

# **Ergodicity of a Stress Release Point Process Seismic Model with Aftershocks**

# **P.** Brémaud<sup>1</sup> and **S.** Foss<sup>2,\*</sup>

<sup>1</sup> INRIA-ENS, Département d'Informatique, École Normale Supérieure, 45 rue d'Ulm, 75005-Paris, France. Email: pierre.bremaud@ens.fr
 <sup>2</sup> School of Mathematics and Computer Sciences and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, Scotland, and Institute of Mathematics, Novosibirsk, Russia. Email: S.Foss@hw.ac.uk

Received December 3, 2009

Abstract. We prove ergodicity of a point process earthquake model combining the classical stress release model for primary shocks with the Hawkes model for aftershocks.

KEYWORDS: earthquakes, secondary earthquakes, point process, stochastic intensity, ergodicity, Harris chains, Foster's theorem

AMS SUBJECT CLASSIFICATION: 60J25, 60J75, 60G99

#### 1. Introduction

The times of occurrence of earthquakes in a given area of seismic activity form a simple point process N on the real line, where N((a, b]) is the number of shocks in the time interval (a, b]. In the present model, the dynamics governing the process will be expressed by the stochastic intensity  $\lambda(t)$ . In intuitive terms (to be precised in the next subsection)

$$\lambda(t) = \lim_{h \downarrow 0} \frac{1}{h} P(N((t, t+h]) = 1 \mid \mathcal{F}_t))$$

where  $\mathcal{F}_t$  is the sigma-field summarizing the available information at time t (increasing with t). In the stress release model, for  $t \ge 0$ ,

$$\lambda(t) = \exp\left\{X_0 + ct - \sum_{n=1}^{N((0,t])} Z_n\right\}$$

<sup>\*</sup>The research of S. Foss was partially supported by the EPSRC Grant EP/E033717/1 and by Framework 7 EURO-NF Grant

where c > 0 and  $\{Z_n\}_{n \ge 1}$  is an i.i.d. sequence of non-negative random variables with finite expectation, whereas  $X_0$  is some real random variable. The process

$$X(t) = X_0 + ct - \sum_{n=1}^{N((0,t])} Z_n$$

is ergodic, and the reader is referred to [9] for a proof and the relevant results concerning a generalization of this particular model.

Another model of interest in seismology is the Hawkes branching process, where the stochastic intensity is

$$\lambda(t) = \nu(t) + \int_{(0,t]} h(t-s)N(ds),$$

where h is a non-negative function, called the fertility rate and  $\nu$  is a nonnegative integrable function. Such point process appears in the specialized literature under the name ETAS (Epidemic Type After-Shock; [12]) and is used to model the aftershocks (see [7], p. 203). It is well known [6] that the corresponding process "dies out" in finite time under the condition

$$\int_{0}^{\infty} h(t) \, dt < 1.$$

A model mixing stress release and Hawkes aftershocks is [13]

$$\lambda(t) = \exp\left\{X_0 + ct - \sum_{n=1}^{N((0,t])} Z_n\right\} + Y_0 e^{-\alpha t} + k \int_{(0,t]} e^{-\alpha(t-s)} N(ds),$$

where  $\alpha > 0$ . The positive constant c is the rate at which the strain builds up. If there is a shock at time t, then the strain is relieved by the quantity  $Z_{N(t)}$ . Each shock (primary or secondary) at time t generates aftershocks according to a Poisson process of intensity  $a(s) = k \exp\{-\alpha(t-s)\}$ . In this article, we give necessary and sufficient conditions of ergodicity for this model. More precisely, we find a necessary condition for the existence and uniqueness of the corresponding stationary process and, for any initial distribution of  $X_0$  and  $Y_0$ , of the convergence to that distribution, and we prove formally that it is also sufficient (under a further smoothness condition on the distribution of  $Z_i$ ).

We shall start with a detailed mathematical description of the model.

