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ASYMPTOTICS OF RANDOMLY STOPPED SUMS
IN THE PRESENCE OF HEAVY TAILS
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Heriot-Watt University and Sobolev Institute of Mathematics

Abstract

We study conditions under which

P{Sτ > x} ∼ P{Mτ > x} ∼ EτP{ξ1 > x} asx → ∞,

whereSτ is a sumξ1 + . . . + ξτ of random sizeτ andMτ is a maximum of partial sums
Mτ = maxn≤τ Sn. Hereξn, n = 1, 2, . . . , are independent identically distributed random
variables whose common distribution is assumed to be subexponential. We consider mostly
the case whereτ is independent of the summands; also, in a particular situation, we deal with
a stopping time.

Also we consider the case whereEξ > 0 and where the tail ofτ is comparable with or
heavier than that ofξ, and obtain the asymptotics

P{Sτ > x} ∼ EτP{ξ1 > x} + P{τ > x/Eξ} asx → ∞.

This case is of a primary interest in the branching processes.
In addition, we obtain new uniform (in allx andn) upper bounds for the ratioP{Sn >

x}/P{ξ1 > x} which substantially improve Kesten’s bound in the subclassS ∗ of subexpo-
nential distributions.

AMS 2000 subject classifications: Primary 60E05; secondary 60F10, 60G70
Key words and phrases:Random sums of random variables; Upper bound; Convolution

equivalence; Heavy-tailed distributions; Subexponential distributions

1. Introduction

Let ξ, ξ1, ξ2, . . . be independent identically distributed random variables with a finite mean.
We assume that their common distributionF is right-unbounded, that is,F (x) ≡ P{ξ > x} > 0
for all x. Moreover, we assume thatF has aheavy(right) tail. Recall that a random variableη has
aheavy-taileddistribution ifEeεη = ∞ for all ε > 0, andlight-tailed otherwise.

Let S0 = 0 andSn = ξ1 + . . . + ξn, n = 1, 2, . . . , and letMn = max0≤i≤n Si be the partial
maxima. Denote byF ∗n the distribution ofSn.

Let τ be a counting random variable with a finite mean. In this paper, we study the asymptotics
for the tail probabilitiesP{Sτ > x} andP{Mτ > x} asx → ∞.

It is known that, foranydistributionF onR
+ and foranycounting random variableτ which

is independent of the sequence{ξn},

lim inf
x→∞

P{Sτ > x}
F (x)

≥ Eτ,
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3Supported by the Edinburgh Mathematical Society.
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see, e.g. [35, 10]. It was proved in the series of papers [13, 9, 10] that if F is a heavy-tailed
distribution onR+ with finite mean and ifP{cτ > x} = o(F (x)) asx → ∞, for somec > Eξ,
then

lim inf
x→∞

P{Sτ > x}
F (x)

= Eτ. (1)

This gives us the idea what asymptotic behaviour ofP{Sτ > x} should be expected, at least if
the tail of τ is lighter than that ofξ. In particular, by considering the caseτ = 2, we conclude
that if F is a heavy-tailed distribution onR+ and if P{S2 > x} ∼ cF (x) asx → ∞, for some
c, thenc = 2 with necessity (see [13]). By the latter observation, we restrict our attention to
subexponential distributions only.

A distributionF onR
+ with unbounded support is calledsubexponential, F ∈ S , if F ∗ F (x) ∼

2F (x) asx → ∞. A distributionF onR is called subexponential if its conditional distribution on
R

+ is subexponential. It is well known that any subexponentialdistribution is heavy-tailed and,
even more, is long-tailed. A distributionF with right-unbounded support is calledlong-tailed if
F (x + y) ∼ F (x) asx → ∞, for any fixedy.

The key result in the theory of subexponential distributions is: if F is subexponential and ifτ
does not depend on the summands and is light-tailed, then

P{Sτ > x} ∼ EτF (x) asx → ∞. (2)

A converse result also holds: if, for a distributionF on R
+ and for an independent counting

random variableτ ≥ 2, P{Sτ > x} ∼ EτF (x) asx → ∞, thenF is subexponential (see, e.g.
[11]).

The intuition behind relation (2) is theprinciple of one big jump: in the case of heavy tails, for
x large, the most probable way leading to the event{Sn > x} is that one ofn summandsξ1, . . . ,
ξn is large while all others are relatively small. Asymptotically this gives the probabilitynF (x),
and conditioning onτ yields to the multiplierEτ . The keystone of the proof is Kesten’s bound:
for any subexponential distributionF and for anyε > 0, there existsK = K(F, ε) such that the
inequality

F ∗n(x) ≤ K(1 + ε)nF (x)

holds for allx andn; see, e.g. [2, Section IV.4]. Clearly this estimate does nothelp to prove
(2) if the distribution ofτ is heavy-tailed. So the question of the basic importance is:If we fix
a subexponential distributionF , then what are the weakest natural conditions onτ which still
guarantee relation (2) to hold? Intuitively, the light-tailedness assumption seems to be very strong.
The study of this problem is one of the main topics of the present paper.

In order to state our first result, we need to introduce the notion of S ∗-distribution. A distri-
butionF onR with a finite mean belongs to the classS ∗ if

∫ x

0
F (x − y)F (y)dy ∼ 2aF (x) asx → ∞,

wherea = 2
∫∞
0 F (y)dy. It is known (see Klüppelberg [18]) that any distribution from the class

S ∗ is subexponential. Though these two classes,S ∗ andS , are considered as rather similar,
there exist subexponential distributions which are not inS ∗, see, e.g. [8] and the discussion in
Section 2 below. Classical examples of distributions from the classS ∗ are Pareto, log-normal,
and Weibull with parameterβ ∈ (0, 1).
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Theorem 1. Assume that a counting random variableτ does not depend on{ξn}. LetF ∈ S ∗.
(i) If Eξ < 0 then

P{Sτ > x} ∼ P{Mτ > x} ∼ EτF (x) asx → ∞. (3)

(ii) If Eξ ≥ 0 and if there existsc > Eξ such that

P{cτ > x} = o(F (x)) asx → ∞, (4)

then asymptotics(3) again hold.

The latter theorem shows that if we restrict our attention from the class of all heavy-tailed
distributions to the classS ∗, we obtain equivalence (3) which is stronger than assertion(1) for
the ‘lim inf ’. Definitely we should assume the subexponentiality ofF in order to get (3). At the
end of Section 4 we construct an example demonstrating that the stronger conditionF ∈ S ∗ is
essential for the statement to hold in the whole generality and cannot be replaced by condition
F ∈ S .

