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ERGODICITY OF QUEUING NETWORKS 

S. G. Foss UDC 519.21 

We consider an open Jackson-type service network with single-channel stations. It is 
shown that if the load on each station is less than i, the process defined by the length of 
the queue satisfies an ergodic theorem in discrete time. If it is additionally supposed 
that the lengths of the intervals between the arrivals of calls possesses a nonlattice dis- 
tribution, an ergodic theorem will also hold for the queue length process in continuous time. 
These results are carried over to the case of multichannel stations. For the special case 
of "acyclic networks," it is proved that an ergodic theorem will also hold in the most gen- 
eral situation in which the elements of the control sequences form a stationary metrically 
transitive sequence. 

We also consider closed networks for which an ergodic theorem is proved under the con- 
dition that the distributions of service times is nonlattice. 

i. Introduction and Statement of Basic Results 

Suppose that N > 0 is an integer. Let {Z(n); n ~ 0) denote a Markov chain with (N + 2) 
states 0, 1 ..... N, N + i, initial value Z(0) = 0, and transition matrix tlpij;l, i, j = 0 ..... 
N + i, where PN+I,N+I = i, Pi0 = 0 for all i. Moreover, we also assume that Pii = 0 for all 
i~N (as noted in [i, 2] this assumption does not place any limitations on the generality 
of the subsequent argument). We will assume taht state (N + I) may be reached from any 
state i~ i and, consequently, is absorbing state. Let ~, 1~i~N denote the mean number of 
sojourns of state i by the trajectory {Z(n); n~0}. 

We will say that the matrix Ilpijll [and also the Markov chain {Z(n)}] is acyclic if no 
two states i and j are absorbing states. In other words, a matrix ilPijll is acyclic if states 
{i, 2 ..... N} may be renumbered in such a way that for all1~i~N , 

N§ 

~=i+1 

Now consider an open service network with N single-channel stations into which a re- 
cursive stream of calls arrives, i.e., it is assumed that the times between the arrivals of 
calls {Xn} are independent and identically distributed with mean ET,~= I/~> 0 Each call from 
the input stream is directed (independently of all the others) to the station numbered k with 

probability p0~, ~P0h = i. Servicing times at the k-th station {s~} are independent and iden- 
k 

tically distributed with mean Es~ = ak, 0 < ak < ~. Calls are serviced at each station in their 
order of arrival. After its service at the k-th station has been completed, a call arrives, 
with probability Pkj, at the j-th station and, with probability Pk,N+I, escapes from the net- 
work. These types of networks are called Jackson-type networks. 

For t~0, i=i, .., N , we denote by qi(t) the number of calls at station i at time t + 0 
(i.e., whether in queue or being serviced), while xi(t) denotes the remaining time left to 
service the first of these calls [we set xi(t) = 0 when qi(t) = 0]; q(t) = (ql(t), .... qN(t)); 
• = (• ..... • We set Z+ = {0, i, 2 .... }; R+ = [0, ~). 

In [i, 2] the following is proved: 

THEOREM i. If for a Jackson-type network, 

~ < ~/a~ (1 )  
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for all j = I, .... N, thenwhenconditions (CI)-(C3) (see below) are satisfied, the service 
network is ergodic, i.e., there exists a natural distribution P() on the set Z+ N x R~ such 
that for any initial condition(q(0),, %(0)) P((q(t), X(t))~B)~P(B) as t § ~ for any Borel set 
B ~ Z ~  x R~ o f  t h e  f o r m  B = { ( / t ,  , . ,  / , ;  .T 1 . . . . .  X a ~ ) :  ,T,~.l(i: i =  ] . . . .  :?V'}" l i~Z~_:  1,~i~]~4-: i =  i . . . . .  ~" 

Conditions (CI)-(C3) are as follows: 

(CI) There exist numbers C > 0 and y > 0 such that for allt, x~0 , 

P(~,~>>.t + z/~>~t)<~c~-'~; p(s~>t + ~s~>~t)<~c~ -'~ 

(C2) The random variables ~m are not bounded [i.e., P(T,~>x)>0 for all x]. 

(C3) The random variables ~n possess a nonlattice distribution. 

In the present work we will show that the following assertion holds. 

THEOREM 2. Theorem i holds under conditions (i) and (C3). 

It is known that if either one of the two conditions (I) and (C3) does not hold, Theorem 
2 is false (except for the degenerate case). Therefore, Theorem 2 is conclusive in nature 
and may be stated in the form of a criterion. 

S e t  t n = T 1 + . . .  + ~n a n d  d e n o t e  by  q~=~-(g,~ . . . . . .  g~7)=q(t~,), %~__----(Z 1 . . . . .  7,7)---- %(t~) t h e  
length of a queue and the remaining service time at successive arrival times, respectively. 
Then 

THEOREM 3.* If (i) holds, a stationary sequence {(qn, xn); -~ < n < ~} may be specified 
in the same probability space with {(qn, Xn)} such that P((q~, l~)=(q(%') for all l>~n)-+1 as 
n -> oo. 

An analogous assertion was stated in [4], though under the following two additional as- 
sumptions: (I) Pk,N+l > 0 for all k = 1 .... ,N; (2) for the Markov chain {(qn, Xn)} there 
exists a positive-definite recurrent compactum. 

Note that it follows from the results of [5] that Theorem 2 is a direct corollary to 
Theorem 3. Therefore, we will limit the discussion to a proof of the latter assertion. 

Note, too, that under the conditions of Theorem 3 estimates of the rate of convergence 
of the following form may be stated: if E(s~)~< oo [or Eexp(~shl) < oo ] for all k = 1 ..... N and 

some ~ > i (6 > 0), then for %=rain{n: (q~,%~)--(q~, Z ~) for all l>~n) it is true that P(%>n)~ 

Cn -~+I [respectively, P(%>n)~Cexp(--~'n) ] for some constant C < ~ (and constant ~ > 0). 
These assertions were also deduced by the present author, though their proof will be pub- 
lished elsewhere. 

Consider networks with multichannel stations, where the i-th station constitutes a multi- 
channel system with m i channels. We suppose that at each station calls are serviced according 
to the principle of "first in-first out." We will prove the following assertion. 

THEOREM 4. Jackson-type networks with multichannel stations satisfy the assertions of 
Theorems 2 and 3 if condition (I) is replaced by the following: 

a~j < m~/aj ( 2 ) 
for all j = I .... N. 

For the case of acyclic networks with single-channel stations we will prove that Theorem 
3 remains valid under conditions more general than independence and identically distributed 
service time. This assertion will be stated in Sec. 2 (Theorem 6). 

Let us now consider closed systems. Consider a finite Markov chain with N essential 
N 

absorbing states and transition matrix llp~II, i ~i, f ~ N, ~ p~j = I for all i, and by analogy 

*The article [3] appeared after the present article had been submitted; the assertion of 
Theorem 3 was stated in [3]. However, a rigorous proof of the assertion is given in [3] only 
for the case of limited service time, i.e., even under stronger constraints than in [i, 2], 
and a proper proof cannot be established for the general case from informal and very abbrevi- 
ated arguments. Note, too, that the proof proposed in the present article uses entirely dif- 
ferent concepts, and for that very reason differs in substantial respects from the proof 
given in [3]. 
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with the previously introduced concept of an open network, define a Jackson-type closed net- 
work with N single-channel stations and M calls. Then 

THEOREM 5. If service time distribution in a closed service network is nonlattice, 
Theorem 2 will hold. 

An analogous assertion, though under the assumption of conditions (CI) and (C2), was 
proved in [i]. I have also learned that a result close to Theorem 5 was obtained indepen- 
dently by E. V. Morozov and is to be published in 1991 in a collection from VNIISI (Moscow). 

The present article consists of four sections. In Sec. 2 we study the open acyclic net- 
works. The results obtained in Sec. 2 are applied in Sec. 3 to prove Theorems 3 and 4. In 
Sec. 4 we prove an ergodic theorem (Theorem 5) for closed networks. 

2. Acyclic Open Networks 

2.1. Single-Channel Systems. Consider a single-channel waiting system with calls 
served in their order of arrival. Control of the system is defined in a more complex way 
than is usually the case, the point of which will become clear in the course of studying 
service networks. 