# 2. Description of the model

Let  $\varphi: (-\infty, \infty) \to [0, \infty)$  be a non-decreasing function such that

$$\lim_{x \to -\infty} \varphi(x) = 0$$

and

$$\lim_{x \to \infty} \varphi(x) = \infty.$$

391

We operate under either one of the following assumptions: (a): the function  $\varphi$  may be strictly positive everywhere or (b): it is equal to zero for all x below some level and otherwise strictly increasing.

We are given

- (1) a Poisson field  $\Pi$  of intensity 1 in the positive quadrant
- (2) and an i.i.d. family of positive random variables  $\{Z_n\}_{n\geq 1}$  with a finite mean,
- $(3)\,$  and it is assumed that the Poisson field and the i.i.d. family are independent.

The above Poisson field and i.i.d. family constitute the probabilistic basis of our model.

We consider a simple point process N with the following stochastic intensity:

$$\lambda(t) = \varphi \left( X_0 + ct - \sum_{n=1}^{N(t)} Z_n \right) + Y_0 e^{-\alpha t} + k \int_{(0,t]} e^{-\alpha(t-s)} \, dN(s), \tag{2.1}$$

where N(t) := N((0, t]), and where  $X_0, Y_0, c, k$ , and  $\alpha$  are as in the introduction. This means that the point process is constructed recursively as

$$N(t) = \int_{(0,t]} \int_{R} \mathbf{I}(z \le \lambda(t-)) \Pi(dz \times dz).$$

Defining

$$\mathcal{F}_t := \sigma\{X_0; Y_0; N(s), Z_{N(s)}, s \le t\},\$$

the process  $\{\lambda(t)\}_{t\geq 0}$  is then the  $\mathcal{F}_t$ -stochastic intensity of N in the sense of [4] (see also [7,10]).

In the seismological interpretation,

$$\lambda_1(t) = \varphi \left( X_0 + ct - \sum_{n=1}^{N(t)} Z_n \right)$$
(2.2)

is the stochastic intensity of the primary shocks, whereas

$$\lambda_2(t) = Y_0 e^{-\alpha t} + k \int_{(0,t]} e^{-\alpha(t-s)} dN(s)$$
(2.3)

is the stochastic intensity of the aftershocks.

# 3. On the ergodicity condition

The existence of ergodicity will be proven in the case

$$\frac{k}{\alpha} < 1. \tag{3.1}$$

This section shows that this is indeed a natural (intuitive) condition and moreover that it is necessary if we seek only those solutions for which the steady-state average intensity  $\lambda := E[\lambda(t)]$  satisfies  $0 < \lambda < \infty$ .

We therefore henceforth assume ergodicity. From now on we use the notation

$$X(t) = X_0 + ct - \sum_{n=1}^{N(t)} Z_n$$

and

$$Y(t) = Y_0 e^{-\alpha t} + k \int_{(0,t]} e^{-\alpha(t-s)} dN(s).$$

The process  $(X(t), Y(t)), t \ge 0$ , is a time-homogeneous Markov process with initial value  $(X_0, Y_0)$ , and

$$\lambda(t) = \varphi(X(t)) + Y(t).$$

Further, ergodicity means, in particular, that there exists a stationary version of the process (X(t), Y(t)). For such a stationary version, let  $\lambda_1 = E[\varphi(X(t))]$ and  $\lambda_2 = EY(t)$ . Then  $\lambda = \lambda_1 + \lambda_2$ , so the finiteness of  $\lambda$  implies that of  $\lambda_1$ and of  $\lambda_2$ . Observe that

$$E[Y(t)] = E[Y(0)]e^{-\alpha t} + kE\left[\int_{(0,t]} e^{-\alpha(t-s)}N(ds)\right]$$
$$= E[Y(0)]e^{-\alpha t} + k\int_{0}^{t} e^{-\alpha(t-s)}\lambda ds$$
$$= E[Y(0)]e^{-\alpha t} + \lambda\frac{k}{\alpha}(1-e^{-\alpha t})$$

where we used Campbell's formula. Therefore, from the stationarity,

$$E[Y(0)] = \lambda \frac{k}{\alpha} = E[Y(t)].$$

Then

$$\lambda = \lambda_1 + \lambda \frac{k}{\alpha} \equiv \lambda_1 + \lambda_2.$$

393

<u>The supercritical case</u>. Suppose, in view of contradiction, that  $k/\alpha > 1$ . The last equality then implies that  $\lambda = \infty$ , which we excluded, or that  $\lambda = 0$ , and then  $\lambda_1 = E[\varphi(X(t))] = 0$ . Since  $\varphi(X(t)) \ge 0$ , this implies  $P(\varphi(X(t)) = 0) = 1$ , that is  $P(X(t) = -\infty) = 1$ . Similarly P(Y(t) = 0) = 1.