The proof of Theorem 1 is carried out in Section 4. Statement (i) can be found in [15]; in
Section 4 we give an alternative proof of (i). Note that thesetwo cases, negative and positive mean
of ξ, are substantially different in their nature.

Condition (4) seems to be essential, since, for anyc < Eξ,

P{Sτ > x} = P{Sτ > x, cτ ≤ x} + P{Sτ > x, cτ > x}
≥ (Eτ + o(1))F (x) + (1 + o(1))P{cτ > x}

asx → ∞, due to the convergenceP{Sτ > x|cτ > x} → 1, by the Law of Large Numbers. In
particular, forτ with a regularly varying tail distribution, condition (4) is necessary for asymptotic
relation (3) to hold. Further discussion on condition (4) can be found in Section 4.

Stam in [37, Theorem 5.1] and A. Borovkov and K. Borovkov in [3, Section 7.1] obtained
asymptotics (3) under condition (4) for regularly varyingF . Some results by Stam [37] have been
proved again by Faÿet al. in [12]. The case whereF is a dominated varying distribution was
studied by Nget al. [30] and by Daleyet al. [6]. A subclass of so-called semi-exponentialF
was considered in [3, Section 7.2]. In [15, Corollary 2], asymptotics (3) were obtained in the case
Eξ ≥ 0 under the extra assumptionP{τ > h(x)} = o(F (x)) for some functionh(x) → ∞ such
thatF (x ± h(x)) ∼ F (x).

In Section 2, we derive new simple uniform upper bounds for the ratioF ∗n(x)/F (x) which
generalise Kesten’s bound forS ∗-distributions. We prove the following

Theorem 2. Assume thatF ∈ S ∗. If Eξ < 0, then there exists a constantK such that

F ∗n(x)

F (x)
≤ Kn for all n andx.

If Eξ ∈ [0,∞), then, for anyc > Eξ, there existsK such that

F ∗n(x)

F (x)
≤ K

F (cn)
for all n andx.
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The latter estimates are also of their own interest. They substantially improve similar bounds
in Shneer [36, Theorems 1 and 2] (see also Daleyet al. [6, Theorem 3]). In Theorem 4, Section
2, we show that the conditionF ∈ S ∗ is essential for the statement of Theorem 2 to hold; more
precisely, we construct a distributionF ∈ S \S ∗ with negative mean such thatsupn,x

F ∗n(x)

nF (x)
=

∞.
A closely related topic is the asymptotics of the typeP{Sn > x} ∼ nF (x) asn, x → ∞

which have been extensively studied starting from 60s. The first works are remarkable papers of
S. Nagaev [25, 26], Linnik [21] (in this paper, in a special case, the asymptotics are stated, but the
key relation (10.10) on p. 303 is not supported by a proof), and later on of A. Nagaev [23, 24]
where in particular the regularly varying distributions were considered. Namely, ifF is regularly
varying with the parameterα > 2 andEξ1 = 0, Eξ2

1 = 1, then under mild technical conditions
(see [23], [28, Theorem 1.9], or [32, Theorem 6]) the following asymptotics hold

P{Sn > x} ∼ Φ(x/
√

n) + nF (x) asx → ∞ uniformly in n ≤ x2;

hereΦ is the tail function of the standard normal law. Further, it follows that, ifx≤
√

(α−2−ε)n ln n,
then the asymptotics follow the Cental Limit Theorem, whileif x >

√
(α − 2 + ε)n ln n, then the

probability of a single big jump dominates. For Weibull-type distributions the situation is more
complicated, see, e.g., A. Nagaev [24], S. Nagaev [27], Rosovskii [33, 34]. Detailed overviews
of results in the theory of large deviations for random walkswith subexponential increments are
given in S. Nagaev [28] and in Mikosch and A. Nagaev [22]. There is still an ongoing research in
this area, see recent works by A. Borovkov and K. Borovkov [3], A. Borovkov and Mogulskii [4],
Denisovet al. [7] and references therein. In Section 3 of this paper, for anarbitrary distribution
F ∈ S ∗, we find a range forn = n(x) where the asymptoticsP{Sn > x} ∼ nF (x) hold. The
corresponding proof is surprisingly short.

In Section 5, we study the case where the tail distributions of τ and ξ are asymptotically
comparable and, for a subclass of subexponential distributions, we obtain the asymptotics for
P{Sτ > x} which differ from (3), see Theorem 8. This generalises results by A. Borovkov and
K. Borovkov [3] and by Stam [37], see Section 5 for further comments. As a corollary, in Section
6, we obtain new tail asymptotics for Galton–Watson branching processes.

In Section 7, we study the case whereτ may depend on{ξn}, in particular, whereτ is a
stopping time. First, we prove Theorem 9 where we obtain equivalence (3) for boundedτ . In the
proof, we adapt the approach developed in [16] and generalise Greenwood’s result onto the whole
class of subexponential distributions. Then we consider anunboundedτ and prove Theorem
10 which states that equivalence (3) holds under a stronger assumption than (4) (see condition
(37) below). Theorem 10 geleralises earlier results by Greenwood and Monroe [17] and by A.
Borovkov and Utev [5], see Corollary 3 and comments after it.Concerning the asymptotics for
the maximum, it was shown in [15] (see also [14]) that the equivalenceP{Mτ > x} ∼ EτF (x)
holds without any further assumptions on the tail distribution of τ if Eξ < 0 and under condition
(37) otherwise.

2. Uniform upper bounds for tails; proof of Theorem 2

In this Section, for the ratiosF ∗n(x)/F (x), we derive more precise upper bounds than Kesten’s
bound, which are again uniform inx. We consider two casesEξ < 0 andEξ ≥ 0 separately. We
need the following result:

4



Theorem 3 ([20] and [8, Corollary 4]). Assume thatF ∈ S ∗ andEξ < 0. Then, asx → ∞ and
uniformly inn ≥ 1,

P{Mn > x} ∼ 1

|Eξ|

∫ x+n|Eξ|

x
F (y)dy.

Proof of Theorem 2.First we consider the case (i) of negative mean. Taking into account the
inequalitySn ≤ Mn, Theorem 3, and the inequality

1

|Eξ|

∫ x+n|Eξ|

x
F (y)dy ≤ nF (x), (5)

we obtain statement (i) of the theorem.
Now consider the case (ii) whereEξ ≥ 0. Takec > Eξ. Putξ̃i = ξi−c andS̃n = ξ̃1+. . .+ξ̃n.