Suppose that we are given a sequence of pairs {(T,~, ~); n~ 0) of random variables, where 
~n > 0 almost certainly (i.e., with probability one) and the ~n are integral and nonnegative. 
Moreover, if ~ i  we define the random variables 0<~t~u~un2~...~um~r~ with probability 
one. Let u~= (~u .... ,u~) (setting ,~ = ~ if ~n = 0) and t n = T l + ... + ~n" An input stream 

of calls into the system is defined in the following way: if the equality ~n = 0 holds, this 
will mean that over the time interval (tn_l, t n] no calls arrive in the system, and when k ~ i 
the equality Un = k asserts that over the time interval (tn_ I, t n] k calls arrive in the 
system at times tn_ l + Unl,...,tn_ l + Unk, respectively. We also define the random vectors 

s~ = (s~l .... sn~n) (here s~= ~ if ~n = 0), where Sni is understood as the time required to ser- 

vice a call that arrives in the system at time tn_ l + Uni (i.e., the i-th call in the n-th 

group). We define S~= s~1 + ... + snu~ (where S n = 0 if ~n = 0) and ~,~={~, ~, u~, s~}. 

Note that if ~ i and Uni = ~n when i ~ i~ ~t~, the incoming stream described above is a 
grouped-arrival stream, i.e., calls arrive in the system at times t n in groups of size ~n" 
These types of systems are considered in [6]. 

Given call c, we let t(c) denote the time it arrives in the system and u the time its 
service is concluded. For t~0 and u~0 , we let Q(t, u) denote the number of calls that 
have arrived in the system by time t + 0 and have not yet been fully serviced by time t + u + 
0, i.e., Q(t, ~)=~ {c: t(c)~t; ~(c)>t+u}. Note that the function Q(t, u) is continuous with 
probability one on the right in both arguments. Moreover, Q(t, u) is not increasing in u for 
any fixed t and Q(t, u) + 0 with probability one as u § ~, i.e., for any t~0 there exists 
(with probability one) a finite random variable w(t) such that Q(t, u(t)) = 0 with probability 

one. 

If t~=~+...+~,,, ~0, we set Q,~(u)=Q(t,~, ~); Q,~={Q~(~); ~0}; q,,=Q~,(0) is the number 
of calls in the system by time t~+0; m~=inf{e~0: Q,~(u)=0} is the total time remaining to 
service these calls. 

We introduce the space D% = D%[0, ~) of nonnegative, integral, nonincreasing, right- 
continuous functions with finite support on [0, ~] with metric 

p(f,g)= inf /suplh(x)--xi+sup[/(h(x))--g(x)[}, 
A~H ~x~O x~O 

where H is the set of strictly increasing continuous functions h: [0, ~) + [0, ~) such that 
h(0) = 0. Note that the space (D~, 9) is separable and possesses the property that if the 
sequence {f~}, /n~D% is fundamental, a function /~D~ may be found such that /(x)~}~(v) for 
all x > 0, n > ~. It is easily seen that Q(t, u) and Qn(u) (for any fixed t and n) are random 

elements with values in this space. 

Note that the sequences {Wn} and {Qn} are related by the recursive relations w n = f(wn- ~, 
~n) and Qn = F(Qn-~, ~n), where the functions f and F possess a rather cumbersome form. 

LEMMA I. Suppose that the sequence {~n} is stationary and metrically transitive. If 
Er, > ES,, a stationary sequence {Q~}, Q~D~ with probability one may be found such that 
P{Q~ = Q~ for all ~ ~ n} ~ ~ as n + ~, for any initial distribution Q0 such that P(~0 < ~)= i. 
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Proof. Let us first prove that a stationary sequence {w'~}, ~< oo with probability one 
may be found such that P (w k = w k if k~e) -+ 1 as n § ~. We begin with the case w 0 = 0. 

Consider the following auxiliary system with grouped arrival: calls arrive at times t n 
in groups of size Bn" We denote the characteristics of this system by Qn and Wn" Assuming 
the sequence {gn} to be given for all n, -~ < n < ~, we define the shift operation U of these 
random variables in such a way that U~ n = ~n+l- We let U n denote the iteration of this trans- 
formation, It has been shown [6] that the sequences {U-~} and {U-~Q~} are monotonically 
nondecreasing and that there exist a random variable ~0 < ~ with probability one and a random 
element ~0~ D% with probability one such that P(U-~Qk~Q0 if k~n)~P(U-~k~0 if'k~n)~l. 
Note that, first, @~o~ with probability one for all n and, second, the sequence u-nwn is 
monotonically nondecreasing. Consequently, it converges, with probability one, to a finite 
random variable ~0~0 with probability one. Further, by virtue of monotonicity 0 ~ U-~w~ - 
U-~w~ U-~@k--U-"@~ with probability one for any k ~ n~ 0. Taking limits as k + ~, we ob- 
tain the inequalities O<~wO--U-,.w,<~~ Consequently, P(w~ if k>~n)-+i and, 
thereby, P(w~,~w?~)=P(wk=w h if k>~n)-~l as n § ~, where w'~=U'w~ 

Now let P(w0>0)>0 �9 For any E > 0, we may find a number c such thatP(w0~w~ 

Consider a system with initial condition w 0 + w ~ + c and introduce the virtual waiting 
time w(t)=inf(~>0: Q(t, u)----0}. It is easily seen that P(w(t)>0 for all t~>0)=0. Therefore, 
if a random variable ~=inf{t~0: w(t)=0} is introduced, when t n > D those sequences {Wn} 
with initial condition w 0 = 0 and those with initial condition w 0 = w ~ + c may be "glued" 
together. By virtue of monotonicity, a sequence with any initial condition 0 ~ ~~ w~ 
may also be "glued" together with these sequences. Consequently, lira infP(w~. ~ w ~ if k~n) 

I - c, and since g > 0 is arbitrarily chosen, P(w~=w ~ if k>~e)-+i as n § ~ for any initial 
state w 0 . 

To verify the lemma, it remains for us to note that, first, the monotonicity properties 
stated earlier for {Wn} hold also for {Qn} and, second, for n such that t n > ~, not only the 
sequences {Wn} but also the sequences {Qn} with initial conditions w 0 = 0 and w 0 = w ~ + c, 
may be glued together. The lemlna is proved. 

Now consider the output stream of the system. Let ~n denote the number of calls whose 

servicing concludes within the time interval (tn_l, tn] , and t~_~ +~...<f~_~ +z~2~,~ , the 

corresponding times when service concludes, ~=(~, u~ .... ). If ~n = 0, we set un = ~. Note 
that the pair of random variables (~n, Un) is uniquely determined from Qn-~ and Sn, i.eo, 
there exists a function H such that (~n, Un) = H(Qn-~, ~n) with probability one for all n. 
The function H may be specified constructively, though it is quite cumbersome in form. 

COROLLARY. Under the conditions of Lemma I, there exists a stationary metrically tran- 

sitive sequence {(~, u~)}, 7~<oo with probability one such that P((~, ~i~),=(~ ~, u ~) for k~n)-+'l 

as n § ~. Moreover, E~=E~[~. 

In fact, it suffices to determine (~", ~]")=H(@ -~, ~). In this case ((~,,, uL)=(~ ~,, ~')}_~ 

{Q~_~=Q'-~}. Next, assume the contrary, i.e., E~>E~+& Since for any ~, (~+~+...§ 

n-~E~ ~ with probability one, for every ~ > 0 a number n o may be found such that P(p~+~§247 

~-+ Pz+~i...~z+~ for all n>~no)~l--~. Let u < ~ be the time at which the sequences 

{Qn} and {Qn} are glued together. Let us find s = ~(~) such that P(?</)~I--e. And since 

~+~+...+'~+~<@(0)+g~+~+...+B~§ for all % and n, P(O~(O)~n6/3 for all n~n0)~l--2e, which 
produces a contradiction. 

Let us assume that E~=Eg~+5. Since Q~+~(0)+~+~+...+~tz+,,=Q~+.~+~t~+~+...+~+~u~+~+... + 

~+~ with probability one on the set {?</} , then,P(Q~+~(0)~nb/3 for all n~n0)~l--2e for 

any ~ > 0 and n0=n0(e), l=l(e). In particular, P(QZ+~(O)~@l=P(Qo(O)~n~/3)~l_2~, which 
\ 

produces a contradiction. The corollary is proved. 

Remark i. In a perfectly analogous way, it is possible to prove that a system with an 
infinite number of channels is ergodic. For multichannel waiting systems and constrained sys- 
tems (with failures, with a limited number of waiting places, with limited waiting time, etc.), 
an analogous result may be obtained only under the additional condition that there exist so- 
called renovating events. 
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2.2. Acyclic Networks. Consider an open acyclic network and for k = 0, I,...,N define 

sequences of random variables { ~ (%~, vn~,~ . . , . �9 �9 = v~----- .)I and for k = i, ,N, sequences {an ~ (sn~, 
h s,,~ .... )} �9 Let us describe how the network functions. At its input there arrives the stream 

of calls {x,,, ~;, u,~} described in Sec. 2.1. For arbitrary n, a call that has arrived at time 
0 

tn_ ~ + Uni is directed towards the station numbered Vni. If j>] calls have arrived at 
station k within the time interval (t ~, t ], they are "assigned" service times sk~ s k. n- n n -'- n 3 �9 
If servicing of ]>~ calls concludes within the time interval (tn_r tn] at station k, the 
first of these calls is directed towards station vkz, the second towards station vnk2, and so 

{ ,dl. on. We then set En = {x~,, u~, 9~, { 

THEOREM 6. Suppose that an open acyclic network satisfies the following conditions: 

(i) the sequence {~n} is stationary and metrically transitive; 

...; {s,~l, {v~'} are mutually independent; (2) the sequences {(r,,, u,0}; {v~ {s~]; {v~/; ~v . 