<u>The critical case</u>. Suppose now, again in view of contradiction, that  $k/\alpha = 1$ . The last displayed equality implies then that  $\lambda = \infty$  (excluded) or  $\lambda_1 = 0$  and therefore  $P(\varphi(X(t)) = 0) = 1$ . Then

$$\lambda(t) = Y(0)e^{-\alpha t} + k \int_{(0,t]} e^{-\alpha(t-s)} N(ds).$$

We show that any point process N with this stochastic intensity and with finite average intensity is necessarily null (with intensity equal to 0). Suppose that  $\lambda > 0$ . Clearly,

$$P(N(R_{+}) = 0) = E[P(N(R_{+}) = 0 | Y(0))]$$
$$= E\left[\exp\left\{-\int_{0}^{\infty} Y(0)e^{-\alpha t}dt\right\}\right]$$
$$\geq \exp\left\{-E[Y(0)]\frac{1}{\alpha}\right\} = \exp\left\{-\lambda\frac{1}{\alpha}\right\} > 0$$

and therefore, since we assumed  $\lambda < \infty$ , we have that  $P(N(R_+) = 0) > 0$ . Now,

$$\{N(R_+) = 0\} \subseteq \theta_t \{N(R_+) = 0\} = \{N([t, \infty)) = 0\}.$$

That is,  $\{N(R_+) = 0\}$  is expanded by the (ergodic) shift, and therefore it has probability 0 or 1. By the above, this probability must be 1. We conclude that  $\lambda = 0$ , a contradiction.

Therefore in the critical case there is no solution except the trivial one (no earthquakes).

#### 4. Explicit expressions for the average rates

In this section, we exhibit an interesting feature of the model. We assume here again ergodicity and the condition  $0 < \lambda < \infty$ . We continue to consider the model in the stationary regime. Writing

$$\varphi(X(t)) = \varphi\left(X(0) + t\left(c - \frac{N(t)}{t}\frac{1}{N(t)}\sum_{n=1}^{N(t)} Z_n\right)\right)$$
$$= \varphi(X(0) + t(c - \lambda E[Z_1] + \varepsilon(t))),$$

where  $\lim_{t\uparrow\infty} \varepsilon(t) = 0$  a.s. Let  $\Delta := c - \lambda E[Z_1]$ . Let  $\tau$  be the (a.s. finite) random time such that  $t \ge \tau$  implies  $|\varepsilon(t)| \le (1/2)|\Delta|$ .

Suppose that  $c - \lambda E[Z_1] > 0$ . We have

$$E[\varphi(X(t))] \ge E[\varphi(X(t))\mathbf{1}_{\{t \ge \tau\}}] \ge E\left[\varphi(X(0) + t\frac{1}{2}\Delta)\mathbf{1}_{\{t \ge \tau\}}\right]$$

But

$$\varphi(X(0) + t\frac{1}{2}\Delta)1_{\{t \ge \tau\}} \uparrow \infty$$

as  $t \to \infty$  and therefore

$$\lambda_1 = E[\varphi(X(t))] \to \infty$$

implying that  $\lambda = \infty$  which is excluded.

Suppose that  $c - \lambda E[Z_1] < 0$ . We show that this is impossible. Here  $\lim_{t\uparrow\infty} \varphi(X(t)) = 0$  by a similar argument. We prove that  $\lim_{t\uparrow\infty} E[\varphi(X(t))] = 0$ ,  $\lambda_1 = 0$  and therefore  $\lambda = 0$  which is impossible.