ThenEξ̃ = Eξ − c < 0 and again we can apply Theorem 3. Thus, there exists a constant K1 such
that, for allx andn,

F̃ ∗n(x) ≤ K1

∫ n|Eeξ|

0
F̃ (x + y)dy

whereF̃ in the distribution of̃ξ. Therefore,

P{Sn > x} = P{S̃n > x − nc} ≤ K1

∫ nc

0
F̃ (x − nc + y)dy

= K1

∫ nc

0
F̃ (x − y)dy.

SinceF ∈ S ∗, the distributionF is long-tailed and, hence,̃F (x) ∼ F (x) asx → ∞. Then

P{Sn > x} ≤ K2

∫ nc

0
F (x − y)dy, (6)

for some constantK2 and for allx ≥ 0. If x ≥ nc, then
∫ nc

0
F (x − y)dy ≤

∫ nc

0
F (x − y)

F (y)

F (nc)
dy

≤
∫ x

0
F (x − y)

F (y)

F (nc)
dy ≤ K3

F (x)

F (nc)

where

K3 = sup
x≥0

1

F (x)

∫ x

0
F (x − y)F (y)dy

is finite, owing toF ∈ S ∗. If x < nc, then

F ∗n(x) ≤ 1 ≤ F (x)

F (nc)
.

These two bounds together with (6) complete the proof of the second assertion of Theorem 2.
From Theorem 2 and from the dominated convergence theorem, we deduce the following

corollary.
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Corollary 1. Tail equivalence(3) holds ifF ∈ S ∗ andEξ ≥ 0, provided that

∞∑

n=1

P{τ = n}
F (cn)

< ∞ for somec > Eξ.

The latter condition is stronger than condition (4), because

P{τ > k}
F (ck)

≤
∑

n>k

P{τ = n}
F (cn)

.

Now let us discuss the importance of the conditionF ∈ S ∗ in Theorem 2. The following
observation shows the essence of the difference between twoclasses of distributions,S andS ∗,
is the following one. Let a long-tailed distributionF be absolutely continious with densityf . For
any functionh(x) > 0,

∫ x−h(x)

h(x)
F (x − y)F (dy) =

∫ x−h(x)

h(x)
F (x − y)f(y)dy.

ThenF is subexponential if and only if

∫ x−h(x)

h(x)
F (x − y)f(y)dy = o(F (x)) asx → ∞

holds for any functionh(x) → ∞; equivalently, if it holds for some functionh(x) → ∞ such that
F (x − h(x)) ∼ F (x). On the other hand,F ∈ S ∗ if and only if

∫ x−h(x)

h(x)
F (x − y)F (y)dy = o(F (x)) asx → ∞.

In typical casesf(x) = o(F (x)) and, hence,

∫ x−h(x)

h(x)
F (x − y)f(y)dy = o

(∫ x−h(x)

h(x)
F (x − y)F (y)dy

)
asx → ∞.

It means that the subexponentiality ofF is more likely thanF ∈ S ∗. The latter observation
gives the idea how to show that the conditionF ∈ S ∗ in Theorem 2 cannot be extended to the
subexponentiality ofF .

Theorem 4. There exists a subexponential distributionF onR with a negative mean such that

F ∗nk(xk) ≥ c
n2

k

ln nk
F (xk),

for somec > 0 and for some sequencesnk, xk → ∞.

The latter theorem yields that, for some distributionF ∈ S \S ∗ with negative mean, the first

estimate of Theorem 2 fails, that is,supn,x
F ∗n(x)

nF (x)
= ∞.
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Proof of Theorem 4. We start with a construction of a specific subexponential distribution G on
the positive half-line. PutR0 = 0, R1 = 1 andRk+1 = eRk/Rk for k ≥ 1. Sinceex/x is
increasing forx ≥ 1, the sequenceRk is increasing and

Rk = o(Rk+1) ask → ∞. (7)

Puttk = R2
k. Define the hazard functionR(x) ≡ − lnG(x) as

R(x) = Rk + rk(x − tk) for x ∈ (tk, tk+1],

where

rk =
Rk+1 − Rk

tk+1 − tk
=

1

Rk+1 + Rk
∼ 1

Rk+1
(8)

by (7). In other words, the hazard rater(x) = R′(x) is defined asr(x) = rk for x ∈ (tk, tk+1],
whererk is given by (8). By the construction, we haveG(tk) = e−

√
tk , so that at pointstk the

tail of G behaves like the Weibull tail with parameter1/2. Between these points the tail decays
exponentially with indexesrk.

We prove now thatG has finite mean and is subexponential. Since by (8)

∫ tk+1

tk

e−R(y)dy = r−1
k (e−Rk − e−Rk+1)

∼ r−1
k e−Rk ∼ Rk+1e

−Rk = 1/Rk,

the mean ofG,

∫ ∞

0
G(y)dy =

∞∑

k=0

∫ tk+1

tk

G(y)dy,

is finite.
It follows from the definition thatr(x) decreases to 0. Then we can apply Pitman’s criterion

[31] which says thatG is subexponential if the functioneyr(y)−R(y)r(y) is integrable over[0,∞).
In order to estimate the integral of this function, put

Ik =

∫ tk+1

tk

eyr(y)−R(y)r(y)dy.

Then

Ik = rk

∫ tk+1

tk

eyrk−(Rk+rk(y−tk))dy ≤ rke
−Rk+rktk tk+1.

Since

rktk+1 = rkR
2
k+1 ∼ Rk+1 (9)

by (8) and

rktk = rkR
2
k ∼ R2

k/Rk+1 = R3
ke

−Rk → 0,

7



we getIk ≤ 2Rk+1e
−Rk ∼ 2/Rk for k sufficiently large. Therefore,

∫ ∞

0
eyr(y)−R(y)r(y)dy =

∞∑

k=0

Ik < ∞,

andG is indeed subexponential.
In the sequel we need to know the asymptotic behaviour of the following internal part of the

convolution integral at pointtk:

Jk =

∫ 3tk/4

tk/4
G(tk − y)G(dy) =

∫ 3tk/4

tk/4
e−R(tk−y)e−R(y)r(y)dy.

