: In these

theorems, we construct the function V explicitly (namely, Yn = V
(
Xx
n

)
where Yn is defined in (2.4)).

Remark 3. The following example shows that condition (1) in Theorem 2.1 is not superfluous; i.e.,
conditions (2) and (3) do not imply (1) in general.

Let{ξn}n≥0 be independent identically distributed random variables. Define the distribution of ξ1 as
follows: for t ≥ e

P(ξ1 > t) =
1

2 log t
, P(ξ1 < −t) =

1

2 log3 t
.

Define the MC {X(n)}n≥0 on the real axis by X(0) = x0 and if X(n) = x ≡ l + y, where l is an integer

and 0 ≤ y < 1. Then X(n + 1) = l + 1+y
2 with probability 3

4py, X(n + 1) = l + (1 − 2(1 − y))+ with

probability 14py, and X(n+ 1) = x+ ξn with probability qy ≡ 1− py. Assume that 1 > qy > 0 decreases
in y ∈ [0, 1) and

∞∑

k=0

q1−2−k <∞.

It is not difficult to verify that this MC satisfies conditions (2) and (3) of Theorem 2.1 for L(x) = x+,
M = 10, and N = 0. We show that supX(n) < ∞ a.s. To this end, it suffices to show that, with
probability 1, only finitely many events {|X(n + 1) −X(n)| > 1} occur. In turn, this happens if there
exists α > 0 such that, for every initial value X(0) = x0 ∈ [0, 1), we have P(X(n) ∈ [0, 1) for all n) ≥ α.
In view of monotonicity of qx, it is sufficient to show that this probability is positive when x0 = 0.

We have
P(X(n+ 1) ∈ [0, 1) | X(n) = x ∈ [0, 1)) = px.

Introduce the auxiliary Markov chain: X̃(0) = 0 and if X̃(n) = 1− 2−m then X̃(n+1) = 1− 2−m−1 with

probability 34 and X̃(n+ 1) = (1− 2
−m+1)+ with probability 14 . Then we may take

α = E
(∏

n≥0

p
X̃(n)

)
. (2.2)

Let the function L be such that L(1 − 2−m) = m for all nonnegative integers m. Then Yn = L(X̃(n)),
n ≥ 0, is a random walk with reflection at zero: Y (n+1) = Y (n) + 1 with probability 34 and Y (n+1) =

(Y (n)− 1)+ with probability 14 . Therefore,

Y (n)

n
→
1

2
a.s.

and Eη(k)→ 2, where

η(k) =
∞∑

n=0

I(Y (n) = k) =
∞∑

n=0

I(X̃(n) = 1− 2−k).

Then

α = E

∞∏

k=0

p
η(k)

1−2−k = E
(
exp

(∑

k

η(k) log p1−2−k

))

and α is positive if ∑

k

η(k)q1−2−k <∞ a.s.

The latter is implied by convergence of the series∑

k

Eη(k)q1−2−k .

Remark 4. Verification of condition (1) of Theorem 2.1 is difficult. Therefore, it is useful to give
sufficient conditions for (1) to hold.
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Lemma 2.1. Suppose that there exist numbers N > 0, δ > 0, and d > 0 such that

(1) τx,m(N) <∞ a.s. for all x ∈ X and m ≥ 0;
(2) for all m = 0, 1, 2, . . . and all x ∈ X such that L(x) ≥ N

P (∆x,m ≥ d) ≥ δ.

Then for every nonnegative integer m and every x ∈ X

P
(
lim sup

n→∞
L
(
X
(x,m)
m+n

)
=∞

)
= 1. (2.3)

We omit the proof of the lemma since it repeats almost word for word that of Lemma 2.1 in [1].

Proof of Theorem 2.1. The first part of the proof is almost the same as that of Theorem 1.1
(see [1]). The proof is the same for all m ≥ 0; so we restrict exposition to the case m = 0.

Pick an arbitrary x ∈ X and let C > 0. Define

Yn =

∞∫

1+
(L(X

(x)
n )−N)+

C

dt

h(t)
. (2.4)

It is sufficient to prove that for a suitable choice of C > 0

the sequence {Yn}n≥0 forms a positive supermartingale. (2.5)

Indeed, if this is the case then by the familiar theorem the sequence {Yn} converges a.s. and, by condition

(1) of the theorem, the latter is equivalent to the convergence L
(
X
(x)
n

)
→∞ a.s.