For the proof that  $\lim_{t\uparrow\infty} E[\varphi(X(t))] = 0$  we can make use of the following lemma (in fact taking care of both situations when  $c - \lambda E[Z_1] \neq 0$ ).

**Lemma 4.1.** If the stationary stochastic process  $\{Z(t)\}_{t\geq 0}$  is such that it tends almost surely to a deterministic constant c as  $t \uparrow \infty$ , then it is almost surely equal to this constant.

*Proof.* Fix  $\varepsilon > 0$ , and consider the set

$$C = \{\omega; Z(t, \omega) \in [c - \varepsilon, c + \varepsilon] \text{ for all } t \ge 0\}.$$

Then for all a > 0,

$$\theta_a C = \{\omega; Z(t, \omega) \in [c - \varepsilon, c + \varepsilon] \text{ for all } t \ge a\}.$$

But  $\theta_a C \uparrow \Omega$ , and therefore  $P(C) = P(\theta_a C) \uparrow 1$ . So that P(C) = 1. Since this is true for all  $\varepsilon > 0$ ,

$$P\{Z(t) = c\} = 1, \quad \text{for all} \quad t \ge 0.$$

Therefore, necessarily

$$\lambda = \frac{c}{E[Z_1]}.$$

Therefore, in this model, the rate of occurrences of earthquakes is given by the physics of stress build up (the constant c) and stress release ( $E[Z_1]$ ), whereas the global rate is shared among primary and secondary earthquakes according to the physics of the aftershocks ( $\alpha$  and k).

395

#### 5. Two embeddings

We now turn to the technical core of the paper, namely the proof of existence of a unique ergodic solution of the model, under the condition  $k/\alpha < 1$  and a further condition on the distribution of  $Z_i$  (see Condition (CZ) in Section 7). The technique used is that of Harris chains, and we start as usual by studying a natural embedded process. More precisely, let  $\{(t_n)\}_{n\geq 0}$ , with  $t_0 = 0$ , be the sequence of time events of N, and let for each  $n \geq 0$ ,  $T_{n+1} := t_{n+1} - t_n$ ,  $X_n := X(t_n), Y_n := Y(t_n)$ . We then have the recurrence equations that exactly reflect the dynamics described in the previous section:

$$X_{n+1} = X_n + cT_{n+1} - Z_{n+1}$$

and

$$Y_{n+1} = Y_n \exp\{-\alpha T_{n+1}\} + k$$

where  $S_{n+1}$  is a positive random variable whose hazard rate is, conditionally to  $X_0, \ldots, X_n, Y_0, \ldots, Y_n, T_1, \ldots, T_n$  and  $Z_1, \ldots, Z_n$ 

$$\varphi(X_n + cs) + Y_n e^{-\alpha s}.$$

It is clear that  $\{(X_n, Y_n)\}_{n \ge 0}$  is a homogeneous Markov chain. Its transition mechanism is fully described by the first transition, which can be implemented as follows.

Let  $X_0 = x$  and  $Y_0 = y \ge 0$ . On the positive half-plane with the time t running on the horizontal coordinate axis, draw two curves:

- (a) a curve with graph  $(t, \varphi(x + ct))$  (that starts from  $(0, \varphi(x))$ );
- (b) a curve with graph  $(t, -ye^{-\alpha t})$  (that starts from (0, -y)).

Consider the projection on the time axis of the Poisson field between the above two curves and let  $T_1$  be the point of this projection with the smallest *t*coordinate. It has, as the notation anticipated, the required hazard rate  $\varphi(x + cs) + y \exp\{-\alpha s\}$ . In particular,

$$\mathbf{P}_{x,y}(T > t) \equiv \mathbf{P}(T_1 > t \mid X_0 = x, Y_0 = y)$$
$$= \exp\left\{-\frac{y}{\alpha}\left(1 - e^{-\alpha t}\right)\right\} \cdot \exp\left\{-\int_0^t \varphi(x + cv)dv\right\}.$$

and

$$X_1 = x + cT_1 - Z_1,$$
  
$$Y_1 = ye^{-\alpha T_1} + k.$$

Two lemmas concerning this particular realization of the transition kernel will be useful.