Owing to (7),tk−1 = o(tk). Thus,(tk/4, 3tk/4] ⊂ (tk−1, tk − tk−1] for all sufficiently largek.
For those values ofk, we have

Jk = G(tk)

∫ 3tk/4

tk/4
e−(−rk−1y)e−(Rk−1+rk−1(y−tk−1))rk−1dy

≥ G(tk)(tk/2)e
−Rk−1rk−1.

Applying (9) and the equalityeRk−1 = RkRk−1, we obtain, for all sufficiently largek,

Jk ≥ G(tk)e
−Rk−1Rk/3 = G(tk)/3Rk−1. (10)

Let η1, η2, . . . be independent random variables with common distribution G and putTn =
η1 + . . . + ηn. For anyn, we have

P{Tn > x} ≥
∑

1≤i<j≤n

P{Tn > x, ηi > n, ηj > n, ηl ≤ n for all l 6= i, j}

=
n(n − 1)

2
P{Tn > x, η1 > n, η2 > n, η3 ≤ n, . . . , ηn ≤ n}.

Sinceη’s are positive, the latter probability is not smaller than

P{η1 + η2 > x, η1 > n, η2 > n}P{η3 ≤ n, . . . , ηn ≤ n}.

The mean ofη is finite, thusG(n) = o(1/n) asn → ∞ and

P{η3 ≤ n, . . . , ηn ≤ n} = (1 − G(n))n−2 → 1.

Putting altogether, we get, for all sufficiently largen, the following estimate from below

P{Tn > x} ≥ n2

3
P{η1 + η2 > x, η1 > n, η2 > n}. (11)

Now taken = nk = [
√

tk] = [Rk]. Then, for all sufficiently largek (at least for thosek where
nk < tk/4),

P{η1 + η2 > tk, η1 > nk, η2 > nk} ≥ Jk.

8



Therefore, by (11) and (10), for all sufficiently largek,

P{Tnk
> tk} ≥ n2

kG(tk)/9Rk−1 ∼ n2
kG(tk)/9 ln nk,

due toRk−1 ∼ lnRk ∼ ln nk.
Denoteb = Eη1. Putξi = ηi − 2b, thenξ’s have negative mean andSn = Tn − 2nb. Denote

by F the distribution ofξ1; it is subexponential becauseG is.
Takex = xk = tk − 2nkb, so thatxk ∼ n2

k. By the latter inequality we have

P{Snk
> xk} = P{Tnk

> tk} ≥ n2
kG(tk)/10 ln nk.

Note also that

F (xk) = G(tk − 2nkb) = G(tk)e
rk−12nkb ≤ G(tk)e

2b

becauserk−1nk ≤ rk−1Rk ≤ 1 by (8). Therefore, the inequality

P{Snk
> xk} ≥ n2

kF (xk)e
−2b/10 ln nk

holds which yields the conclusion of the theorem.
The subexponential distributionG constructed in the latter proof cannot belong to the class

S ∗ because otherwise the theorem conclusion fails, as followsfrom Theorem 2. The fact that
G 6∈ S ∗ can also be proved directly. Klüppelberg’s criterion [18]states thatG ∈ S ∗ if and only
if

∫ x

0
eyr(x)−R(y)dy →

∫ ∞

0
G(y)dy asx → ∞.

In our construction,

∫ tk−0

0
eyr(tk−0)−R(y)dy ≥

∫ tk

tk−1

eyrk−1−R(y)dy

≥ (tk − tk−1)e
−Rk−1

∼ R2
ke

−Rk−1 = eRk−1/R2
k−1 → ∞

ask → ∞. Hence,G 6∈ S ∗.

3. On the asymptotics P{Sn > x} ∼ nF (x)

As before, we assumeEξ to be finite. Then, by the Strong Law of Large Numbers,

P{Sn > −An} → 1 asA → ∞ uniformly in n ≥ 1, (12)

and by the Chebyshev’s inequality

P{ξ1 > An} ≤ E|ξ1|/An for all A > 0 andn ≥ 1. (13)

Theorem 5. Let F ∈ S ∗ and let an increasing functionh(x) > 0 be such thatF (x ± h(x)) ∼
F (x). ThenP{Sn > x} ∼ nF (x) asx → ∞ uniformly inn ≤ h(x).
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Proof of the lower bound is similar to that in [7, Section 4]. Fix A > 0. We use the following
inequalities:

P{Sn > x} ≥
n∑

i=1

P{Sn > x, ξi > x + An, ξj ≤ An for all j 6= i}

≥ nP{Sn − ξ1 > −An, ξ1 > x + An, ξ2 ≤ An, . . . , ξn ≤ An}
= nF (x + An)P{Sn−1 > −An, ξ1 ≤ An, . . . , ξn−1 ≤ An}.

We haveF (x + An) ∼ F (x) asx → ∞ uniformly in n ≤ h(x). Taking also into account that

P{Sn−1 > −An, ξ1 ≤ An, . . . , ξn−1 ≤ An} ≥ P{Sn−1 > −An} − (n − 1)P{ξ1 > An},

we get, for any fixedA > 0,

lim inf
x→∞

inf
n≤h(x)

P{Sn > x}
nF (x)

≥ inf
n

(P{Sn−1 > −An} − (n − 1)P{ξ1 > An}).

Since the infimum on the right goes to1 asA → ∞ owing to (12) and (13), we arrive at the
following lower bound

lim inf
x→∞

inf
n≤h(x)

P{Sn > x}
nF (x)

≥ 1.

To prove the upper bound, we apply Theorem 3 to random variables ξ̃i = ξi − Eξ1 − 1 with
negative meanEξ̃i = −1 and toS̃n = Sn − n(Eξ1 + 1). Thus,

P{Sn > x} = P{S̃n > x − n(Eξ1 + 1)}

≤ (1 + o(1))

∫ x−nEξ1

x−n(Eξ1+1)
F̃ (x + u)du

≤ (1 + o(1))nF̃ (x − n(Eξ1 + 1))

asx → ∞ whereF̃ is the distribution of̃ξ. If n ≤ h(x) then F̃ (x − n(Eξ1 + 1)) ∼ F (x) as
x → ∞ and the proof is complete.