We thus prove (2.5). Since we consider a Markov chain, it is enough to show that the inequality

E
{
Yn+1 − Yn | X

(x)
n

}
≤ 0 a.s. (2.6)

is valid for all n.
The proof of (2.6) is carried out for all n in a similar way. Therefore, to simplify notation, we confine

exposition to the case n = 0.
The inequality E{Y1 − Y0} ≤ 0 is obvious when x is such that L(x) ≤ N . Therefore, we further

consider only the case z ≡ L(x)−N = const > 0. Let

A(x) = Y1 − Y0 =

1+z/C∫

1+(z+∆x)+/C

dt

h(t)
,

where ∆x ≡ ∆x,0. Then

E(A(x)) =

+∞∫

−∞

1+z/C∫

1+(z+u)+/C

dt

h(t)
P(∆x ∈ du).

Integrating this expression by parts we obtain

E ≡ CE(A(x)) = −

∞∫

0

P(∆x > u)

h(1 + z+u
C )

du+

z∫

0

P(∆x < −u)

h(1 + z−u
C )

du.

It is sufficient to show that E ≤ 0.
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We introduce the convention 0/0 = 1/0 =∞ and rewrite condition (2) in the more convenient form:

Emin(∆+x ,M)

Emin(∆−x ,M)
=

M∫
0

P(∆x > u) du

M∫
0

P(∆x < −u) du

≥ 1 + ε. (2.7)

In the proof we need some positive constants r, R and the constant C to satisfy several constraints. Let

T (α) = sup
t≥0

g(1 + αt)

g(1 + t)
, α > 1

(the concavity of g implies finiteness of the number T (α) for all α > 1 and the convergence T (α) → 1
as α→ 1).

Choose R ∈ (0, 1) so small that
h(1 + 2R)

h(1)
≤ 1 + ε, (2.8)

and choose r ∈ (0, 1) so small that for α = 1+r
1−r

(αT (α)− 1) ≤ ε. (2.9)

Note that since h ∈ H , we have

1 ≤
h(1 + αt)

h(1 + t)
=
1 + αt

1 + t

g(1 + αt)

g(1 + t)
≤ αT (α)

for all α > 1 and t > 0; hence (2.9) implies

h(1 + (1 + r)u)

h(1 + (1− r)u)
≤ 1 + ε (2.10)

for every u > 0 (put t = (1− r)u).
Now, pick C so large that the following inequalities hold:

g(rRC/2) ≥ 2(1 + ε) (2.11)

and

C >
max(M, 1 +R(1 + r), 16K)

Rr
(2.12)

where K =
∫∞
1 (h(t))

−1 dt.
We now consider the two cases: (a) 0 < z ≤ RC and (b) z > RC.
In the first case, estimate E from above as

E ≤ −

RC∫

0

P(∆x > u)

h(1 + z+u
C )

du+

RC∫

0

P(∆x < −u)

h(1 + z−u
C )

du ≡ E1 + E2 + E3 + E4,

where

E1 = −

RC∫

M+0

P(∆x > u)

h(1 + z+u
C )

du, E2 = −

M∫

0

P(∆x > u)

h(1 + z+u
C )

du,

E3 =

M∫

0

P(∆x < −u)

h(1 + z−u
C )

du, E4 =

RC∫

M+0

P(∆x < −u)

h(1 + z−u
C )

du.
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In view of monotonicity of h, these quantities admit the following upper bounds:

E1 ≤ −
1

h(1 + 2R)

RC∫

M+0

P(∆x > u) du, E2 ≤ −
1

h(1 + 2R)

M∫

0

P(∆x > u) du,

E3 ≤
1

h(1)

M∫

0

P(∆x < −u) du, E4 ≤
1

h(1)

RC∫

M+0

P(∆x < −u) du.

By inequality (2.8) and condition (3),

E1 + E4 ≤

RC∫

M+0

(
−
P(∆x > u)

(1 + ε)h(1)
+
P(∆x > u)

g(u)h(1)

)
du ≤ 0.

By inequalities (2.8) and (2.7),

E2 + E3 ≤

M∫

0

(
−
P(∆x > u)

(1 + ε)h(1)
+
P(∆x < −u)

h(1)

)
du ≤ 0.