Let  $T_{x,y}$  be a "generic" random variable with distribution

$$\mathbf{P}(T_{x,y} \in \cdot) = \mathbf{P}(T_1 \in \cdot \mid X_0 = x, Y_0 = y).$$

Following the comments from above, one can represent  $T_{x,y}$  as

$$T_{x,y} = \min(T^{(1,x)}, T^{(2,y)})$$
(5.1)

where  $T^{(1,x)}$  and  $T^{(2,y)}$  are independent and

$$\mathbf{P}(T^{(1,x)} > t) = \exp\left\{-\int_{0}^{t}\varphi(x+cv)dv\right\},\$$
$$\mathbf{P}(T^{(2,y)} > t) = \exp\left\{-\frac{y}{\alpha}\left(1-e^{-\alpha t}\right)\right\}.$$

Clearly,

$$\mathbf{P}(T^{(2,y)}) = \infty) = e^{-y/\alpha} > 0,$$

for any  $y \ge 0$ .

Lemma 5.1. (1) For any 
$$0 \le y_1 \le y_2$$
,  
 $T^{(2,y_1)} \ge_{st} T^{(2,y_2)}$ . (5.2)

(2) For any  $x_1 < x_2$ ,

$$T^{(1,x_1)} \ge_{st} T^{(1,x_2)}$$
 (5.3)

while

$$x_1 + cT^{(1,x_1)} \leq_{st} x_2 + cT^{(1,x_2)}.$$
(5.4)

Also, for any x,  $\mathbf{P}(T^{(1,x)} < \infty) = 1$  and, moreover, for any a > 0,

$$\mathbf{P}(T^{(1,x)} > t)e^{at} \to 0, \quad \text{as} \quad t \to \infty.$$

*Proof.* Inequality (5.2) is straightforward. Inequality (5.3) follows from the monotonicity of  $\varphi$  while inequality (5.4) follows from the following coupling construction. Let  $t_0 > 0$  be such that  $x_1 + ct_0 = x_2$ . If there is a point of the Poisson field in  $\{(t, u) : 0 \le t \le t_0, 0 \le u \le \varphi(x_1 + ct)\}$ , then  $T^{(1,x_1)} < t_0$  and  $x_1 + cT^{(1,x_1)} \le x_2$ . If however there is no such a point, then

$$x_1 + cT^{(1,x_1)} = x_2 + cT^{(1,x_2)} \cdot \theta^{t_1}$$

where  $\{\theta^t\}_{t\geq 0}$  is a family of measure-preserving shift transformations. So, with probability 1

$$x_1 + cT^{(1,x_1)} \le x_2 + cT^{(1,x_2)} \cdot \theta^t =_{st} x_2 + cT^{(1,x_2)}.$$

Ergodicity of a stress release point process seismic model with aftershocks

The remaining results follow from inequality (5.4) and from the fact that  $\varphi(x) \to \infty$  as  $x \to \infty$ .

**Corollary 5.1.** For any  $x_0$ ,

$$\sup_{x \ge x_0} \mathbf{E} T_{x,y} \to 0 \quad \text{as} \quad y \to \infty.$$
(5.5)

Also

$$\sup_{y \ge 0} \mathbf{E} T_{x,y} \to 0 \quad \text{as} \ x \to \infty.$$
(5.6)

*Proof.* By Lemma 5.1,  $0 \leq T_{x,y} \leq_{st} T_{x_0,y}$  for any  $x \geq x_0$ . Clearly,  $T^{(2,y)} \to 0$  in probability as  $y \to \infty$ . Since  $\mathbf{E}T^{(1,x_0)}$  is finite, the family of random variables  $\{T_{x_0,y}\}_{y\geq 0}$  is uniformly integrable, and therefore

$$\sup_{x \ge x_0} \mathbf{E} T_{x,y} = \mathbf{E} T_{x_0,y} \to 0 \quad \text{as} \ y \to \infty.$$