The rangen ≤ h(x) is usually more narrow than one could expect. Say, for the regularly
varying distributions (more generally, for the intermediate regularly varying, see the definition in
Section 5) we can takeh(x) = o(x). Then we get the rangen = o(x) while the standard (if the
mean is zero and the second moment is finite) range isx2 > cn ln n; in the class of distributions
with finite mean, the relationP{Sn > x} ∼ nF (x) holds in the rangex > (Eξ + ε)n, ε > 0, see
S. Nagaev [29]. The advantage of the result in Theorem 5 is itssimplicity and universality since
it is valid for all distributions fromS ∗ without any further moment or regularity assumptions,
compare with a series of results in [3, 4, 7] where the hazard rate is assumed to be sufficiently
smooth.

As follows from [7], if the mean is zero and the second moment is finite, then the right range
should ben ≤ h2(x), roughly speaking. Our technique allows to prove the lower bound for this
range.

Theorem 6. LetEξ = 0 andEξ2 < ∞. LetF be a long-tailed distribution and let an increasing
functionh(x) > 0 be such thatF (x ± h(x)) ∼ F (x). ThenP{Sn > x} ≥ (1 + o(1))nF (x) as
x → ∞ uniformly inn ≤ h2(x).

10



Proof. Fix A > 0. By the Chebyshev’s inequality,

P{ξ1 > A
√

n} ≤ Eξ2/A2n and P{Sn > −A
√

n} ≥ 1 − Eξ2/A2. (14)

In this proof we use a slightly different inequality than in the previous theorem:

P{Sn > x} ≥
n∑

i=1

P{Sn > x, ξi > x + A
√

n, ξj ≤ A
√

n for all j 6= i}

≥ nP{Sn − ξ1 > −A
√

n, ξ1 > x + A
√

n, ξ2 ≤ A
√

n, . . . , ξn ≤ A
√

n}
= nF (x + A

√
n)P{Sn−1 > −A

√
n, ξ1 ≤ A

√
n, . . . , ξn−1 ≤ A

√
n}.

Sincen ≤ h2(x), F (x + A
√

n) ∼ F (x) asx → ∞. Applying (14), we get

P{Sn−1 > −A
√

n, ξ1 ≤ A
√

n, . . . , ξn−1 ≤ A
√

n}
≥ P{Sn−1 > −A

√
n} − (n − 1)P{ξ1 > A

√
n}

≥ 1 − 2Eξ2/A2 → 1 asA → ∞.

Now the lower bound forP{Sn > x} follows.

4. Proof of Theorem 1

Sinceτ is independent ofξ’s, we can use the following decomposition:

P{Sτ > x} =

∞∑

n=0

P{τ = n}F ∗n(x).

By the subexponentiality, here thenth term is equivalent tonP{τ = n}F (x) asx → ∞. In
particular, by Fatou’s lemma,

lim inf
x→∞

P{Sτ > x}
F (x)

≥
∞∑

n=0

nP{τ = n} = Eτ, (15)

without any condition on the sign ofEξ. In the case of negative mean, thenth term is bounded
from above bynF (x), see (5). Then the dominated convergence for series yields statement (i) of
the theorem.

Now turn to the proof of statement (ii) whereEξ ≥ 0. SinceSτ ≤ Mτ , it follows from (15)
that it is sufficient to prove that

P{Mτ > x} ∼ EτF (x) asx → ∞. (16)

To prove the latter relation, we start with the following representation: for anyN ,

P{Mτ > x} = P{Mτ > x, τ ≤ N} + P{Mτ > x, τ ∈ (N,x/c]} + P{Mτ > x, cτ > x}
≡ P1 + P2 + P3. (17)

Since anyS ∗-distribution is subexponential andSn ≤ Mn ≤ ξ+
1 + . . . + ξ+

n ,

P{Mn > x} ∼ nF (x)

11



asx → ∞, for anyn. Thus, for any fixedN ,

P{Mτ > x, τ ≤ N} =

N∑

n=1

P{τ = n}P{Mn > x} ∼ E{τ ; τ ≤ N}F (x)

asx → ∞ which implies the existence of an increasing functionN(x) → ∞ such that

P1 = P{Mτ > x, τ ≤ N(x)} ∼ EτF (x). (18)

In what follows, we use representation (17) withN(x) in place ofN . We further estimate the
second term on the right side in (17). Letε = (c − Eξ)/2 > 0 and letb = (Eξ + c)/2. Consider
ξ̃n = ξn − b, S̃n = ξ̃1 + . . . + ξ̃n andM̃n = max(S̃1, . . . , S̃n). ThenEξ̃ = −ε < 0 and we can
apply Theorem 3. Taking into account thatMn ≤ M̃n + bn, we obtain that there existsK such
that, for allx andn,

P{Mn > x} ≤ P{M̃n > x − bn}

≤ K

∫ nε

0
F̃ (x − nb + y)dy

≤ K

∫ nε

0
F (x − nb + y)dy.

Hence,

P2 = P{Mτ > x, τ ∈ (N(x), x/c]} ≤ K

[x/c]∑

n=N(x)

P{τ = n}
∫ nε

0
F (x − nb + y)dy.

Sinceb − ε = Eξ,

∫ nε

0
F (x − nb + y)dy =

∫ nb

nEξ
F (x − y)dy.

Then

P2 ≤ K

∫ b[x/c]

N(x)Eξ
F (x − y)dy

[x/c]∑

n=max(N(x),[y/b]+1)

P{τ = n}

≤ K

∫ bx/c

N(x)Eξ
F (x − y)P{τ > y/b}dy

≤ K

∫ bx/c

N(x)Eξ
F (x − y)P{τ > y/c}dy, (19)

becauseb < c. By condition (4),P{τ > y/c} ≤ K1F (y), for someK1 and ally. Therefore, the
inequality

P2 ≤ KK1

∫ bx/c

N(x)Eξ
F (x − y)F (y)dy = o(F (x)) asx → ∞ (20)

12



follows from b/c < 1 and fromF ∈ S ∗. Indeed, for anyS ∗-distribution,

∫ x−h(x)

h(x)
F (x − y)F (y)dy = o(F (x)) asx → ∞, (21)

for any functionh(x) → ∞ such thath(x) ≤ x/2 (see, e.g., [18]).
Now we estimate the third term on the right in (17) using condition (4):

P3 ≤ P{cτ > x} = o(F (x)) asx → ∞. (22)

Altogether relations (18), (20), and (22) complete the proof of Theorem 1.
Now we provide an example where

P{Sτ > x}
F (x)

→ ∞

given that condition (4) is satisfied only withc = Eξ > 0 and not with any biggerc. Assume
that F is a Weibull distribution on the positive half line with parameterβ ∈ (1/2, 1), that is
F (x) = e−xβ

. Let τ have a distribution such thatP{cτ > x} ∼ x−1e−xβ

asx → ∞. Write down
the following lower bound:

P{Sτ > x} ≥ P{Sτ > x|cτ > x −
√

x}P{cτ > x −
√

x}.