( 3 )  f o r  f i x e d  k = 0,  1, 2 . . . .  ',N, t h e  r andom v a r i a b l e s  {Vn~j} a r e  i d e n t i c a l l y  d i s t r i b u t e d ;  

( 4 )  f o r  f i x e d  k = 1, 2 ,  . . . .  N, t h e  random v a r i a b l e s  {Sn~j} a l l  p r o c e s s  t h e  same mean 

Then if for all k, 
=n~Ebq < i/a~, 

the assertion of Theorem 3 will hold. 

The proof may be conducted by means of induction. 

(3) 

We partition the set of stations 
{i, 2 .... ,N} into subclassesDiUD~U...UD~, where DI={i~I: pj~=0 for all i<~]<~N}, and for 
i ~ r ~ l - - ]  D , < = { i ~ l : p ~ = 0  for all/~D1 . . . .  , ] ~ D , . } .  

( , 4 i  = k) Consider / ~ D ~ .  Over the time interval (tn_ l, t n] a total of b~n= ~ I calls 

~ ahE~ a~E~qPoh. There- arrive at the k-th station, and E~ Ep~ xP(v~ k) E~hp0h; E~ 

fore, Lemma 1 holds, and the output stream from the k-th station may be glued to the sta- 
tionary stream. 

Consider k~D> At the input of this station a stationary input stream arrives from 
outside with the set of output streams from stations i~D1 which, beginning with some random 
station number, are glued to the stationary stream. And since the union of stationary streams 
again forms a stationary stream, we may apply Lemma i. It is then only necessary to verify 
that the conditions of the lemma are satisfied. In fact, if, for ] ~ D 1 ,  we let ~(k) denote 
the number of calls that arrive at the k-th station from the j-th station over the time in- 

terval (tn_l, tn], then (in the steady state) E~(/~')=E~ Pjh= E~p0~pjho And since ~= 

~(k)+ ~, l(v~ we find that E~=E~1(p0~+ ~,po~.pjh I=E~I~, and the conditions of 
J E D  1 i ~ I X n  J " 

Lemma 1 follow from (3). If i=3, ..,, l, k~D~, the reasoning is entirely analogous. The 
theorem is proved. 

2.3. Acyclic Networks with Multichannel Stations. Let us show how to prove Theorem 4 
for an acyclic network. 

We begin by considering the m-channel controlled system described in Sec. 2.1, opera- 
ting by the principle! "first in-first out." As before, we set w,~=illf{~0: Q~(u)=0}. The 
following, weaker version of Lemma 1 holds. 

LEMMA 2. Suppose that the sequence {gn} is stationary and metrically transitive. If 

mETI < ESj and P(w0~c)= I for some c < =, a stationary sequence{Q~q., Q~ D~ with prob- 
ability one may be found such that P(Q~Q~ for all n~0)=i. 

The proof follows directly from the properties of monotonicity of multichannel systems 
and Lemma 2 from [7, p. 356]. 

Let us now consider acyclic Jackson-type networks and prove Theorem 4 for the following 
two special cases: 
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(i) so-called multiphase-multichannel systems; 

(2) a single network with three stations. 

We first remark that the proof may be carried out in analogous fashion for an arbitrary 
acyclic network. 

We begin with case i. A service network is called a multiphase-multichannel system if 
Pi,i+l = 1 for all i = O, I,...,N [i.e., the output stream from the i-th station forms the 
input stream of the (i + l)-th station]. Note that a different type of proof (for other 
characteristics of systems) was given in [8]. 

Let us conduct the proof by means of induction on N. If N = i, the network constitutes 
a single multichannel system GI/GI/m for which the assertion of Theorem 4 holds (cf. [7, 
p. 361]). Consider the case of N = 2 stations with m I and m 2 channels, respectively. We 
then require the concept of a renovating event, the definition of which may be found in 
[7, p. 340], for example. Since the output stream from the ist station is glued to the 
stationary stream, beginning from some random time I < ~ with probability one, a stationary 
stream of calls will arrive at the second station. For any s > 0, a number n e may be found 
such that P(~ ~ n~)~ i--e, and for this n~ a function f~D~ may be found such that (Q~ 

~)~i--s. Consider for n ~ n~ a network in which a stationary input stream arrives at the 

second station, and denote the characteristics of such a network by ~~ Q~}. By hemma 2 

t h e r e  e x i s t s  a s t a t i o n a r y  s e q u e n c e  {~"~- n ~ n~} such  t h a t  Q , ~  w i t h  p r o b a b i l i t y  one f o r  
a l l  n ~ n~,i = ~, 2. 

C o n s i d e r  f o r  n ~ n~ t h e  e v e n t s  

B ~ =  (Q'~(O)<~; ~ ' ~ ;  i =  t,2t.  

These events form a stationary sequence and possess positive probability for sufficiently 
large r and x. Consider, also, the events 

L 

C,~=C,~(r,x,  e, 6 ) = . N  {L ,+ i~d ;  m l d - - e - - 6 ~ s ~ + ~ . m t d - - e ;  s ~ + t ; ~ m 2 d - - e ;  / - -  ~, 2 . . . . .  ~'+ i}. 
Z~O  

From t h e  c o n d i t i o n s  o f  t h e  t h e o r e m ,  i t  f o l l o w s  t h a t  numbers  d and ~ may be found  such  t h a t  
e v e n t  C n p o s s e s s e s  p o s i t i v e  p r o b a b i l i t y  f o r  any  6 > 0 and L > 0. Moreover ,  t h e  e v e n t s  {Cn} 
a r e  s t a t i o n a r y  and L - d e p e n d e n t ,  w h i l e  t h e  e v e n t s  Bn and C n a r e  i n d e p e n d e n t  f o r  any n. 

I f  L ~ 1, 8 ~ 1, in  t h e  e v e n t  A,~=B= ~ C~ a l l  c a l l s  b e g i n n i n g  w i t h  some c a l l  w i t h  number 
n~ = n z ( r ,  x ,  d ,  E, 6) a r r i v e  a t  a f r e e  d e v i c e  a t  t h e  f i r s t  s t a t i o n .  We l e t  Yn d e n o t e  t ime  
when servicing of the n-th call concludes at the first station and, for n + i ~ n l  , compare 

1 the times when servicing of two neighboring calls terminates: 7~+~+i = ~+~+i + s~+~+1 ~+~ + 
T~+i+~--6 ~ and analogously, ?~+~+~%+~+~+~§ Consequently, for d>~, nii~n~ in the 
event An, calls exit from the first system in their order of arrival at the system over time 
intervals ~$~+i, ~+~--&~ �88 + ~ Therefore, if 6 < ~, in the case of event A n all calls 
beginning with some number n~ arrive at a free device at the second system. Consequently, a 
number L ~ I may be specified such that event A n will be a renovating event on (n, n + ~) 
for the entire network. From [7, p. 341] it follows that there exists a stationary sequence 

{Q~, Q'~} such that P((Q~, Q~) =(Q~, Q~) for all ~n)-* ~. Therefore, the original network 
satisfies the inequality 

lira infP((Q~, Q~) = (Q~, Q~)  for a l l  ~:>1,)  > i - -  2g. 

S i n c e  e > 0 i s  a r b i t r a r i l y  c h o s e n ,  we o b t a i n  t h e  d e s i r e d  a s s e r t i o n .  The p r o o f  f o r  N > 2 may 
be c a r r i e d  ou t  by i n d u c t i o n  in  an e n t i r e l y  a n a l o g o u s  f a s h i o n .  

Consider case 2. More specifically, consider a network of three stations (systems) 
with m~, m~, and ma channels, respectively, such that P0~ > 0, P02 > 0, Poz + P0z = I, pza = 
p=a = i. 

Repeating the arguments presented in case i, it may be verified that the output streams 
from the first and second stations may be glued to corresponding stationary streams, and, 
consequently, the input stream to the third station, understood as a superposition of these 
output streams, also may be glued to a stationary stream. Denoting the time this occurs by 
%, we find for ~ a number n~ and function f~ such that P(i~n~)~-s and P(Q~e~f~)~--~. 