Further, from inequality (5.1),  $T_{x,y} \leq_{st} T^{(1,x)}$  where  $T^{(1,x)} \to 0$  in probability. By (5.3) and since  $\mathbf{E}T^{(1,0)}$  is finite, the family  $\{T^{(1,x)}\}_{x\geq 0}$  is uniformly integrable, and therefore  $\mathbf{E}T^{(1,x)} \to 0$  as  $x \to \infty$ , and then (5.6) follows.  $\Box$ 

Lemma 5.2. As  $y \to \infty$ ,

$$y \mathbf{E}\left(\exp\{-\alpha T^{(2,y)}\} - 1\right) \to -\alpha.$$

Proof. Indeed,

$$y\mathbf{E}(1 - \exp\{-\alpha T^{(2,y)}\}) = y \int_{0}^{1} \mathbf{P}(\exp\{-\alpha T^{(2,y)}\} < v) dv$$
$$= y \int_{0}^{1} \mathbf{P}(T^{(2,y)} > \ln v/(-\alpha)) dv$$
$$= y \int_{0}^{1} \exp\{-\frac{y}{\alpha}(1-v)\} dv$$
(change of variables:  $u = 1 - v$ )
$$= y \int_{0}^{1} \exp\{-\frac{yu}{\alpha}\} du$$
(change of variables:  $r = yu/\alpha$ )
$$= \alpha \int_{0}^{y/\alpha} e^{-r} dr \to \alpha,$$

as  $y \to \infty$ .

P. Brémaud and S. Foss

Remark 5.1. As follows from (5.1) and Lemma 5.1, if  $x \ge 0$ , then

$$T_{x,y} \leq_{st} T^{(1,0)}$$

and, therefore,

$$\sup_{x>0, y\ge 0} \mathbf{E} T_{x,y} \le \mathbf{E} T^{(1,0)} < \infty.$$
(5.7)

One may also deduce from Lemma 5.1 that if  $x \leq 0$ , then

$$cT_{x,y} \leq_{st} |x| + cT^{(1,0)} + Z$$

where the random variables in the right-hand side are integrable. So one can find a universal constant C>0 such that

$$\mathbf{E}T_{x,y} \le C(|x|+1), \text{ for all } x \le 0 \text{ and } y \ge 0.$$
 (5.8)

Then it follows from (5.7) and (5.8) that, for any negative  $x_1$ ,

$$\sup_{x>x_1,y\ge 0} \mathbf{E}T_{x,y} < \infty.$$
(5.9)

However the supremum in (5.9) becomes infinite if one replaces  $x_1$  by  $-\infty$ .

To keep the supremum finite, we consider a slightly different embedding. Again we describe the first transition only. We fix a sufficiently large positive  $v_0$  and a sufficiently large negative  $x_1$  (to be chosen in the next section) and define the new embedding  $\{\tilde{T}_{x,y}\}$  as follows:

- (a) if  $x \leq x_1$ , then  $\widetilde{T}_{x,y} = \min(T_{x,y}, v_0)$  while
- (b) if  $x > x_1$ , then  $\widetilde{T}_{x,y} = T_{x,y}$ .

Then clearly

$$\sup_{x \in (-\infty,\infty), y \ge 0} \mathbf{E} \widetilde{T}_{x,y} < \infty.$$
(5.10)

Denote by  $(\widetilde{X}_n, \widetilde{Y}_n)$  a new time-homogeneous Markov chain obtained by the new embedding. It satisfies the relations: given  $\widetilde{X}_0 = x, \widetilde{Y}_0 = y$ , if  $x > x_1$ , then

$$\widetilde{X}_1 =_{st} x + cT_{x,y} - Z$$

where  $T_{x,y}$  and Z are mutually independent, and

$$\widetilde{Y}_1 =_{st} y e^{-\alpha T_{x,y}} + k,$$

and if  $x \leq x_1$ , then

$$\widetilde{X}_1 =_{st} x + c\widetilde{T}_{x,y} - Z \mathbf{I}(T_{x,y} \le v_0)$$

where  $\widetilde{T}_{x,y}$  and Z are mutually independent, and

$$\overline{Y}_1 =_{st} y e^{-\alpha T_{x,y}} + k \mathbf{I}(T_{x,y} \le v_0)$$

Ergodicity of a stress release point process seismic model with aftershocks

399

#### 6. Positive recurrence of the embedded process

In this section, we show positive recurrence of the Markov chain obtained by the second embedding  $(\tilde{X}_n, \tilde{Y}_n)$ , see the end of the previous section. We recall some known facts.