Hence, we obtain E ≤ 0, as required.
In the second case, we have

E ≤

( rz∫

0

+

z∫

rz+0

)(
−
P(∆x > u)

h(1 + z+u
C )

+
P(∆x < −u)

h(1 + z−u
C )

)
du ≡ J1 + J2.

By the monotonicity of h, the first summand may be estimated as follows:

J1 ≤

rz∫

0

(
−
P(∆x > u)

h(1 + z+rz
C )

+
P(∆x < −u)

h(1 + z−rz
C )

)
du.

Inequality (2.10) implies that

J1 ≤
1

h(1 + z+rz
C )

rz∫

0

(−P(∆x > u) + (1 + ε)P(∆x < −u)) du.

Represent the last integral as a sum of three integrals and estimate them. By (2.7),

M∫

0

(−P(∆x > u) + (1 + ε)P(∆x < −u)) du ≤ 0.

From condition (3) of the theorem, we have

rz/2∫

M+0

(−P(∆x > u) + (1 + ε)P(∆x < −u)) du ≤ 0.

In view of the monotonicity of g and (2.11), for z > RC

g(rz/2) ≥ g(rRC/2) ≥ 2(1 + ε),
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and thus
rz∫

rz/2+0

(−P(∆x > u)/2 + (1 + ε)P(∆x < −u)) du ≤ 0.

As a result, we obtain the upper bound

J1 ≤ −
1

2h(1 + z+rz
C )

rz∫

rz/2

P(∆x < −u) du ≤ −
rzP(∆x < −rz)

4h(1 + z+rz
C )

. (2.13)

For J2, we have the following inequality:

J2 ≤ KP(∆x > rz). (2.14)

It follows from (2.12) that g(rz) ≥ g(1 + z(1 + r)/C). Indeed, the function g is nondecreasing and, since
z > RC,

rz − (1 + z(1 + r)/C) = z
rC − (1 + r)

C
− 1 > RrC −R(1 + r)− 1 > 0.

It follows from (2.13) and (2.14) that

E ≤ −
rzP(∆x < −rz)

4(1 + z+rz
C )g(rz)

+KP(∆x > rz).

Furthermore, since R < 1, r < 1, and z > RC, we have the inequality rz/4(1+(z+ rz)/C) > K. Indeed,

rz − 4K(1 + z(1 + r)/C) > (r − 8K/C)z − 4K > rRC/2− 4K > 0

by (2.12). Hence,

E ≤ −K
P(∆x < −rz)

g(rz)
+KP(∆x > rz) ≤ 0

by condition (3). Theorem 2.1 is thus proved.
We now combine Theorems 1.1 and 2.1. Denote the distribution of the r.v. ∆x,m by µx,m(·) =

P(∆x,m ∈ ·).

Theorem 2.2. Suppose that condition (1) of Theorem 2.1 holds. Suppose further that for all x ∈ X

and all m = 0, 1, 2, . . . there exists a representation

µx,m = c(1)x,mµ
(1)
x,m + c

(2)
x,mµ

(2)
x,m,

where µ
(1)
x,m and µ

(2)
x,m are probability measures, c

(1)
x,m, c

(2)
x,m ≥ 0, c

(1)
x,m + c

(2)
x,m = 1, and that there exist

numbers N > 0, ε > 0, and M > 0 and a function h ∈ H such that

(a) the random variables ∆
(1)
x,m with distribution µ

(1)
x,m satisfy conditions (2) and (3) of Theorem 1.1;

(b) the random variables ∆
(2)
x,m with distribution µ

(2)
x,m satisfy conditions (2) and (3) of Theorem 2.1.

Then for every x ∈X and every m ≥ 0

P
(
lim
n→∞

L
(
X
(x,m)
m+n

)
=∞

)
= 1. (2.15)

Proof. As in the proof of Theorem 2.1, it is sufficient to show that the inequality E (Y1 − Y0) ≤ 0
holds, where

Y0 =

∞∫

1+
(L(x)−N)+

C

dt

h(t)
, Y1 =

∞∫

1+
(L(X

(x)
1

)−N)+

C

dt

h(t)
.
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Let

A(x, u) =

1+
(L(x)−N)+

C∫

1+
(L(u)−N)+

C

dt

h(t)
.