Consider a network in which when n >n~ , a stationary input stream arrives at the third sta- 
tion, and denote its characteristics by (0~, Q~, Q$)- We introduce the events B,~= {~'~(0)~r; 
@'~x; i= I, 2, g} and Cn, which are defined in somewhat different fashion. Take numbers 
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k~, k~ ~ i such that p0~ ~ k~/(k~ + k~). Recall that v~ denotes the number of the station to 
which the n-th call from the input stream is directed, P(v~ = ~) = p0~, i = i, 2. We set 

L 
C, C,~(r, x, d, ~., ~) ~ , .o 

i = 0  

(m~d --  e - -  5)/p0 ~ ~ s~+~ ~ (m~d - -  e)!p0~; ~ = ~,2; 
3 

s~+~,~ ~ < m ~ d - -  e; ] = 1, 2 . . . .  , 2r + i}. 

Here h i  = 1 whenever  l ( k ~ + k ~ ) + l ~ i ~ l ( k ~ + k ~ ) + k ~  and h i = 2 whenever  l ( k ~ + k ~ ) + k ~ + l ~ i ~ ( l +  
i ) ( k ~ + k 2 ) ,  l = O ,  1, 2, . . . .  I n  o t h e r  words ,  in  t h e  c a s e  o f  e v e n t  C n t h e  f i r s t  ( b e g i n n i n g  w i t h  
n)  kz c a l l s  a r r i v e  a t  t h e  f i r s t  s t a t i o n ,  t h e  n e x t  k 2 c a l l s  a t  t h e  s e c o n d  s t a t i o n ,  and t h e  
n e x t  k~ a t  t h e  f i r s t  s t a t i o n ,  and so on.  

By means o f  d i r e c t  c o m p u t a t i o n s ,  i t  i s  e a s i l y  shown t h a t  i f  kz ~ 1 and k 2 ~ 1, t h e  
e v e n t s  A ~ = B , , ~  C,,. a r e  r e n o v a t i n g  e v e n t s  f o r  t h e  c o n s t r u c t i o n  o f  t h e  n e t w o r k .  Now we o n l y  
have  t o  r e p e a t  t h e  c o r r e s p o n d i n g  a rgumen t s  p r e s e n t e d  in  c a s e  1. 

The p r o o f  o f  Theorem 4 f o r  an a r b i t r a r y  a c y c l i c  J a c k s o n - t y p e  ne twork  may be o b t a i n e d  by 
means o f  i n d u c t i o n  u s i n g  t h e  r e q u i r e d  number o f  i t e r a t i o n s  o f  t h e  c o n s t r u c t i o n s  p r e s e n t e d  
above .  

3. Proof of Theorems 3 and 4 

3.1. Monotonicity Properties, We will require an elementary arithmetic assertion. 

LEMMA 3. Suppose that (I) holds for all j = I,...,N. Then numbers bj > aj may be 
found such that 

~nj < I,,'bj, ( 4 )  

ph/b~ + ~Poi < i,bj (5 )  

f o r  a l l  j = 1 , . . . , N .  

P r o o f .  I t  i s  known t h a t  t h e  numbers  {~j} s a t i s f y  t h e  r e l a t i o n s  
N 

n i ~  P0J+ ~ nkPhj. 

r 

I f  k,  j = 1 , . . . , N ,  we s e t  p~j=Phi+pn.m+l /A ' .  C o n s i d e r  a Markov c h a i n  w i t h  N s t a t e s  {1, 2 , . . . ,  
N} and t r a n s i t i o n  m a t r i x  P '  =]IP~I1. By d e f i n i t i o n  t h e r e  e x i s t s  a t  l e a s t  one k such  t h a t  p~.~+~ > 

/ 
0 and ,  c o n s e q u e n t l y ,  p h i l 0  f o r  a l l  j = 1, 2 . . . . .  N. T h e r e f o r e ,  a l l  t h e  s t a t e s  of  t h e  p a r -  
t i c u l a r  c h a i n  a r e  a b s o r b i n g  and e s s e n t i a l ,  and t h e  c h a i n  i s  a p e r i o d i c .  C o n s e q u e n t l y ,  t h e r e  
e x i s t s  a u n i q u e  o r d e r e d  s e q u e n c e  o f  numbers {~k, k = 1 . . . . .  N} ( c a l l e d  an i n v a r i a n t  measure )  

N 

s u c h  t h a t ~ f i k  = ~ a n d  ~ = ~ h P ~  f o r  a l l  j .  And s i n c e  f o r  a n y  f i x e d  j t h e  s t r i c t  i n e q u a l i t y  

Phi~P~J  h o l d s  f o r  a t  l e a s t  one k,  we have  ~ j ~ h p ~ j  f o r  a l l  j .  
h 

Take r > 0 so s m a l l  t h a t  a n ~ + e ~ j < l / a ~  h o l d s  f o r  a l l  j ,  and d e f i n e  t h e  numbers (b j}  f rom 
t h e  e q u a l i t i e s  bj = ( ~ : +  e~j) -1. By d e f i n i t i o n  bj > a j ,  and (4)  h o l d s .  Moreove r ,  

k k 

The lemma is proved. 

Now consider an open network with nonrandom characteristics which may be conceived as a 
realization of a Jackson-type network with a single elementary outcome. As before, denote 
by t n = x~ + ... + Xn the time the n-th call arrives, by 9n the number of the station to which 
this call is directed, and by T~ the time the i-th call from the input stream T~ = t n arrives 

5i 

at the k-th station, where ~=min{n~: v~=k} and 5~+~=min~ {n>~:vn=~ kl for i = I, 2 ..... 
k �9 k 

By sj we denote the time it takes to service the j-th call at the k-th station,~ and by v;j the 
number of the station to which the call is directed after being serviced (v~ N + 1 if 

this call exits the network). 

The behavior of the service network Z over the entire time interval [0, ~) may be 
uniquely determined by the sequence {(T~, s~, ~); k = I ..... N; i, ] = ~, 2 .... 1 introduced above as 
long as 
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oo 

(6) 
j~l 

for any k = 1 ..... N. Note that (6) holds with probability one for Jackson-type networks. 

We will use the notation (x~)~(9~) for two number sequences (xki) and (yi k) if x~ ~ ~ y~ for 

all i, k, and (x k) = (yki) if x kl = Yik for all i, k 
k 

We let Vj denote the time when servicing of the j-th call at the k-th station con- 
cludes. If for fixed k, we consider only times when calls exit the network after having been 
serviced at the k-th station, then V k~ will be understood as the time the j-th call exits. 

In [2] the following assertion was proved. 

LEMMA 4. Consider two service networks 

that satisfy ( 6 ) ,  If 

= P 7 ~ 

) ) < 0 4 )  = 

then (V~)-~(V)) and (V~~176 

We will require a number of corollaries from this lemma~ 
tional characteristics. 
by the rule 

We introduce certain addi- 
For a network Z and number t we introduce an auxiliary network Z(t) 

8 h 

T/~(t) = , if ~t, 
otherwise. 

In other words, in the auxiliary network we "terminate" the process in which calls arrive at 
time t. 

If u~0 we let Q(t, u) denote the 
u + 0. Note that {O(t,u): u~O}~D~ for 

COROLLARY i. Consider two service 

= 

then Q(t, u)<~(t, u) for all t and u. 

number of calls into the network Z(t) at time t + 
any fixed t. 

networks Z and Z. If 

(~j), 

In fact, consider the networks Z(t) and ~(t) and note that 

Q(t, u ) = E I ( T ~ t ) - - E I ( V ~ ~  + u). 
k,~ h,j 

Since (T~)~-(T~), and by Leman 4, (V~~176 , we have that Q(t, u)<~Q(t, u). 
As before, let Qn(u) = Q(tn, u). 

COROLLARY 2. Consider two service networks ~ and Z. If 

a) (Ti)-~(7~;), b) (vi) (~i), c) (83) 7 h = = = ( d ) 
then Q.,(u)>~(J~(u) for all n and u. 

In fact, it suffices to note that "contraction" of the intervals between the times that 
cells arrive is equivalent to "dilatation" of the service times. 

Finally, there is one more corollary that will be useful to us. Consider a network Z 
and "color" all the calls arriving in this network in white. Consider another stream of 

~h 
calls {(T~), (sj), (~)} , which we call the "red" stream. We form a new network 7 which both 
streams of calls enter. Network 7 functions in the following way. Calls are serviced in 
their order of arrival, independently of color. The number of service actions is computed 
separately for each color, and if a red (white) call arrives at the k-th station as the j-th 
of all red (white) calls, it "receives" service time ~k (respectively, sk), and following the 

conclusion of the service is directed to station O k (respectively, vk). Let Q(t, u) denote 
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the total number of calls in E(t) at time t + u + 0, and Q1(t, u) denote the number of white 
calls at the same time in the network. 