**Definition 6.1.** Consider a discrete-time and time-homogeneous Markov chain  $W_n, n \ge 0$ , on a measurable state space  $(\mathcal{W}, \mathcal{B}_{\mathcal{W}})$ . A measurable set  $V \subseteq \mathcal{Z}$  is *positive recurrent* if the following two conditions hold:

(a) A random variable

$$\tau_w(V) := \min\{n \ge 1 : W_n \in V \mid W_0 = w\}$$

is a.s. finite, for all  $w \in \mathcal{W}$ ;

(b) Moreover,  $\sup_{w \in V} E\tau_w(V) < \infty$ .

For a Markov chain  $W_n$ , the following result is known as *Foster's criterion*:

**Proposition 6.1.** Let  $L : \mathcal{W} \to [0, \infty)$  be a measurable function, and let  $\widehat{L}$  be a non-negative number. The set  $V = \{w \in \mathcal{W} : L(w) \leq \widehat{L}\}$  is positive recurrent if

- (i)  $\sup_{w \in V} E(L(W_1) \mid W_0 = w)$  is finite;
- (ii) there exists  $\varepsilon > 0$  such that  $E(L(W_1) \mid W_0 = w) L(w) \leq -\varepsilon$ , for any  $w \in W \setminus V$ .

**Theorem 6.1.** Let  $k < \alpha$ . For suitably chosen  $v_0$  and  $x_1$ , there exists a compact set V in  $(-\infty, \infty) \times [0, \infty)$  which is positive recurrent for the Markov chain  $(\widetilde{X}_n, \widetilde{Y}_n)$ .

Remark 6.1. A sequence  $(X_n, Y_n)$  is a subsequence of  $(\widetilde{X}_n, \widetilde{Y}_n)$ . With arguments similar to those of Theorem 6.1, one can also prove that the same set V is positive recurrent for the Markov chain  $(X_n, Y_n)$ .

*Proof of Theorem* 6.1. We use Foster's criterion, with the following choice of the test function:

$$L(x,y) \equiv L_1(x) + L_2(y) = \begin{cases} r_1 x + r_2 y, & \text{if } x \ge 0, \\ r_3 |x| + r_2 y, & \text{if } x < 0, \end{cases}$$

where  $r_1, r_2, r_3$  are strictly positive (to be chosen later). First of all, for any  $C_1, C_2 > 0$ ,

$$\sup_{|x| \le C_1} \sup_{y \le C_2} \mathbf{E}(L(\widetilde{X}_1, \widetilde{Y}_1) \mid \widetilde{X}_0 = x, \widetilde{Y}_0 = y) < \infty.$$
(6.1)

Indeed, let  $r = \max(r_1, r_2, r_3)$ . Then, for any (x, y) from the set above,

$$\widetilde{T}_{x,y} \leq_{st} T^{(1,-C_1)} := \widehat{T},$$

and  $\widehat{T}$  has a finite mean. Therefore, for all (x, y) from this set,

$$\mathbf{E}(L(\widetilde{X}_1,\widetilde{Y}_1) \mid \widetilde{X}_0 = x, \widetilde{Y}_0 = y) \le r(C_1 + C_2 + \mathbf{E}\widehat{T} + \mathbf{E}Z + k) < \infty,$$

and (6.1) follows.

Now we impose several constraints on the coefficients  $r_1, r_2, r_3$ . First, we assume that

$$r_3 < r_1 \tag{6.2}$$

and

$$r_1 \mathbf{E} Z > r_2 k. \tag{6.3}$$

Let  $\alpha - k = 2\Delta > 0$ . We also assume that

$$r_2 \Delta > r_3 \mathbf{E} Z. \tag{6.4}$$

In the proof, we use only conditions (6.2)–(6.4) which are, in particular, satisfied if  $r_1 >> r_2 >> r_3 > 0$ .