Then

E{Y1 − Y0} =

+∞∫

−∞

A(x, u)µ(du) = c(1)
+∞∫

−∞

A(x, u)µ(1)(du) + c(1)
+∞∫

−∞

A(x, u)µ(2)(du),

where the first integral is nonnegative by Theorem 1.1 and the second is nonnegative by Theorem 2.1.
Theorem 2.2 is thus proved.

3. Markov Chains on the Real Axis (Random Walks)

Corollaries to Theorem 2.1. We now assume that the MC X is time-homogeneous and real-valued
(i.e., it is a random walk). Following the traditional notation, we write Sn instead of Xn. We define the

random walk S
(x)
n recursively by

S
(x)
0 = x, S

(x)
n+1 = S(x)n + ξn,Sn

,

where {ξn,y} is a family of independent random variables and the distribution of ξn,y does not depend

on n. The random walk S
(x)
n is homogeneous if {ξn,y} is a family of independent identically distributed

random variables. In this case, the index y may be omitted.
For the test function L(x) = x+, Theorem 2.1 implies the following

Theorem 3.1. Suppose that there exist numbers N > 0 and M > 0 and a measurable function

h ∈ H such that

(1) for all x, with probability 1,

lim sup
n→∞

S(x)n =∞; (3.1)

(2) as y →∞
inf
x≥N

Emin
(
ξ+x , y

)
→∞; (3.2)

(3) for all x ≥ N and t ≥M , the following inequalities hold:

P(ξx > t) ≥
h(t)

t
P(ξx < −t).

Then for all x
P
(
lim
n→∞

S(x)n =∞
)
= 1. (3.3)

In the case of a homogeneous random walk Theorem 3.1 implies the following

Corollary 3.1. Let Eξ+1 = Eξ−1 = ∞, and let there exist a number N > 1 and a function h ∈ H

such that for every t > N
P(ξ1 > t)

P(ξ1 < −t)
≥
h(t)

t
. (3.4)

Then

P( lim
n→∞

Sn =∞) = 1. (3.5)

We give proofs of these results in the Appendix.
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Classification of homogeneous random walks with infinite mean. The first edition of Feller’s
textbook contained the following assertion: if Eξ+1 = Eξ−1 =∞ then lim supSn =∞ and lim inf Sn = −∞
a.s. (see [5, II, Chapter XII.2, Theorem 2]). However, Rogozin [6] showed (by an example with stable
distributions) that this assertion is incorrect.

Let us recall the well-known classification of homogeneous random walks (see [7, Chapter XII.2,
Theorem 1]). Let τ+ = inf{n > 0 : Sn ≥ 0} and τ− = inf{n ≥ 0 : Sn < 0}.

Theorem 3.2. There are exactly three possibilities:

(a) limSn =∞ a.s.; in this case

Eτ+ <∞ and P(τ− =∞) > 0;

(b) limSn = −∞ a.s.; in this case

Eτ− <∞ and P(τ+ =∞) > 0;

(c) lim supSn =∞ and lim inf Sn = −∞ a.s.; in this case

Eτ+ = Eτ− =∞ and P(τ+ <∞) = P(τ− <∞) = 1.

In the particular case when the mean does not exist, Kesten (see [8, Corollary 3, p. 1195]) obtained
the following

Theorem 3.3. If E|ξ1| =∞ then one of the following three cases occurs:

(a) P(limSn/n = +∞) = 1;
(b) P(limSn/n = −∞) = 1;
(c) P(lim supSn/n = +∞) = P(lim inf Sn/n = −∞) = 1.

Further, Erickson (see [9]) gave simple conditions which are equivalent to each of the above three
cases. Put

J+ =

∞∫

0

x

Emin(ξ−1 , x)
P(ξ1 ∈ dx), J− =

∞∫

0

x

Emin(ξ+1 , x)
P(ξ1 ∈ −dx).

Theorem 3.4 [9]. If E|ξ1| =∞ then

(a) P(limSn/n = +∞) = 1 ⇐⇒ J− <∞;
(b) P(limSn/n = −∞) = 1 ⇐⇒ J+ <∞;
(c) P(lim supSn/n = +∞) = P(lim inf Sn/n = −∞) = 1 ⇐⇒ J+ = J− =∞.

In the Appendix we give new and, in our opinion, shorter and more direct proofs of Theorems 3.3
and 3.4.

For distributions with regularly varying tails, the following assertion was established in [10, Theo-
rem 2.3, Section 1] (as a corollary to another result).

