COMPARISON OF SERVICING STRATEGIES IN
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1, Introduction. In [1] (cf. also [2-4]) a class of m~channel queueing systems was considered which is
defined by two sequences of nonnegative random variables {Ti }1";1 and {s; }j> [where 7, is the moment of ar-
rival of the first call; 7y (i = 2) the time between arrival of the (i — 1)-th and i-th calls; sj (i = 1) is the time
required to service the i-th call], by the vector wy = (wg,15 o5 « « « Wo,m) (Wy,j the nonnegative instant after
which the j-th channel can start to service calls with indices 1, 2, ...), and a class of service strategies.

A strategy R was taken to be a sequence R = {Ri };1 of random variables, where Rj is the number of the chan-
nel at which the i-th call queues up for servicing, calls being serviced in every channel in their order of ar-
rival,

It was assumed that

1) the distributions s;, 83, + + +, Spn, . « » are conditionally commutative, i.e., if ne N (B, B, ..., B.}
are arbitrary Borel sets, and {Ci, Cos v v oy Cn} is any permutation of the B's, then Pl{s;=Cy; ...; s, = C./@o;
(T2, =Plsi = B,; ... 8. Bu/y; {Ti}ie1) 2.8.

2) for i = 1 Ry does not depend on the set of random variables {si; Sit13 e o 23 503 o o s

Under these conditions, it was shown that

3) the FCFS (first comes first serve) strategy minimizes the distribution max w,, for every n= N (.e.,
1<h<m

P{ max wn,k<x} is maximal for every x), where wn k (1 = k < m) is the time from arrival of the n-th call

1<h<m

for servicing to the time when servicing of the first n calls is complete in the k-th channel;
4) a class of functionals whose distributions are minimized by FCFS was described.

However, we remark that when taking such an approach to determining strategies, certain strategies
(which in particular are used in practice) are not contained in the class as defined above, For example, for
the FCFS strategy when two calls arrive at the same channel, the call which arrived first may be serviced
after the other call; this is not possible for the class of strategies introduced in [1].

In this note, we obtain results analogous to 3)-4) for another class of strategies: these strategies deter-
mine the order in which calls are serviced, and in any given channel this order can differ from the order in
which the calls arrive.

2, Definitions and Statement of Results, In order to keep the exposition simple, in what follows we will
use conditions which are stronger than 1):

5) {si}itl are jointly independent and identically distributed;
6) {s; }i=4 does not depend on W, or {7; e

Let (2, F, P) be a probability space on which all the random variables considered are defined and mea-~
surable with respect to the o-algebra F with probability measure P; we write N = {1,2,...,n0,.. .} and for

J
j=1,2, ... ;=21 is the time of arrival of the j-th call. The calls are numbered in order of arrival.
i=1

Let {v;}i2; be a random permutation of the set{1,2,...,n,.. .}, i.e., {vj}i2; is a sequence of ran-
dom variables such that for all i, jeN, i#]

! {kl{v" - j}} - PLQI {vi= ’f}} =P{vi#v}=1. 1)
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A strafegy R is a sequence
R —= {V,}?’:L 2)
The class of all strategies is denoted by T.

A queueing system in which for jeN the j-th call is serviced for a time sj is called a system of type 1
and denoted by ({si}, 1).

A strategy ReT in systems of type 1 defines the order of arrival of calls for servicing in the following
way:

For 1:

IA

l=mletuy; =wgand 7, = min u . be the time after which calls with numbers 1, 2,.. .,

1gl<m
n,...can be serviced in the system, The first (j-th) call to be served is the one for which vj = 1. This call
begins to be serviced at time @; = max {t;; Xj} in the channel with number /; = min{l:1 = I = m; ug,; = oy}
(i.e., the channel having minimal number among the free channels), and servicing continues for a time sj,
For j=XN, on the set {Vj =1fweputuy j=ugsfor I = 4,1=1I!=<mand gl = 0+ sje

Assume that for k=N the random variables ay have been defined, where ay is the time when the k-th
call to be serviced starts to be serviced, and let uk,j be the time when servicing in the /-th channel of all calls
jsuch that v, <k, . = min u,, is complete,