COROLLARY 3. For the networks E and E just introduced, Q(t, u)~ Q(t, e) for all t, u ~ 0. 

In fact, we need only note that, by Lemma 4, Q(t, u) ~ Q1(t, u) for all t and u. 

3.2. Proof of Theorem 3. Note that the sequence (qn, Xn) forms a homogeneous Markov 
chain. Therefore, as follows from [9], to prove Theorem 3 it suffices to verify that there 
exists a natural probability distribution P() on Z~ • R~ such that for any initial state 

(qo, xo), 
s u p l P ( ( q . , , X . ) , ~ B ) - P ( B ) [ - + O  as n ~ ,  

where the supremum is taken over all Borel sets B~_Z~ X R~. 

Let Q~(u) denote the number of calls in E(t) at the k-th device at time t n + u + 0, so 

that Q~ (U) = ~, Q~ (u). 

Consider the following method of specifying a family of networks in a common probability 
space. We will assume that calls may possess either positive (n > 0) or nonpositive (n~0) 
number. To each call numbered n that has arrived in the network, we assign a set Gn = [~n; 
8h k { =j};{~nj}} of independent random variables where, as before,kv n denotes the number of the 

device to which a call is directed at the time it arrives; Snj, the time it takes to service 

the j-th call at the k-th device; and v~j, the number of the device to which the call is 

directed after this servicing event. Denote as well by ~ the total number of times the n-th 

call is serviced at the k-th device, E6~ =~h. We also introduce a sequence of independent 
identically distributed variables {x~, --~ < n < =}. 

For given N, denote by ~-$ a o-algebra of sets generated by the random variables {(~i, 

G~), i~ n},~=~'~; and by U a metrically transitive measure-preserving shift transformation 
of~ N -measurable random variables, so that (T~+I, G~.+I)= U(T~, G~), finally let T denote the 
corresponding transformation of sets from ~r~i The symbols T n and U n, -~ < n < ~, will de- 
note the n-th iteration of T and U, respectively. 

n 
If m > 0, --~ < e< ~, we construct a set of service networks E m in a common probability 

space, letting -k n Q~.~(u) denote the number of calls at the k-th station in E m at time t n + u + 0. 

L e t  Q~,~(u)= (Q~,~(u)~ . . . .  Q~,~(u)) and Qm.n(u) = EQm,~(). 
h 

We b e g i n  w i t h  c a s e  n = 0, and d e f i n e  t h e  n e t w o r k  E~ by i n d u c t i o n .  

I n t o  E~ t h e r e  a r r i v e s  a s i n g l e  c a l l  numbered  0 a t  t i m e  t o = 0, and i n t o  E~ two c a l l s  
numbered  0 and ( - 1 ) ,  r e s p e c t i v e l y ,  a t  t i m e s  0 and t_  1 = - ~ 0 -  From C o r o l l a r y  3 i t  i s  e a s i l y  
deduced  t h a t  Q10(u)~ Qoo~(u) w i t h  p r o b a b i l i t Y k o n e  f o r  a l l  u ~ 0 .  I n  t h e  n e t w o r k  2~ we i n t r o d u c e  
c e r t a i n  new n o t a t i o n ,  i . e . ,  d e n o t i n g  by s l j  t h e  t i m e  when t h e  k - t h  s t a t i o n  s e r v i c e s  i t s  j - t h  
c a l l  (where  t h e  number  o f  t h e  c a l l  i s  a r b i t r a r y ) ,  and by 9~j  t h e  number  o f  t h e  d e v i c e  t o  
which  t h e  c a l l  i s  d i r e c t e d  a f t e r  h a v i n g  b e e n  s e r v i c e d  t h e r e :  F o r m a l l y  s p e a k i n g ,  t h e  random 
v a r i a b l e s  and a r e  d e f i n e d  o n l y  when + Without  any l o s s  in  g e n e r a l i t y ,  
h o w e v e r ,  we may e x t e n d  t h e i r  d e f i n i t i o n s  f o r  7 > 6 ~  + 611 by means o f  two a r b i t r a r y  o r d e r e d  

= { saj}, { ~lJ}} denote the control sequences of independent random variables. Let G_~ [[v0,~_~}, ~h ~h 
~h ~h in I~. Here, as before, {s~j} and {~ii} are sequences of independent identically distributed 

random variables. 

Consider a network Z~ into which there arrive two ordered sequences of calls, calls 
numbered {0, --i} with control ~-l and a call numbered (--2) with control G_2 which arrives 
at time t-2 =--x-~- ~0. From Corollary 3 it follows that Q20(u)~ Qro(u) with probability one 

{ s~5} and enumera- for all u ~ 0. In E~ we introduce, as before, a new service enumeration ~h 

tion of transitions {~} , i.e., we specify the control G-2, after which we define the 
network Z~ in which the two ordered sequences of calls arrive, i.e., calls numbered {0, --I, 
--2} with control G_= and a call numbered (--3) with control G_~, which arrives at time 
~=--r-n-~-t--~0 , and so on. 

Thus, for every ~ ~ 0 we have defined a service network Z~ into which there arrive 
(m + i) calls numbered -m, -m + i,...,-I, 0 with arrival times t_ i = --~-i+~- "''- ~0, while 
Q~+l.0(u)~Q~0(u) with probability one for all u~0 and m = 0, 1 ..... 
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We repeat the above construction for every n, -~ < n < ~, assuming that for any fixed 
n there arrive in E~ exactly (m + I) calls numbered i = n - m, n - m + l,...,n at times t i, 
where for n < 0 

while for n > 0 

n--i+ l 

j=O 

r i 

71 ~j if g > 0, 

- - 3 = "  1 I j  if i=0 

From t h e  c o n s t r u c t i o n  i t  i s  c l e a r  t h a t  t h e  random e l e m e n t s  Qk,n s a t i s f y  t h e  r e l a t i o n s  
~k 
Q~,n+z=UtO~,~ f o r  a l l  k , t ~ k < ~ N ,  m>~O, -oo<n, l<oo. We h a v e  t h e  f o l l o w i n g  a s s e r t i o n :  

LEMMA 5. Suppose  t h a t  ( 1 ) h o l d s .  Then t h e r e  e x i s t s  a random e l e m e n t  ~ 0 ~  D~ w i t h  
p r o b a b i l i t y  one s u c h  t h a t  Om,0~<Q~ w i t h  p r o b a b i l i t y  one f o r  a l l  m>~0. 

n k 
Let us present one corollary. Given a network Z m we denote by qm,n the number of calls 

at the k-th device at time t n + 0, and by Xmk,n the time left to service the call being ser- 

viced at this time at the k-th device, with ~'=U~ ~ ~=inf{a~0: ~'(~)=0}, w~,~=inf{u~>0: 

h Q~,~(u)=0}. From Lemma 5 it follows that since ~qm~n= Q~,~(0)~Qn(0) with probability one, 
h 

qh'n-----supq~,n<oo with probability one, and since %~mn<wm,n~w n with probability one, ~h.n ___ 
m 

sup ~ m Xm,~< oo with probability one. Moreover, if Ym,n denotes the number of service events 

in s n which begin following time tn, it follows from the preceding relations and the strong 
law of large numbers that ?~-~sup? .... <~ with probability one. 

m 

Further, note that if in the original network the initial conditions are null (i.e., 
h q0 = X0 = O) then the joint distribution of the random variables (%~,0, Q~,0; l~k~N) and 

%re+l, Om+l, t ~ k ~ N )  a r e  t h e  same f o r  any  m. T h e r e f o r e ,  s p e a k i n g  n o t  v e r y  r i g o r o u s l y ,  how- 
ever, the assertion of Lemma 5 may be restated as follows: For networks with null initial 
conditions there exists a stationary majorant. Analogously, a stationary majorant may be 
constructed given initial conditions, lying, with probability one, in some compactum. Con- 
sider, for example, the case q01 -= I, qj = 0, j ~ i. 

o 

For m~0 we will consider a network Z~ into which there arrives at time t_ m - 0 an addi- 
tional single call with control 

u h u i i ~ S--m--!,j}j>~2; i 

0 i h " where ~_rn_l~__---__--i, %o~c with probability one is the first service time and, as before{s-~-ijJ 
~h 

and{ -m-L~} are sequences of independent identically distributed random variables. Denote 
the new network by y0 m,l" 

Together with Em ~ we consider for E, 0 < s < i, a network Z~,e that differs from S~ only 
by the fact that in Z~ ~ calls numbered i = O, -I .... ,-m arrive at times t~ = (I - s)t i. We 

select E > 0 to be so small that condition (i) remains valid when ~=(E~I) -~ is replaced by 
~ = [ ( t - - e ) E ~ l ]  -1. 