Proposition 3.1. Suppose that the following conditions hold:

P(ξ1 > t) ≥W (t) ≡ t−αLW (t), P(ξ1 < −t) ≤ V (t) ≡ t−βLV (t), (3.6)

where LV (t) and LW (t) are slowly varying functions, α < 1, and V (t) = o(W (t)). Then the convergence

of the series ∑

n

V (W (−1)(1/n)) <∞ (3.7)

implies the finiteness of infk≥0 Sk and the convergence Sn →∞ a.s.

It is not difficult to see that Theorem 3.4 implies Proposition 3.1.
We now show by example that the sufficient conditions of Theorem 2.1 and Corollary 3.1 are close

to those necessary.
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Example 1. Consider a random walk Sn = ξ1 + · · ·+ ξn where for t ≥ e and 0 ≤ α < 1

P(ξ1 > t) =
C

tα logβ t
, P(ξ1 < −t) =

C

tα logγ t
.

We have (see [7, Chapter VIII.9, Theorem 1]) the following property of regularly varying functions:

tP(ξ1 > t)

Emin(ξ+1 , t)
→ 1− α as t→∞.

Since α < 1, the condition J− <∞ can be reformulated as

∞∫

0

1

P(ξ1 > t)
P(ξ1 ∈ −dt) <∞.

The latter is equivalent to convergence of the integral

∞∫

e

(
α

t logγ−β t
+

γ

t log1+γ−β t

)
dt. (3.8)

Thus, if 0 < α < 1 then the random walk is transient if and only if β + 1 < γ. Corollary 3.1 gives the
same condition β + 1 < γ as sufficient. In the case α = 0, it follows from (3.8) that the random walk is
transient if and only if β < γ. In this case Corollary 3.1 gives top-heavy sufficient conditions. However,
if we apply Theorem 2.1 directly by taking L(t) = log(1+ t+) as a test function, we obtain the condition
β < γ as sufficient.

4. Appendix

Proof of Theorem 3.1. We check the conditions of Theorem 2.1. Condition (1) follows from
(3.1). Consider the test function L(t) = t+. Then ∆x,m ≡ ∆x = (S

x
1 )
+ − x+ for x ∈ R.

Since we can always increase M , we may assume that g(M) ≥ 2.
Recall the convention (0/0) = (1/0) =∞. For all t > M and x ≥ N , we have

P(∆x > t)

P(∆x < −t)
=

P(ξx > t)

P(ξx < −t)I(x > t)
≥ g(t) ≥ 2.

This inequality guarantees that (3) holds.
If x ≥ N and y > M then

Emin
(
∆+x , y

)
≥ g(M)

y∫

M

P(∆−x > u) du ≥ g(M)(Emin(∆−x , y)−M) ≡ g(M)f(x, y).

Thus,

Emin(∆+x , y)

Emin(∆−x , y)
≥ g(M)

f(x, y)

f(x, y) +M
≥ 2

inf
x>N

f(x, y)

inf
x>N

f(x, y) +M
→ 2 as y →∞.

Hence, condition (2) holds for M sufficiently large. Theorem 3.1 is proved.
Corollary 3.1 follows from Theorem 3.1 on observing that, in the homogeneous case, condition (3.2)

follows from Eξ+1 =∞ while the fulfillment of condition (3.1) is guaranteed by the following
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Lemma 4.1. Let E|ξ1| =∞. Suppose that there exists a number M > 0 such that for every t ≥M

P(ξ1 > t)

P(ξ1 < −t)
≥ 1.

Then

lim
Sn
n
=∞ a.s. (4.1)

Proof. By monotonicity, it is sufficient to consider only the case when P(ξ1 > t) = P(ξ1 < −t)

for all t ≥ M . Let ξ
(1)
i = ξiI(|ξi| ≤ M), ξ

(2)
i = ξiI(|ξi| > M), and put S

(1)
n = ξ

(1)
1 + · · · + ξ

(1)
n ,

S
(2)
n = ξ

(2)
1 + · · ·+ ξ

(2)
n . Note that lim inf

S
(1)
n

n = lim S
(1)
n

n ≥ −M a.s. It is well known that, for a symmetric

random walk with infinite mean, lim sup S
(2)
n

n = − lim inf S
(2)
n

n =∞ a.s. Thus, lim sup Sn

n =∞. Lemma 4.1
is proved.