By the Central Limit Theorem,

δ ≡ lim inf
x→∞

P{Sτ > x|cτ > x −
√

x} ≥ lim inf
x→∞

P{S[(x−√
x)/c] > x} > 0.

Hence,

lim inf
x→∞

P{Sτ > x}
F (x)

≥ δ lim inf
x→∞

P{cτ > x −√
x}

F (x)

= δ lim inf
x→∞

exβ−(x−√
x)β

x −√
x

= ∞,

becauseβ > 1/2.
We conclude this section by an example showing that the conclusion of Theorem 1 cannot hold

for all subexponential distributions. Indeed, takeF with negative mean as described in Theorem
4. Without loss of generality we assume that the series

∑
k n−1

k ln nk converge. Considerτ taking
valuesnk with probabilitiesc ln2 nk/n

2
k, herec is the normalising constant. Thenτ has a finite

mean, but

P{Sτ > xk} ≥ P{Snk
> xk}P{τ = nk} ≥ c

n2
k

ln nk
F (xk)

ln2 nk

n2
k

,

so that, ask → ∞,

P{Sτ > xk}
F (xk)

→ ∞.

13



5. The case where ξ and τ may be tail-comparable

In this section we do not assume condition (4) to hold, such a situation is of particular impor-
tance for branching processes. To start with, we define two important classes of distributions.

A distributionF is calleddominated varyingif there existsc such thatF (x) ≤ cF (2x) for all
x. It is known that any long-tailed and dominated varying distribution with a finite mean belongs
to the classS ∗, see [18].

We say that a distributionG is intermediate regularly varying(at infinity) if

lim
ε↓0

lim sup
x→∞

G((1 − ε)x)

G(x)
= 1. (23)

In particular, any regularly varying at infinity distribution satisfies the latter relation. Any interme-
diate regularly varying distribution is long-tailed and dominated varying; in particular, it belongs
to the classS ∗, provided its mean is finite.

Theorem 7. LetF ∈ S ∗, Eξ > 0, and

F (x) = O(P{τ > x}) asx → ∞. (24)

If the distribution ofτ is intermediate regularly varying, then

P{Sτ > x} ∼ P{Mτ > x} ∼ EτF (x) + P{τ > x/Eξ} asx → ∞. (25)

We strongly believe that the statement of the theorem stays valid in a more general setting
where the distribution ofτ is assumed to besquare-root insensitive, that isP{τ > x ± √

x} ∼
P{τ > x}, and the variance ofξ is finite. Probably, some further minor regularity assumptions
are required. For example, the Weibull distributionF (x) = e−xβ

with parameterβ < 1/2 is
square-root insensitive. For distribution which isnot square-root insensitive, the asymptotics are
different and more complicated.

Proof of Theorem 7.By (23), for any fixedδ > 0, we can choosea < Eξ andc > Eξ sufficiently
close toEξ such that

1 − δ/2 ≤ lim inf
x→∞

P{aτ > x}
P{τ > x/Eξ} ≤ lim sup

x→∞

P{cτ > x}
P{τ > x/Eξ} ≤ 1 + δ/2.

Then, due toSτ ≤ Mτ , it is sufficient to prove the following lower bound for the sum

P{Sτ > x} ≥ (Eτ + o(1))F (x) + (1 + o(1))P{τ > x/a}. (26)

and the upper bound for the maximum

P{Mτ > x} ≤ (Eτ + o(1))F (x) + (1 + o(1))P{τ > x/c} asx → ∞. (27)

We have

P{Sτ > x} = P{Sτ > x, τ ≤ x/a} + P{Sτ > x, τ > x/a}.

Sincea < Eξ, P{Sτ > x|τ > x/a} → 1 asx → ∞, by the Law of Large Numbers. Now the
standard arguments lead to (26).

14



To prove the upper bound, we use a representation similar to (17) (see the previous proof):

P{Mτ > x} = P{Mτ > x, τ ≤ N(x)} + P{Mτ > x, τ ∈ (N(x), x/c]} + P{Mτ > x, cτ > x}
≡ P1 + P2 + P3.

The first summandP1 can be treated as ealier. The second summandP2 can be estimated as
follows: if condition (24) holds then, by estimate (19),

P2 ≤ KK2

∫ bx/c

N(x)Eξ
P{τ > x − y}P{τ > y}dy,

for someK2. Since the distribution ofτ is intermediate regularly varying and, therefore, belongs
to S ∗,

P2 = o(P{τ > x}).
Taking into account also thatP3 ≤ P{cτ > x}, we finally get

P{Mτ > x} ≤ (Eτ + o(1))F (x) + P{τ > x/c} + o(P{τ > x}) asx → ∞.

Since the distribution ofτ is (in particular) dominated varying,P{τ > x} = O(P{τ > x/c}).
Therefore, (27) is proved and the conclusion of Theorem 7 follows.

Theorem 8. Let Eξ > 0 and letτ have an intermediate regularly varying distribution. If the
distributionF is long-tailed and dominated varying, then(25)holds.

A particular corollary is that if bothξ and τ have regularly varying tail distributions, then
asymptotics (25) hold; this result was proved by Stam [37, Theorems 1.3 and 1.4] for positive
ξ and by A. Borovkov and K. Borovkov [3, Section 7.1] for signedξ. Also, Theorems 7 and 8
generalise and improve Theorem 1.3 of Aleškevičenėet al. [1].

Proof of Theorem 8.It follows the lines of the previous proof, and only the termP2 needs a dif-
ferent estimation. From bound (19), we get

P2 ≤ KF (x − bx/c)

∫ bx/c

N(x)Eξ
P{cτ > y}dy.

SinceF is dominated varying,F (x − bx/c) = O(F (x)) asx → ∞. Therefore,P2 = o(F (x))
and the proof is complete.