Igl<m

On the set {vj =k + 1} for je N, until time oy = max{ oy g xj} calls with numbers r such that
vp = k + 1 are not serviced, and at time ay.y, servicing of the j-th call commences in the channel with number
hett = min{l:1 < I < m; Uy = ak+1} and continues for a time S

For je= N and on the set{uj =k +1}, we put U1, = U, 7 for 1= ey, 1=l=mand Ukt Jpey = Xt * S5

The order of arrival of calls for servicing in a system of type 1 is thereby described,

For A=F, let I{A} be the characteristic function of the set A, and for jeN let y; =12 ol {v; =k}=a,
=1

be the time at which servicing of the j-th call commences, z; + y; + sj the time when servicing of the j-th call
is complete, We remark that for ;, jeN and on the set { vy < ‘Vi}s we have the inequality ¥i=Vie

Consider the class I't = F,({sd) =T of strategies defined as follows: R = {vi}ioane= Ty if for every I = 1
and every set of numbers {ji, ..., j}, /=¥ with 1 = k = [ we have the equality
P ile =1 ... vy, = l/-l;'(); {Ti}f_,l; {Si}?:j} = P ivjl =14;... vy, = ]/Z_LO, {Ti}ﬁ:l; {Sjl}i;}} a.8. (3)
{i.e., queueing does not depend on the servicing time of calls which have not yet arrived).

We remark that the FCFS R = {v{V}i, and LCFS R* = [v;]2, strategies belong to the class Ty and are
defined as follows: for j, ke N , Vj(o) =ja.s. and

{V; =1} = {z; << by Ty =>4 )
Vi =k 41} zlgo{’(thﬂ) =]+ Lvizk v <Kk for 1<{s< 1},

where r(t) = max{j ixj = t} for t = 0.

Consider a system of type 1 and let ne N, 1<k<sm, ReT, w, ,=w. (R} be the time from arrival of the .
n~th call for servicing until completion of servieing of the first n calls in the k-th channel using strafegy R;

W(O)k - Wn,k(R(O ),

n,
THEOREM 1, In a type 1 system, we have for all Re Ty, a =0,

ne N P{max w§,°}<a}>p{ max wn,h<a}. {4)

1<k<m 1<hgm
3. Auxiliary Results, We consider a somewhat different queueing system ({s;}, 2) of type 2, When R=T,
we have for every j, k=N and on the set{uj =k} that the j~th call is serviced for a time sy, and not sy as in
systems of type 1 (in other words, in type 1 systems the j-th call to arrive is serviced fortime 8§, while in type
2 systems it is the k-th call to be serviced (counting in order) and the time of servicing is sk). The procedure
by which calls arrive for servicing in type 2 systems is the same as for type 1 systems, except for the following
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change: let j, k=N ; on the set { Vi = k} (the j~th call to arrive is the k-th call to be serviced) we have the
equality Uk, = %k + 8§ in type 1 systems, while for type 2 systems we have Uk, = @k * S Retaining for type
2 systems the notation used for type 1 systems, we have for R T

oo

Y; = OL;{I {'V = IL} = (Z\J,
h

oo

3= 2 pEN {v;=Fk}Y+1y;= Oy, + Sy
Bl

We define a class of strategies 7, =T.({s})=T as follows: R=T7T, if for every ! = 1 and all I-tuples of
numbers {ji, . . ., j;f with ;=N for 1 =< k = I, we have the equality

P {’le = 17 E | le = l/gjo; {Tz}rozl; {Si}go:l} =P {le = '1-, ey V]'l = l/l;()i {T'L};x;lr {gz}i;—*i} a.8. (5)

(i.e., the sequence in which calls are serviced does not depend on the time for servicing of calls which have
not yet arrived).

~ For R = (viyz =T, let R'={u}iZ1 = T be the strategy such that for all j, i = N the equality L) = j holds
on the set{uj =k}, For ke N we put

sh= s (R) = 2 I{v;=k}s; = sy,3

NS M

sw = sp(R) = I{vy =j}s; = sy,

i

T
A

Remark 1. In what follows, all the proofs can be given (without loss of generality) under the assumption
that Wo,ts « + » 3 Woms {Ti}fozi are arbitrary fixed numbers.