Proofs of Theorems 3.3 and 3.4 require the following

Lemma 4.2 [9]. Let ζ1, ζ2, . . . be independent identically distributed random variables such that

P(ζ1 ≥ 0) = 1 and P(ζ1 > 0) > 0. Let

m(t) = Emin(ζ1, t), U(t) =
∞∑

n=0

P(ζ1 + · · ·+ ζn < t).

Then
t

m(t)
≤ U(t) ≤

2t

m(t)
.

For completeness, we give

Proof of Lemma 4.2. Fix t > 0 and let

ζ̃i(t) = min(ζi, t), η̃(t) = min

(
n :

n∑

i=1

ζ̃i ≥ t

)

and Ũ(t) =
∑

P(ζ̃1 + · · ·+ ζ̃n < t). Then Ũ(t) = Eη̃(t) and Ũ(t) = U(t). Note that t ≤
∑η̃(t)

i=1 ζ̃i(t) ≤ 2t
a.s. and, by Wald’s identity,

E

( η̃(t)∑

i=1

ζ̃i

)
= Eη̃(t)m(t).

Corollary 4.1. Let U1(x) be the renewal function in the case where the ζn’s are distributed as ξ+1
and let U2(x) be the renewal function in the case where the ζn’s are distributed as P(ζn ∈ ·) = P(ξ1 ∈ · |
ξ1 ≥ 0). For r = 1, 2, let

Jr− =

∞∫

0

U r(x)P(ξ1 ∈ −dx).

Then all integrals J−, J
1
−, and J

2
− are simultaneously finite or infinite.

We proceed with the proofs of Theorems 3.3 and 3.4. Clearly, it suffices to consider only the case
where P(ξ1 > 0) > 0 and P(ξ1 < 0) > 0. We only prove assertions (a) and (b) of Theorem 3.4; then all
other assertions of Theorems 3.3 and 3.4 follow directly. The proof is divided into four steps.

Step 1. If limSn =∞ a.s. then J− <∞.
Step 2. If J− <∞ then limSn =∞ a.s.
Step 3. If limSn =∞ then lim Sn

n =∞ a.s.
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Step 4. If lim supSn =∞ = − lim inf Sn then lim sup
Sn

n =∞ = − lim inf Sn

n (and J+ = J− =∞ of
necessity).

Step 1. If limSn =∞ then
E(τ+I{ξ1 < 0}) ≤ Eτ+ <∞.

In this case

E(τ+I{ξ1 < 0}) =

∞∫

0

(1 + Uξ(x))P(ξ1 ∈ −dx),

where Uξ(x) = Eηξ(x) and

ηξ(x) = min{n : Sn ≥ x} ≥ min

{
n :

n∑

1

ξ+i ≥ x

}
.

Therefore, Uξ(x) ≥ U (1)(x) and J1− <∞. Hence, the integral J− is finite as well.

Step 2. Let j0 = 0 and, for n ≥ 0,

jn+1 = min{i > jn : ξi < 0}.

Let also ν0 = 0, νn+1 = jn+1 − jn, ψn+1 = −ξjn+1 ,

ϕn+1 = Sjn+1−1 − Sjn =

jn+1−1∑

i=jn+1

ξi

and let ϕn+1 = 0 if jn+1 = jn + 1.
Note that
(1) the r.v.’s {ψn} are independent and distributed as

P(ψn ∈ ·) = P(−ξ1 ∈ · | ξ1 < 0);

(2) the r.v.’s {νn} are independent and identically distributed, do not depend on {ψn} and are
geometrically distributed with the parameter p = P(ξ1 < 0) ∈ (0, 1). In particular, Eν1 = 1/p > 1;

(3) the r.v.’s {ϕn} are independent and may be represented as

ϕn =

νn−n∑

i=νn−1−n+1

ζi, (4.2)

where {ζi}
∞
i=1 are mutually independent, do not depend on νn and {ψn}, and are distributed as P(ζn ∈ ·)

= P(ξ1 ∈ · | ξ1 ≥ 0).
We have to show that P(infn≥1 Sn = −∞) = 0. Since Sjn =

∑n
i=1(ϕi − ψi); therefore, {inf Sn =

−∞} ⊆ A, where

A = {Sjn ≤ 0 infinitely often} =

{ n∑

1

ψi ≥
n∑

1

ϕi infinitely often

}
.