6. Applications to the branching processes

A Galton–Watson process is a stochastic process{Xn} which evolves according to the recur-
rence formulaX0 = 1 and

Xn+1 =

Xn∑

j=1

ξ
(n+1)
j ,

where{ξ(n)
j } is a family of independent identically distributed non-negative integer-valued ran-

dom variables with a finite mean, and their common distribution does not depend onn. HereXn

is the number of items in thenth generation. Taking into account that any intermediate regularly
varying distribution with finite mean belongs to the classS ∗, we obtain the following application
of Theorem 7 to the branching process:

15



Corollary 2. Let the common distribution ofξ’s be intermediate regularly varying. Then, as
x → ∞,

P{X2 > x} ∼ EξP{ξ > x} + P{ξ > x/Eξ}.

In particular, if the branching process iscritical, i.e. if Eξ = 1, then

P{X2 > x} ∼ 2P{ξ > x} asx → ∞.

More generally, by induction arguments, the tail of the distribution of the number of items in the
nth generation is asymptotically equivalent tonP{ξ > x}. A similar result (for critical process)
was obtained in [38, Theorem 2] in the case of regularly varying distribution ofξ’s and for possibly
growingn.

7. Equivalences in the case where a counting random variable τ may depend on ξ’s

We continue to assume that random variables{ξn} are independent and identically distributed.
For any familyΞ of random variables, denote byσ(Ξ) theσ-algebra generated byΞ. Tradition-
ally, a counting random variableτ is called astopping timefor a sequence{ξn} if {τ ≤ n} ∈
σ(ξ1, . . . , ξn) for all n.

We say that a counting random variableτ does not depend on the future of the sequence{ξn}
if the family (ξ1, . . . , ξn, I{τ ≤ n}) does not depend on(ξj , j ≥ n + 1) for all n. Dependence
of this type goes back to Kolmogorov and Prokhorov [19] who proved Wald’s identity under the
condition that the event{τ ≤ n} does not depend onξj for all n ≥ 1 andj ≥ n + 1.

Provided independence ofξ’s, any stopping timeτ does not depend on the future of the se-
quence{ξn}. If a counting random variableτ does not depend onξ’s, then it does not depend on
the future of the sequence{ξn}.

LetFn be a filtration ofσ-algebras. A counting random variableτ is called a stopping time for
this filtration if {τ ≤ n} ∈ Fn for all n. In this terminology,τ is a stopping time for a sequence
{ξn} if and only if τ is a stopping time for the natural filtrationFn = σ(ξ1, . . . , ξn).

Consider a special filtrationFn = σ(ξk, I{τ = k}, k ≤ n). Thenτ is a stopping time for
this filtration. In addition,τ does not depend on the future of the sequence{ξn} if and only if
(ξj , j ≥ n + 1) does not depend onFn for all n.

We start with a result for a bounded counting stopping time (recall that a random variable is
boundedif its distribution has a bounded support).

Theorem 9. Let ξ have a subexponential distributionF on R (we do not assume finite mean),
and let the counting variableτ do not depend on the future. Ifτ is bounded, thenP{Sτ > x} ∼
EτF (x) asx → ∞.

Similar result forMτ may be found in [14, Theorem 1]. Note that one cannot expect the latter
asymptotics to hold for anyτ with unbounded support, which may depend on{ξn} – even for a
stopping time. Indeed, consider a stopping timeτ = min{n : Sn ≤ 0}. If Eξ < 0 thenEτ is
finite butP{Sτ > x} = 0 for anyx > 0.

Proof. We adopt the corresponding proof from Greenwood [16] where astopping time and regu-
larly varying tails were considered. LetN be such thatP{τ ≤ N} = 1. The starting point of the
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proof is the following representation:

P{Sτ > x} =

N∑

n=1

(P{Sn > x, τ ≥ n} − P{Sn > x, τ ≥ n + 1})

= P{S1 > x, τ ≥ 1} +

N∑

n=2

(P{Sn > x, τ ≥ n} − P{Sn−1 > x, τ ≥ n}).

Therefore,

P{Sτ > x} = F (x) +
N∑

n=2

(P{Sn−1 ≤ x, Sn > x, τ ≥ n} − P{Sn−1 > x,Sn ≤ x, τ ≥ n}).

Now it suffices to show that, for eachn,

P1 ≡ P{Sn−1 ≤ x, Sn > x, τ ≥ n} ∼ F (x)P{τ ≥ n} (28)

and

P2 ≡ P{Sn−1 > x,Sn ≤ x, τ ≥ n} = o(F (x)). (29)

The subexponentiality ofF implies that, for eachn ≥ 2,

P{Sn > x} ∼ nF (x) asx → ∞. (30)

In particular, there existsc such that, for alln = 2, . . . , N ,

P{Sn > x} ≤ cF (x) for all x. (31)

The subexponentiality ofF also implies, for anyA(x) → ∞ such thatF (x + A(x)) ∼ F (x),

∫ x+A(x)

A(x)
F (x − y)F (dy) = o(F (x)) asx → ∞. (32)

To establish (28), we first note that{τ ≥ n} = {τ ≤ n − 1} and thusσ(Sn−1, I{τ ≥ n})
does not depend onξn, sinceτ does not depend on the future. This implies

P1 =

∫ ∞

0
P{Sn−1 ∈ (x − y, x], ξn ∈ dy, τ ≥ n}

=

∫ ∞

0
P{Sn−1 ∈ (x − y, x], τ ≥ n}F (dy).

We use the following decomposition,A > 0:

P1 =

(∫ A

0
+

∫ x+A

A
+

∫ ∞

x+A

)
P{Sn−1 ∈ (x − y, x], τ ≥ n}F (dy)

≡ I1 + I2 + I3. (33)

By (30) and by the long-tailedness ofF , for any fixedA,

I1 ≤ P{Sn−1 ∈ (x − A,x]} = o(F (x)) asx → ∞. (34)
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By (31) and (32) we get, forA = A(x) → ∞,

I2 ≤
∫ x+A

A
P{Sn−1 > x − y}F (dy)

≤ c

∫ x+A

A
F (x − y)F (dy) = o(F (x)) asx → ∞. (35)

Uniformly in y ≥ x + A(x), P{Sn−1 ∈ (x − y, x], τ ≥ n} → P{τ ≥ n} asx → ∞. Thus,

I3 ∼ P{τ ≥ n}F (x + A(x)) ∼ P{τ ≥ n}F (x) asx → ∞. (36)

Substituting (34)–(36) into (33) we get (28).
To prove (29) we note that

P2 ≤ P{Sn−1 ∈ (x, x + A]} + P{Sn−1 > x + A}F (−A).

As in (34), the first term on the right is of ordero(F (x)). Due to (31), the second term is not
greater thancF (x)F (−A) whereF (−A) can be made as small as we please by the choice of
sufficiently largeA. The proof is complete.