Note that by Corollary 2 the network I~,~ (which is obtained from 7 ~ by adding at 
time t_ m - 0 the call with control G_im_1) majorizes, in a certain sense, the network Z ~ 
Now select m to be so large that c < s It_m_II. We define the network S~,~ obtained fromm'l" 

Z ~ by the addition at time (i - ~)t_m_ l of the call with control G ~-m-~ = [~-m-~,' 0 " {sh-m-~j}," 
~h 
{ -m-~j], /~I}. By Corollary 2 the network Zm: g majorizes E0,s if c<e]t-~_[I. 2 m,l 

Finally, consider the network Y~m,3 in which an additional call arrives at time t = 0 

and which possess control G0 s {i; h {v ~ 1 = {s0,~}; 0j,l, while the remaining calls possess controls 6~ = 

{s t " {@ ~1 ~o,s majorizes the �9 --1,j}; -Z-l,i~ for -m~l<~O. Then, by Corollary 2, the network ~m,3 
~0~g network Era',2 e. We let Q~.0,~, q,,~.0,~, w~,0,~ denote the characteristics of ~m,3" Since c~elt,~I 
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holds, with probability one, for a finite ordered sequence of numbers m, it remains for us to 

show that there exists an element Q~ with probability one such that Q~,0,~ ~~ for all m. 
By Corollary 3, we have Q~,0.~ ~ Q,~+~0~ with probability one for all m. Therefore, it suffices 
to show that supP(q~,0,~ >x)~ 0 and supP(~,0,~>x)~ 0 as x + ~. But this result follows at 

once from the proof of Lemma 5, which we will now present. 

Proof of Lemma 5. By the remarks given above, it suffices to show that supP(q~>x)-+0 

and supP(~ ~ x)~ 0 as x + ~, where qn and w n are characteristics of the original service 

network introduced in Sec. i. The latter result will, in turn, hold if we can prove that 

supP(qn>X)-+Oand sup max P ( E ~ > x ) - + O  
n n I ~ h ~ N  

as x § ~. Let us introduce, as in Sec. 3.1, a sequence of processes {Qn(u)} and let qn = 
Q~(0); m~=inf{u~0: Q~(u)=0}. Consider the network ~E which differs from the original net- 

work only in service times: ~s~ = s~ + (~ + s~)-~--a~> s~ with probability one, where the num- 

bers e and Sk are defined in Lemma 3. From Lemma 3 it follows that b~ = E~s~ satisfies (4) 
and (5). Moreover, by Corollary i, ~Q~,(u)~ Q~(u) with probability one for all n, u. 

Take numbers h > 0 and N~ i , and define the random variables {2~i} and {2s~} by the 
rule 

lh if nh ~ ':i ~ (n + I) h, 

2"q = Nh if T i ~ Nh, 

k < ~ ( l  + O h  ' + 1 + 2Sd ---- 

n < N ,  

where {q3} is a sequence of independent identically distributed random variables that do 

not together depend upon {{Tn], {sj[}, {wn], {w~}}; P (N~ = I) = P (N~ = 0) = I/2. 

Consider the network 2~ = {(z%~); (~n); (2s~); (~)]. 

It is clear that by choosing a sufficiently small number h > 0 and sufficiently large 
N>i , (4) and (5) will be satisfied for ~=E2T~ and bh=E2s~. Moreover, 

o c 

for any k = 1 ..... N. Applying Corollaries 1 and 2 of Lemma 4 in succession, we find that 
2Qn(u)~IQ~(u) for all n~1 and u~0. 

Finally, construct a network 0 E which majorizes 2E by means of the construction set 
forth below. The essence of the construction is as follows. At every time 2t,~=2xt+...+2T~ 
a certain random number of calls is added from outside to each station of the network so that 
within the time interval (2G, 2t~+i] there are no down times in the corresponding station, 
i.e., so that there is always at least one call at that station. 

Formally speaking, the construction has the following form. For n = 1 and k = I,...,N, 
we let 2w~ denote the time remaining to service calls that have arrived at the k-th device up 
until time 2ti + 0. Consider for every k a sequence of independent identically distributed 

^kD 
random variables {w } that do not depend upon those already introduced and such that sj = 

k ~ ~k 2s l .  Se t  j ~ = m i n i n ~ t :  s~+ . . .  + s n ~ z r 2 }  - 

If ~w~ <2T= , at time 2tl an additional y calls are directed to station k to which 

service times ~, w ..... respectively, are assigned. All the additional calls will be 
assumed to be "red" (cf. Corollary 3). If a sequence of random variables that describes the 
transitions from station to station and the lengths of subsequent servicing of red calls is 
specified in a common probability space with the previously introduced random variables, we 
find from Corollary 3 that the new network "majorizes" the preceding network. In particular, 
we may assume that the probability distribution of the transitions and the service lengths for 

the red calls is the same as for the while calls. 
k In the new service network, 2w2 denotes the remaining service time for calls that have 

arrived at the k-th device prior to time 2t2 + 0, and we add to those stations for which 2w~ < 
2T3 new "batches" of red calls in accordance with the procedure described above. Analogous 
additions are made for n = 3, 4,.... The network thus constructed is denoted 0E. Meanwhile 
0Q~(~)~Q,(u) with probability one for all n~ I and u ~ 0. 
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We let IoWn, oqn, oq~, o%~I denote the characteristics of 0 Z. It suffices to show that sup 

P(0qnh>X)-~0 and supP(0%nh>x)-~0 as x § ~. From here it follows that,supP(0q~>x)-~0 and 

sup P(0w~>x) ~ 0 as x + ~. The latter relations together with the fact that 0q~ ~ q~ with 

probability one and 0w~ w~ with probability one prove the lemma. 

Let us fix 1~k~N and consider the operation of each k-th station in 0 E taken sepa- 
rately. We let ~, @~ .... denote the successive service times for calls at this station. 

The sequence {~} consists of independent identically distributed random variables .k 9 k v~1 =~sl 
and is independent of {2~i}. Moreover, the random variables [~} and {2T~} are lattice vari- 

ables with step h. Therefore (cf. [i0]), there exists a stationary sequence {%~} such that 

P(0%~=% z~ for all l>~n)-~i as n § ~ that is specified in a common probability space with 
{%b~} and {2T~}. The random variables X nk have distribution 

and xnl,...,X nN are independent for any n = I, 2, .... In fact, if the initial conditions 
• IN ,...,• are specified to be independent, then 

P (x . . . . .  BN) = E V = V(X . . . .  

= . . . .  % ~ B N / 2 T 2 = l h ) = ~ P ( 2 T e  l l z ) P ( y ) ~ B ~  . . . . .  % ~ ~ ..  

We l e t  % = m i n { n ~ l :  0%~=% ~ f o r  a l l  k = t . . . . .  N}. S i n c e  k < ~ w i t h  p r o b a b i l i t y  one ,  sup 
n ~  

0Qn~D~ also. For any s > 0, a number n s may be found such thatP(i<n,)~i--s. We con- 

sider for n>~n~ the network 0E with initial (at time tns) state {(0q~,%nk); l~k<N} �9 By 

simplifying the notation, we perform a left time shift by ns units, i.e., we set ng = 0. 
Let 9~ denote the number of service events that are completed over the time interval (tz-1, tz] 
at the k-th station, 9~(i) the number of calls that have arrived at the i-th station from the 
k-th station during this time, and {~h; I~Z~} the corresponding service lengths. Note 

that the family {~ik.z; I ~.i< co, l ~ il consists of independent identically distributed random 

variables and that the sequences {~,/~I} and {~(i); l~i} are stationary and metrically 
transitive for any k and i. Therefore, 

E2~ t 
E ~  = E~s---~ = a--~-~ ' E ~  ( i ) =  E ~ p ~  = p~ 

where  t h e  numbers  a and b k s a t i s f y  (4 )  and ( 5 ) .  W i t h o u t  any  l o s s  o f  g e n e r a l i t y ,  i t  may be 
k k as sumed  t h a t  t h e  random v a r i a b l e s  9~,9~ (i), ~ a r e  d e f i n e d  f o r  a l l  ~, - ~  < ~ < ~.  