Now P(A) ≤ P(B), where B =
{
η
(∑n

1 ψi
)
≥ η

(∑n
1 ϕi

)
infinitely often

}
and η(t) = min{n ≥ 1 :

ζ1 + · · ·+ ζn > t}. By (4.2)

η

( n∑

i=1

ϕi

)
≡

n∑

i=1

(νi − 1) + 1
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and, consequently,

P(B) ≤ P

{
η

( n∑

1

ψi

)
≥

n∑

1

(νi − 1) infinitely often

}
.

By the strong law of large numbers,

∑n

i=1
νi

n → 1
p > 1 a.s. Thus, if we show that

η
( n∑
i=1

ψi
)

n
→ 0 a.s., (4.3)

then P(A) = P(B) = 0 will follow.
Define

X[1,n] = η

( n∑

i=1

ψi

)

and, for j ≥ i > 1,

X[i,j] = min

{
n :

n∑

l=1

ζX[1,i−1]+l >

j∑

k=i

ψk

}
.

It is not difficult to see that the family of random variables X[i,j] is stationary and subadditive; i.e.,

(a) the families {X[i,j]}1≤i≤j<∞ and {X[i+1,j+1]}1≤i≤j<∞ are identically distributed;

(b) for i < j < k

X[i,k] ≤ X[i,j] +X[j+1,k] a.s.

Furthermore, the tail σ-algebra is degenerate and EX[1,1] = J2− <∞. Thus, Kingman’s subadditive
theorem implies

lim
n→∞

X[1,n]

n
= lim

n→∞

EX[1,n]

n
= lim inf

n→∞

EX[1,n]

n
a.s. (4.4)

Next,

EX[1,n+1] = EX[1,n] +

∞∫

0

P(ζ1 ∈ dt)

t∫

0

dVn(u)U
2(t− u) ≡ EX[1,n] + In+1,

where U2(t) = Eη(t) and

Vn(t) = P

( η(ψ1+···+ψn)∑

i=1

ζi − (ψ1 + · · ·+ ψn) < t

)

is the distribution function of the first overshoot of the random level ψ1 + · · ·+ ψn for the partial sums∑n
1 ζi. Estimate In+1 as

In+1 ≤

∞∫

0

P(ζ1 ∈ dt)

t∫

0

dVn(u)U
2(t) =

∞∫

0

U2(t)Vn(t)P(ζ1 ∈ dt).

Since J− <∞, Corollary 4.1 yields

J2− =

∞∫

0

U2(t)P(ζ1 ∈ dt) <∞.
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Fix ε > 0 and choose T such that
∞∫

T

U2(t)P(ζ1 ∈ dt) ≤ ε.

Observe now that Vn(T )→ 0 as n→∞, since ψ1 + · · ·+ ψn →∞ a.s. Therefore,

lim sup
n→∞

In+1 ≤ lim
n→∞

U2(T )Vn(T )P(ζ1 ≤ T ) + ε = ε.

Since ε > 0 is arbitrary,

lim
EX[1,n]

n
= 0,

and in view of (4.4) this implies (4.3).

Step 3. Fix some c, introduce random variables ξ̃n = ξn − c, and define the integral

J̃− =

∞∫

0

x

Emin(ξ̃1, x)
P(ξ̃1 ∈ −dx).

Clearly, both integrals J− and J̃− converge or diverge simultaneously.

Thus, if limSn = ∞ then J̃− < ∞. But then lim S̃n = limn→∞(limSn − nc) = ∞ a.s. for every c.
Therefore, lim inf Sn

n ≥ c. Tending c to +∞, we arrive at the required assertion.

Step 4. Suppose that lim sup Sn

n or lim inf
Sn

n is finite. Assume for definiteness that lim inf
Sn

n = d >

−∞ (note that d = const of necessity). Introduce the random variables ξ̃n = ξn+|d|+1, S̃n =
∑n
1 ξ̃i. Then

lim inf S̃n

n ≥ 1 and so S̃n →∞ a.s. Using the arguments of Steps 1 and 3 consecutively (for c = −|d|−1),

we obtain J− <∞ and therefore limSn = lim
Sn

n =∞ a.s. We thus arrive at a contradiction.
The authors would like to thank B. A. Rogozin for stimulating discussions and for the idea of

Lemma 4.1, the referee for a number of useful remarks, and Stan Zachary for improving the style of the
English translation.
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