Here is our general result for a counting random variable with, possibly, unbounded support.

Theorem 10. Let E|ξ| < ∞ and let a counting variableτ do not depend on the future. Assume
thatF ∈ S ∗ and that there exists an increasing functionh(x) such that

F (x ± h(x)) ∼ F (x) and P{τ > h(x)} = o(F (x)) asx → ∞. (37)

ThenP{Sτ > x} ∼ EτF (x) asx → ∞.

Proof of Theorem 10 follows from Lemmas 1 and 2 below. Condition (37) is stronger than con-
dition (4). At the end of this section, we provide an example of a stopping time which shows that
condition (37) is essential and cannot be weakened to (4).

Lemma 1. Let Eξ > 0 and let a counting variableτ do not depend on the future. IfF is long-
tailed then

lim inf
x→∞

P{Sτ > x}
F (x)

≥ Eτ.

If, in addition,F ∈ S ∗ and condition(37)holds, thenP{Sτ > x} ∼ EτF (x) asx → ∞.

Proof. Fix a positive integerN and a positiveA. The following lower bound holds, forx > A:

P{Sτ > x} ≥
N∑

j=1

P{S1, . . . , Sj−1 ∈ [−A,A], ξj > x + 2A,Sτ > x, τ ≥ j}

≥
N∑

j=1

P{S1, . . . , Sj−1 ∈ [−A,A], ξj > x + 2A,min
i>j

(Si − Sj) > −A, τ ≥ j}.
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Since{τ ≥ j} = {τ ≤ j − 1} and sinceτ does not depend on the future,

P{Sτ > x} ≥
N∑

j=1

P{S1, . . . , Sj−1 ∈ [−A,A], τ ≥ j}P{ξj > x + 2A,min
i>j

(Si − Sj) > −A}

= F (x + 2A)P{min
i≥1

Si > −A}
N∑

j=1

P{S1, . . . , Sj−1 ∈ [−A,A], τ ≥ j}.

By the long-tailedness ofF ,

lim inf
x→∞

P{Sτ > x}
F (x)

≥ P{min
i≥1

Si > −A}
N∑

j=1

P{S1, . . . , Sj−1 ∈ [−A,A], τ ≥ j}.

Since the mean ofξ is positive,P{mini≥1 Si > −A} → 1 asA → ∞. Hence, for anyN ,

lim inf
x→∞

P{Sτ > x}
F (x)

≥
N∑

j=1

P{τ ≥ j}.

Letting nowN → ∞ completes the proof of the lower bound.
The upper bound,

lim sup
x→∞

P{Sτ > x}
F (x)

≤ Eτ,

follows from [15, Corollary 3] which states that, under the conditionsF ∈ S ∗ and (37),P{Mτ >
x} ∼ F (x)Eτ asx → ∞. The proof is complete.

Lemma 2. Let Eξ ≤ 0 and let a counting variableτ do not depend on the future. IfF ∈ S ∗,
then

lim sup
x→∞

P{Sτ > x}
F (x)

≤ Eτ.

Under the additional condition(37), P{Sτ > x} ∼ EτF (x) asx → ∞.

Proof. The upper bound follows from [15, Corollary 3] in the same wayas the upper bound in
the previous proof. To obtain the lower bound, take any positive ε and consider a random walk
S̃n = Sn + n(|Eξ| + ε) with a positive drift. We have

P{Sτ > x} = P{S̃τ > x + (|Eξ| + ε)τ}
≥ P{S̃τ > x + (|Eξ| + ε)h(x)} − P{τ > h(x)}.

Here the last term in the right side iso(F (x)) and, by Lemma 1, the first term is equivalent to
EτF (x + (|Eξ| + ε)h(x)) ∼ EτF (x) asx → ∞. This completes the proof.

For intermediate regularly varying tail distributions, Theorem 10 implies the following

Corollary 3. Let E|ξ| < ∞ and let a counting variableτ do not depend on the future. Assume
thatF is an intermediate regularly varying distribution and that

P{τ > x} = o(F (x)) asx → ∞. (38)

ThenP{Sτ > x} ∼ EτF (x) asx → ∞.
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The latter corollary generalises the corresponding resultby Greenwood and Monroe [17, The-
orem 1] where a regularly varyingF and a stopping timeτ were considered. In [5, Theorem 2], A.
Borovkov and Utev obtained an upper bound for the tail distribution ofSτ assuming that both tail
distributions ofξ1 and ofτ are bounded from above by the same dominated varying distribution.

Proof. From condition (38), for anyε > 0,

P{τ > εx} = o(F (εx)) = o(F (x)) asx → ∞,

sinceF is intermediate regularly varying. Thus, there exists an increasing functionh(x) = o(x)
such thatP{τ > h(x)} = o(F (x)) asx → ∞. Again by the intermediate regular variation ofF ,
for anyh(x) = o(x), F (x ± h(x)) ∼ F (x). So, condition (37) is fulfilled and we can conclude
the desired asymptotics from Theorem 10.

We conclude with an example of a stopping timeτ showing that condition (37) is essential for
the conclusion of Theorem 10. Consider a distributionF on [1,∞). Take an increasing function
H(x) : R → Z

+ such thatH(x) < x/2. The counting random variableτ = H(2ξ1) + 1 is a
stopping time. On the eventξ1 > x − H(x) we haveτ ≥ H(2(x − H(x))) + 1 ≥ H(x) + 1.
Hence,

P{Sτ > x} ≥ P{ξ1 > x − H(x), ξ2 + . . . + ξτ ≥ H(x)} = P{ξ1 > x − H(x)},

due toξ ≥ 1. For a Weibull type distribution, namelyF (x) = e−xβ

, 0 < β < 1, x ≥ 1, we can
chooseH(x) in such a way thatH(x) = o(x) andH(x)/x1−β → ∞ asx → ∞. Then condition
(4) holds, but asymptotics (3) does not, becauseF (x − H(x))/F (x) → ∞ and

P{Sτ > x}
F (x)

→ ∞.

In this example there is no a functionh(x) such that condition (37) holds. Indeed, ifF (x−h(x)) ∼
F (x) thenh(x) = o(x1−β) andH−1(h(x) − 1) = o(x) which implies

P{τ > h(x)}/F (x) = P{H(2ξ) > h(x) − 1}/F (x) → ∞ asx → ∞.
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