LEMMA 1, 1) Let R=7,({s}). Then the {si{}f;:i are jointly independent and have the same distribution as
Si'

2) Let R& I'h({s}). Then the {sf(};{o:i are jointly independent and have the same distribution as s;.

Proof, We prove 1), assertion 2) being proved entirely analogously.

We verify that for k<N s, has the same distribution as s;. Indeed, for a = 0

Plsi<al = zP vi= ki s<a)= DPvy=k Pls<a)=P{u<a) 3 P(v=k=Pu<d)
2

j=

.,.‘

We check that the {si{}f{o:i are independent. It suffices to show that for all n« /N and all natural numbers
Kis « + « 5 kn, we have

P {S;q<a1; - s;n<aﬂ_] =P {s,;l <ay)r...-P {s;:n<a,,}
for all (ay, ...,a,) < F}. In order to simplify the exposition, we give the proof for n = 2:
p {3;1< ay; 31,72<02} = Z p {s;1<a1;
i1#ig
Vig =5 Sny <
== .72 21 + 227
2= 2 P {sil <y Vi, = o iy < agi Vi, = jal =
J1<ia

oo

=2 P {55, <axi Vi, = ji; Vay = Fa} P {85, < 3] = P | 5k2<“2 2 (55<<ay Vi, =13 Vi >} =

j1<ia j=1

= Plsg, <ag} X P vy = js vy >j)-Psj<ar) = P lsn, <ao)- P Loy <o) P i, < vy
i=1 :
Similarly,

22:P[Sf;l<al}'P{S;2<a2]'P{V"1>V"2}'
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Thus,
Pl <ayspy <a) =Pls, <al-P (s <<} (2 (Vi Vi) 7 P {Viy > Vip]) = Plsy, <ay) P sy, < agl

Lemma 1 is oroved.

LEMMA 2, Let Re T{s}H) (R=T,{sl) Then ReT, () (Re 1, (|s]))) and yi = yi a.s., zi = z{ a.s.,
i =yl a.s., z; = z a.s.), where yi, yi, y1 (Zu zi, zl) are the times when servicing of the i-th call begins
(ends) in the systems (sJ, 1> (s}, 25, <Usil, 2>, (s '}, 1>, respectively.

Proof. The proof follows immediately from the definition of the classes Ty, T, and Lemma 1.

Let n=XN, (b, ..., b,)be an arbitrary n-tuple of numbers, We denote by my(by, . « o5 bn) = (@45« . -y ap)
a permutation of the set (by, ..., by) suchthat gy =g =...=a,.

LEMMA 3, Let n=N, R={v}L & I)({s:}) and R™ =", = R™ (R)be such that
(n} ()

a) (M e ey ) =Tp(U1s ...,y Vy) A0Sy

b) for ieN;izn+1v/" =~v; a.s,
Then R™ & T{{sd).
Remark 2. This result is also true when the class Tz({s- }) is replaced by Ti({si}).

Proof. Without loss of generality, we give the proof for n =2, We verify that for all [N and ji, . .., §]
(j,€N for 1 = k =< I) the event {ujz =1,..., J(zl) = 1} does not depend on the o-algebra o{sp; r = I} generated
1

by the random variables {sr; r = 1}, Indeed, if 1, 2= {j, oy jdor 4,2, ..., ji}, the assertion is obvious,
Let 1=, ..., i, 24, ..., j), i=1for someq, 1 =q = [ (the case 1 &{j, ..., /J}; 2= {j1, ..., j} is considered
analogously). Then
9 2 2 : ()
WP =t v =g W =g W =g W = =
vi, =1, ....qu_I:q—ﬂ‘vl:q; v]-q”:q%—i co vy =1U
Ulvip =1 o Vig =0 Love=g; v, =9+ Lo v =1}

Since R = T;({s}), the proof of Lemma 3 is complete,

4, Formulation and Proof of Theorems and Corollaries. For ne N, let F(n) = {fl f: EE —E and f is
Borel; for every n-tuple (¢;. ..., a,)e=FEL and any permutation (by, . .., by}, assume that f(ay, . .., ay) =¢£
By e vosbn)iif (@, ...y @) < (C1yp v v .y Cp)y then £(ay, . .., an) = flcg, .« o, Cpt

For =N, let yi(o) (Zi(o) ) be the time when servicing of the i~th call for the FCFS strategy R begins
(ends).