Fo r  o u r  g we f i n d  a number  xa > 0 s u c h  t h a t  P ( 0 q 0 ~ x e  f o r  a l l  k ) ~ l - e .  We l e t  N ~ =  

~ - ~ n ( k ) ' 6 I ( ~ v n = k ) - - ~ t ~ .  Note  t h a t  f o r  any  k t h e  {N~} fo rm a s t a t i o n a r y  m e t r i c a l l y  t r a n s i t i v e  

k 
s e q u e n c e  and E~]n~<0 by  ( 5 ) .  F u r t h e r ,  f o r  any  k t h e  numbers  0qn a r e  r e l a t e d  by t h e  f o r m u l a s  

k 
where  oWn+i i s  t h e  t o t a l  s e r v i c e  t i m e  r e m a i n i n g  f o r  a l l  oq~+ ~1~ c a l l s  a t  t i m e  ~tn+ ~. S i n c e  

~h~0 with probability one, own+i~h(oq~n+@n--l) with probability one. by construction ~sj 
Cons equently 

k k h 0qn+l ~ oqn q- "q~n "~ '~n§ [ (oq~n + ~]n < (Pn+~) a . s . ,  

where  ~.+~ =:eT,~.+l/h+ i, F_gp,~+~.<oo. W r i t i n g  down t h e  l a t t e r  i n e q u a l i t y  by i n d u c t i o n ,  we f i n d  
h t h a t  on t h e  s e t  10q0~xe} 

oq~n+x ~.  max x~ + @; max q)J+l + ?)~+~ + rl~ , ,~ x~ + sup n) + (pj+~ .+ Y.i+, ~ qn~ 

The sequence {q'~; --~<n<~} is stationary and metrically transitive and, as noted in [7, 

p. 358], from the two relations ENd<0 and E(~+?~)<co it follows that qnk < ~ with prob- 
ability one. 
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Let us summarize the above arguments. First, 

s u p P ( o X ~ >  x ) < e  + m a x V ( o X ~ > x )  + sup P ( x ' ~ h >  x ) =  e + m a x P ( o X ~ > x )  + P ( x ~  
~Z<n B ~Z>ns n~<n8 

P ~ x) 0 a s  x + ~.  S e c o n d ,  i f  x > that is limsupP(0z~>x)~s for any s > 0. Thus, sup (0%n> -+ 
Xg~ 

sup P (0q~ > x) < 2s + max P (0q~ > x) + P (q0~ > x) 

p k f o r  a n y  r > 0 a n d ,  c o n s e q u e n t l y ,  sup (oq~>x)-~O as  x § ~ .  I n  l i g h t  o f  t h e  a b o v e  r e m a r k s ,  
Lemma 5 is proved. 

Let us now move on to the proof of Theorem 3. We will require the following fact from 
arithmetic. If a matrix [IPijlt satisfies conditions (i), a matrix of transition probabili- 
ties llp~jll may be found such that 

(i) llpljl] satisfies (i) for the same ~ and ak; 

(2) for any i and j, if Pij = 0, then p~j = 0; 

(3) the numbers {i, 2, .... N} may be renumhered so that in the new enumeration p~.j = 0 
for any i >_ j. 

! 

In other words, lJPijll defines an acyclic network. We will not prove this assertion, noting 
only that it may be easily deduced by means of induction. 

�9 n . 
Let us specify some initial condition Q and consider the famlly of networks Zm(Q). wxth 

this initial condition. We denote the characteristics of these networks by Qm~,n(Q), X~m,n(Q), 

and so on. We will show that there exists a stationary sequence of events B ~  ~ such that 

for n>~L in the event B n Qm.n((2)=QL,n for all rot>L, ~k<~N . 

Let us denote by {~n} the stationary majorant for the family Zn(Q). We will determine 
large integers Kij and M such that the numbers Plj = Kij/M are close to Plj (Kij = 0 if Plj = 
0) and, consequently, llpljll satisfies (I). 

For n such that-~<n<~, d>1 ~, ct, c2, c3>0, we determine the events 

An= ~n+r,t=] if ~ K i z < r ~  . K ~ t , O ~ i ~ - ~ N , . I ~ j ~ N , t ~ r ~ M  ; 
/=I /=i 

H~ a ---- E~+jM N Dn. 

It is easily seen that a number d >> 1 may be found such that in the event Hn, d in any of the 

~n+dM l~O every call, after the next time it is serviced, either enters a station networks ~aM+z ' 

with higher number beginning with time tn+dM, or exits the network. Now take numbers cl, 
' ' ' ( " ' ') has positive probability, and con- c 2, c s and  c 1, c 2 ,  c 3 so  t h a t  t h e  e v e n t  H.,aND..+~I c~,c~,c~ 

s i d e r  t h e  e v e n t  

w h e r e  R >> d .  I f  t h e  n e t w o r k s  a r e  c o n s i d e r e d  o n l y  a t  t i m e s  t~+~,, B > / i > 1 0  , t h e n  i n  t h e  e v e n t  
H n , d ,  M t h e  b e h a v i o r  o f  t h e s e  n e t w o r k s  w i l l  be  t h e  same a s  t h e  b e h a v i o r  o f  an  a c y c l i c  n e t w o r k  
w i t h  s t a t i o n a r y  c o n t r o l .  T h e r e f o r e ,  Theorem 6 may be  a p p l i e d ,  a n d ,  c o n s e q u e n t l y ,  a r andom 
v a r i a b l e  a n may be f o u n d  and  f r o m  t h i s  v a r i a b l e  a l a r g e  number  R s u c h  t h a t  i n  t h e  e v e n t  o f  
positive probability B ~ + ~  ~ H~,<~ fl {a~ ~< RM} the desired relations are satisfied with prob- 
ability one for L = RM. It remains for us to note that if stationary sequences ~n,k are de- 
fined for 1 ~ k <~N from the equalities 

= QL,n-iI Bn:--i~ Bn-j 
i=O 

then it follows from what has already been poroved that 
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Therefore, in particular, for B__~ZSXT~$ , 

[V((q., X.)~B)-P((q",  %')~B),]-<.< P(Q~,. ~ Q")---,- 0 

as n § ~. Theorem 3 is proved. 

3.3. Proof of Theorem 4. The proof of this assertion is analogous to that of Theorem 
3, and therefore, we will limit ourself to an outline. First, under conditions (2) a natural 
analog of Lemma 3 holds if i/bj is replaced in (4) and (5) by m./b., j = i,. .,N. Second, 
for networks with multichannel stations the monotonicity properties (Lemma 4 and its corol- 
laries) remain valid. Third, Lemama 5 may be proved in virtually the same way if in the 
course of the proof additional batches of calls in each channel are directed towards the 
stations, independently of the other channels. Finally, at the concluding step we construct 
an event B n in which there exists an identity with an acyclic network over a lengthy time 
interval, where the loads on all the stations satisfy condition (2). Consequently, the argu- 
ments of Sec. 2.3 may be applied. 

4. Proof of Theorem 5 

So as not to burdenthe proof with extraneous technical details, we further suppose that 
s~ > 0 with probability one for all i = I,...,N. 

Let us specify the initial condition ~ k k i(q0,%~); i~k~N}, where Eq~=o?Ff and X0 = 0 if 

k 
q0 = 0. We denote by 0 ~ tl < ~ < ... the successive times at which servicing terminates at 
the stations, i.e., t I is the first moment of time at which the servicing of at least one 
station terminates, t 2 > t I is the next moment of time, and so on. We introduce the control 

{(s~,~); n~1} which has the following meaning. If at time t n servicing of some call ter- 

minates at the k-th station, this call is directed to station v~; if at this time, servicing 

of some call begins at the k-th station, the length of this servicing is set equal to s~. 

For all k, we set q~ =qk(t n+ 0), %~=%k(t~--O), ~=t~-U-1. Note that if n~2 , the inequal- 

ity T~maxs~-~n<~ holds with probability one and, consequently, ET~Es~<~. 
h 

We first present two proofs of Theorem 5 under certain special assumptions, and then 
the proof in the general case. 

Case (a). Suppose that there exists a number k such that Pkk > 0. 

For i, j = I,...,N, let p~j denote the probability of a transition from state i to 

state j in n steps. The set of states {i, 2,...,N} is partitioned into a certain number of 

classes DoUDIU...UDz by the rule D0={k}; DI={i: i~k, p~>0} and for 1<r~l ,Dr={i: i--#k, 

= = .-.,P~k =0, p~h>0}. If r = i, 2 ..... ~ and i~D~ we let ]=](Q~D~-I denote a 

number such that Pij > 0. If there are several such numbers, we select one of them. 

We fix a number L~I and consider for n~l the events 

A n  h i = {X 'n+v- -~ ;V ,~ ,v=](  0 if i:~k; J ~ u ~ L } .  