THEOREM 2. For every ne=N, f=F", ¢=0, Re T{s}) (R e T({s}) in the system s}, 1> ({s}, 2>), we
have the inequalities

P{f (e .-y <a} <Py, .. 0) <al; 6
P{f(z, ...z <} << Pf (2, ...,2") <al.
Remark 3. Since max w,, = max z;—z, and f(a,, ...,a,)= max ;& ¥, Theorem 1 is a consequence of
1<hgm 1<ign 1<ign

Theorem 2,

Proof of Theorem 2, We introduce the following notation: for ieN, y:l (zl ) is the time when servmmg of
the i-th call starts (ends); r i is the number of the channel in which the i-th call is serviced; and W1 1 is the
time when the /-th channel is no longer involved in servicing any calls with numbers =i using servicing strat-
egy R% (here o is some index).

We prove the theorem for R e Ty({s}).

) and f(z1(°), s ans

Remark 4, For all ne N and fe /v, the distribution of the functionals f(yi(g) s e e Yr(10)

( )) does not depend on the type of the queuemg system,

Remark 5, If the theorem holds for every R e To({s}), then by Lemma 2 and Remark 4 it is valid for
every ReT({s}).
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Fix n=N, We define a service strategy RMs0 gefined by R ={v); < 7,({s;}) as follows, Calls with num-~
bers i, i > n, are serviced in thesame way as in R (i.e., in the same channels, with servicing starting and
ending at the same times), and if we write (dy, ..., dp) = M1y« . .» Yn)s Where {yi}ilﬂ are the times at which
servicing begins under strategy R, calls with numbers 1, 2, ..., n begin to be serviced at times dy, d;, . . .,
dn, respectively, i.e., "with delay." By definition

W, g = (dy e dn) = T (Y - Y as @)
and w, (2", .., 20) = (5, ..., 2,) A ()
since we consider a system {{s;}, 2). Queueing of calls under R®9 i5 the same as for R® = {u(“) :°1
We write s = (H(”’) =5 ()} consmler the system ({s] n)} 1). We remark that by Lemma 2, the
random vectors (y{™?, 0 y y %) »9) ‘4nd v @0, .,y @0 ) obtained using strategy R (™9 in the systems
({sl} 2) and ({s(n} 1), respectlvely, commde a.s. [the same is true for the vectors (zi(n’ s oo (n )) and
BT T R R TR N
Remark 6. Since in Lemma 3 R’ = Ih({s)}), for 1 = i = n the random vectors (ri(n,o)’ si(n), ey si(l_};) and

(s i(n) slgi . s(n ) are independent.
Let {s(n 0)} be a sequence of random vectors such that

1) all the s i(n,o) have the same distribution as sy;
2) the {s.(n’())}fxi are jointly independent;
)for1<1<ns1(n’)—s(n)a S.3
4) for 1 =i = n the sets of random variables {r 0); si(n 0), ey sl(r_1 0)} nd {s; (n,0) sl(xllo), e e sf(ln,o)’. ot
are mutually independent. By Remark 6, there exists a sequence {s n,0)} w1th these properties.

Consider the queueing system ({s (“’0)} 1) and service strategy R\"™ 1) whlch calls are servicedin order

of arrival, but the first n calls begin to be serviced at times y {0, y(n »9 in channels with numbers
ri(n 0 (n 0, respectively, i.e.,"withdelays." By definition,
0, o) = (0, g, ©
(A", Y) = (@, ) s (10)