It is easily seen that by virtue of our choice of the number L ~ i, the equalities q~+L ~ = M 
and %~+L = 0 will hold with probability one in the event A n, Moreover, P(A~)> 0 and {An} 

form a stationary sequence of events which are L-dependent. That is, for the sequence lq~,%~; 

i~i~N} , which forms a Marker chain, the state {q~=HI;X~ = 0; q$= 0; %~= 0 for i x k} is 

a regenerating state where the length of the regenerating cycle possesses finite mathematical 
expectation. 

Le~ ~ denote the length of, say, the first regenerating cycle for the sequence {(q~,%~)l , 
and y the length of the first regenerating cycle for the process {q~(t), %~(t)} in continuous 
time. Note that, first, the random variable ~ has nonlattice distribution, since V~--Ds~+@, 
where , is independent of s~, and, second, 

i I 

by Wald's identity. Therefore, Smith's theorem for regenerating processes may be applied, 
and Theorem 6 is proved. 

Case (b). Now assume that Pii = 0 for all i, but that there exists a number k such 
that 
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(7) 

An o r d e r e d  s e q u e n c e  o f  d i s t i n c t  i n d i c e s  i~, i~ . . . . .  i m may be f o u n d  s u c h  t h a t  Phi~'pi~" . . . 'P~mh> 

0 and  t h e  s t a t i o n s  r e n u m b e r e d  s u c h  t h a t  i n  t h e  new e n u m e r a t i o n  i~ = 1 , . . . , i  m = m, k = m + 1. 

From c o n d i t i o n  ( 7 ) ,  i t  f o l l o w s  t h a t  t h e r e  e x i s t  n u m b e r s  d ,  b a , . . . , b  m s u c h  t h a t  d > b~ + . . . +  

b m and  the event { d + 6 o ~ s ~ + l ~ d ;  b ~ s ~ b ~ - - 6 ~ ;  l ~ i ~ r n }  h a s  p o s i t i v e  p r o b a b i l i t y  f o r  a n y  

~o, 6~ . . . . .  6 m. 

Let us partition the set {i, 2,...,N} into classes DoUDaU...UD~ by the rule 

D 0 = { l ,  2 . . . . .  m +  f}; D ~ = [ i :  i~Do; ~ pr 
[ j ~  D O J 

Ds = { i :  i~DoUD1; ~_~ p , r  etc.  
j ~ D ~  

and for r = 1 ..... ~ and i~D~ denote by j=j(i)~D~_1 a number such that Pij > 0. If there 
are several such numbers, we select one of them. 

We fix L>~ i and consider for the events An , m+1 
m + l  o n + , =  ](i) i f  igf~Do; d+ 60~Sn+v ~ d ; b i ~ & ~ + . ~ b { - - 6 {  i f  t ~ i ~ r n ;  l ~ v ~ L }  . I t  i s  

easily seen that a number L >> 1 may be found such that for any initial (at time t n) condition, 

the relation ~ k {q~+~----TFf, %n+~= 0}holds for at least one number v, I ~< v ~L, i.e. , regeneration 

of the sequence {q$, %~I occurs. 

As in case (a), the {An} form a stationary sequence of L-dependent random events, P(An)> 

0. Therefore, setting %=%(r ~A~L+I}, we have EX < ~. Consequently, as before, 

{qn,%nl is introduced, it fol- if the length ~ of the first regeneration cycle of the sequence i i 

lows from the relation ~<L(%+I) with probability one that E~<oo. Therefore, as in case 
(a), Smith's theorem may be applied. 

General Case. Suppose the assumptions of cases (a) and (b) do not hold. From the con- 
ditions of the theorem a number k may be found such that 

P ( s ~ > m a x s ~ > O . i ~  , ( 8 )  

We c a r r y  o u t  t h e  same c o n s t r u c t i o n s  a s  i n  c a s e  ( b ) ,  w i t h  t h e  n a t u r a l  s u b s t i t u t i o n  o f  c o n d i -  
t i o n  d>maxb~ f o r  c o n d i t i o n  d > b 1 + . . . +  b m. 

i..< m 
C o n s i d e r ,  f i r s t ,  t h e  c a s e  M~< m + 1 .  S u p p o s e  t h a t  L >> 1. Then ,  as  may be  e a s i l y  shown,  

for sufficiently large L' < L, in the event A n the following set of conditions may be real- 

ized: at any time t, tn+L,~t~tn+L, 

(i) all calls are found at stations numbered Do; 

(2) at any station numbered i<~m, there is at most one call, that is, when any call 
that has arrived at this station leaves, the station is empty. 

Thus, there is at least one call at the (m + l)-th station at any time. 

Further, by choosing sufficiently small 6o, ~i,---,6m it becomes possible to make the 
sequence of service terminations at the stations cyclic with length of cycle (m + i). By the 
above reasoning, it is possible to determine a stationary sequence {(q~(i), %~(0); l~<i ~<m+l~ 
n>~ I} such that for every n the ordered sequence {q~(i), x~(i); I <~i~ < m + i} is uniquely and 

uniformly determined from the set of random variables 1~i~m+ i;1~]~M(m+1)} and 

for v such that servicing at the (m + l)-th station, L'<~v<~L , terminates at time tn+v, it 
i is true that q~+~ q~+,(i), = %n+v=)~n+v(i), t<~i<~rnq-I in the event A (where from the form of the 

conditions ~+l i ~ 0). %n+, 0 and = = %n+v = qn+v 

Let us introduce the random variable 

tt = m i n  {n~M(rn  + l): (qn, 7~) = (q~(i)'zn(i))}" 

N o t e  t h a t  ~ < L ( ) ~ + t ) ,  w h e r e  t h e  v a r i a b l e  X i s  d e f i n e d  i n  c a s e  ( b ) .  T h e r e f o r e ,  E ~ < o o .  

C o n s i d e r  f o r  L >> 1, L > N(m + 1) t h e  s e q u e n c e  o f  r andom v a r i a b l e s  ~l  = g a n d f o r  ] > ~ I  
bt~+~ = rain { n > ~  + L: (q~.%~) = (q~(i), %~(i))1. I t  was n o t e d  i n  [ l I ]  t h a t  t h e  r andom v a r i a b l e s  
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{(~j+l--~j);]~i} are independent and identically distributed with finite mean. Therefore, for 

R GCD {i: P(~§ there exists a stationary sequence {(q~, ~i} such that 
�9 h 

%jR) = (q~x#) for all ] ~ n)-~l Let us now consider processes with continuous time and 
note that the length ~ between renovating times has a nonlattice distribution and that Theo- 
rem 6 follows from the results of [5]. 

Let us now consider the case M > m + i. Here the computations become even lengthier, 
and, therefore, we will not present a rigorous proof, but instead limit ourself to an out- 
line. 

Consider event A n defined earlier, and enumerate the calls numbered I, 2 ..... M in such 
a way that they circulate along the route {i, 2,...,m + I} in accordance with the numeration. 
Note that by the conditions of the theorem at least one more number d' may be found such that 
for sufficiently small 5 o the intervals (d, d + 6o) and (d', d' + 5 o ) are disjoint, and 

P(s~ ~ (d'~ d' + 5o) ) > 0. To simplify the discussion, consider only the case P(s~ = d) > 0; P (s~ = 

d')>O: d'<d. We determine an event B n that describes the operation of the network when 

v > L in the following way: Calls continue to circulate along the route {i, 2,...,m + I}; 
the service times at stations from the route {I, 2 ..... m} are the same, but at the (m + l)- 
th station we assign to call M service time of d', and to all the other calls service times 
of d. Then if v ~ L, upon arriving at the (m + l)-th station call M will always take the 
place of call (M - I). Set L l ~ 1 and if v > L + L I carry out the following analogous proce- 
dure: At the (m + l)-th station we assign to all calls numbered i, 2 ..... M - 2 service times 
of d, and to calls numbered (M - I) and M, service times of d'. If v~L+L I, both types of 
calls, i.e., those numbered (M - i) and those numbered M, will always arrive at a busy sta- 
tion. Performing similar constructions by induction, we find that for large v, in the event 
A~AB, , upon arriving at the (m + l)-th station all calls numbered 2, 3,...,M will take the 
place of the preceding call. We now consider the times when servicing of the first call 
terminates at the (m + l)-th station, and show that at these times the sequence we are study- 
ing is "renovated," and we may reason as in the case M~ m+ i. The proof of the theorem is 
concluded. 

Remark 2. By means of slight improvements it is possible to deduce the assertion of 
Theorem 6 in the case of multichannel stations as well. 

In conclusion, the author would like to note the great influence upon the development of 
his personal mathematical interests which has been the result of many discussions with 
Aleksandr Alekseevich Borovkov and the study of his works, and for this I am deeply grateful. 
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