Consider the service strategy R(®2) in the system ({s n O)}, 1) defined as follows. The first n calls for
servicing arrive at the same channels as for R, 1, but w1thout "delays," the remaining calls being serviced
after the first n in order of arrival and without "delays.“ R{2) is constructed as follows: for 1 = /= m ut
W(nl,Z) = w,;; assume that wl({nf) (1 = ! = m) have been defined for 1 = k = n; then we put y;% 3 —max (zk+1, ”’k ;",’;,(1,));

b td

(n,2) (n,2) (n,0), G2 (n.2 ( (n,2)
wpyia=wyio for Is£rly i 1<<I<<m and wkl-'}—l)r;l"‘i)): Yy s =2y
TRy

We remark that

(y(l'"&)’ ey yil",‘l))g(ygnyl)’ --‘7y$lﬂ)l)) a.s. 1 (11)
I ) e A ) IR 12)

Note that the strategy R®#2) is uniquely determined by {r(n’g)} ', and satisfies condition 2), so that Theorem 2
in [1] applies and says that for any f=F™,e<=E,

(0}

PUF™, . ) <d <P, ... 0l) <abi e
P, ., ) <al <P (Y, ..., 24P) <al. (14)

Using Remarks 4-5 and relations (7)-(14), we obtain the assertion of the theorem.

1
COROLLARY 1, For any ne N, Re T\{s)) (ReTy({s})), a=0, the inequalities P \— zb(°)<a} >P‘-n— x
—_— i=1

'Ebi<a hold in the systems ({si}, 1) ({{si},2) for a) b; = zj; b) b; =yj; ¢) bj = z; —x;j.
=1

COROLLARY 2. Let {Ay f5 be the full group of events on (&, F) belonging to the o-algebra generated
by the random variables {T;}{=, and let
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e (7t QO
E(0, aps oo ) = S T{AR) fulay, oy @a) for (@ .oosan o) € BT, fues oe Q.

n=1
Then for 77 e T(is}) (Re Tyl{s})) we have

p{g(®7 Z(IO), ey ZglO)v \<u}>P{E((D, Zis v ovs Bus -)<Ll}
in the system ({sj}, 1) ({s{}, 2)) for every a = 0.

For t = 0 let y(t, R) be the time needed for the system to process calls arriving prior to time t using
R. For n = 1 we put Ay = {xy = t; xpy > t}. Then on the set Ay,

v, ) = max 23— 1

1<gign

and by Corollary 2, we obtain
COROLLARY 3. For k=1, 2 and any Re=T,({s)}), £=0; a=>0, the inequality

Pivle, R9) < a} = Py, R) <a}
holds in the system ({sj}, k/.

In conclusion, the author expresses his deep thanks to B. A, Rogozin for valuable comments and for his
support in this work.
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SELF-ADJOINTNESS OF THE SCHRODINGER OPERATOR
WITH AN INFINITE NUMBER OF VARIABLES

N. N. Frolov UDC 517.43

Self-adjoint differential operators with an infinite number of independent variables have been studied in
[1-5]. In particular, in [2] one has proved the essential self-adjointness of the infinite-dimensional Schrddinger
operator, whose potential is twice differentiable and semibounded on some "admissible® set. A similar fact
has been proved in [5} under the condition that the pofential admits a sufficiently fast approximation by cylin-
drical functions which have a special estimate from below. In the present paper one establishes the essential
self-adjointness of an infinite-dimensional semibounded Schrddinger operator whose potential satisfies only
measurability and boundedness conditions on any bounded sets.

1. Let H be a real, separable Hilbert space with norm |+ Il and inner product (. , .}, equipped [1] with
the Hilbert spaces B and B*:B*< H{ < B so that the embedding operator from H into B is a Hilbert—Schmidt
operator. In the space B we define the Gaussian measure up(dx) by the characteristic functional y(¢) =exp
(—1/,ll¢l?), (p=H) [1]. The set of all real u~-measurable functions u(x) on B, for which luf) is integrable with
respect to the measure u(dx), will be denoted by 1,(B). The value of the linear functional e<= B* at the element
x<= B will be denoted by (e, x).

We denote by C*(B) the set of all infinitely differentiable (Frechet) real functions on B, bounded on any
bounded set from B fogether with the derivatives of any order. Let C§° (B) be the set of all the functions from
C*(B) which have in B a bounded support. We define convergence in Cy (B) in the following manner: ¢, & Cy(B)
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