Now we proceed to show that all the differences  $\tilde{a}$   $\tilde{a}$   $\tilde{a}$ 

$$E(L(\widetilde{X}_1, \widetilde{Y}_1) \mid (\widetilde{X}_0, \widetilde{Y}_0) = (x, y)) - L(x, y)$$

are bounded above by some negative constant if (x, y) is outside the set  $[x_1, x_0] \times [0, y_0]$  where  $x_1, x_0$  and  $y_0$  will be chosen in the proof. For this, consider separately two cases: (a) x > 0 and (b)  $x \le 0$ .

Case x > 0

In this case, the one-step embedding is the natural one, so we may write  $(X_1, Y_1)$  instead of  $(\tilde{X}_1, \tilde{Y}_1)$ .

Let

$$3\gamma = \min\{r_2\Delta - r_3\mathbf{E}Z, r_1\mathbf{E}Z - r_2k\} > 0.$$
(6.5)

Choose  $x_0 > 0$  so big that

$$r_1 c \mathbf{E} T^{(1,x_0)} \le \gamma, \tag{6.6}$$

and

$$(r_1 + r_3)\mathbf{E}(Z - x_0)^+ \le \gamma.$$
 (6.7)

By Lemma 3, we may choose  $y_0 > 0$  so large that

$$y\mathbf{E}\left(1-\exp\{-\alpha T^{(2,y)}\}\right)-k \ge \frac{5}{3}\Delta, \quad \text{for all } y\ge y_0 \tag{6.8}$$

and that

$$r_1 c \mathbf{E} T_{0,y_0} \le \gamma. \tag{6.9}$$

Then choose  $v_0 > 0$  so large that

$$y\mathbf{E}(1 - \exp\{-\alpha\min(v_0, T^{(2,y)})\}) - k \ge \frac{4}{3}\Delta, \text{ for all } y \ge y_0$$
 (6.10)

and that the following inequality holds:

$$\frac{r_3 c v_0}{2} \exp\left\{-\frac{y_0}{\alpha}\right\} > \gamma + r_3 \mathbf{E} Z + r_2 k.$$
(6.11)

Write for short

$$\mathbf{E}_{x,y}L(X_1,Y_1) = \mathbf{E}(L(X_1,Y_1) \mid X_0 = x, Y_0 = y) = \mathbf{E}_{x,y}L_1(X_1) + \mathbf{E}_{x,y}L_2(Y_1).$$

If x > 0, then

$$\begin{split} \mathbf{E}_{x,y} L_1(X_1) - L_1(x) &= r_1 \mathbf{E} \left( (x + cT_{x,y} - Z) \, \mathbf{I}(x + cT_{x,y} - Z > 0) \right) \\ &+ r_3 \mathbf{E} \left( (-x - cT_{x,y} + Z) \, \mathbf{I}(x + cT_{x,y} - Z \le 0) \right) - r_1 x \\ &= c \, \mathbf{E}(T_{x,y}(r_1 \, \mathbf{I}(x + cT_{x,y} - Z > 0) \\ &- r_3 \, \mathbf{I}(x + cT_{x,y} - Z \le 0))) + r_1 \mathbf{E}(x - Z) \\ &+ (r_1 + r_3) \mathbf{E}((-x + Z) \, \mathbf{I}(x + cT_{x,y} - Z \le 0)) - r_1 x \\ &\leq r_1 c \, \mathbf{E} T_{x,y} - r_1 \mathbf{E} Z + (r_1 + r_3) \, \mathbf{E}(Z - x)^+ \end{split}$$

and

$$\mathbf{E}L_2(Y_1) - L_2(y) = r_2(y\mathbf{E}\exp\{-\alpha T_{x,y}\} + k) - r_2y.$$

In particular, if  $x \ge x_0$ ,

$$\mathbf{E}_{x,y}L_1(X_1) - L_1(x) \le r_1 c \, \mathbf{E}T^{(1,x_0)} - r_1 \mathbf{E}Z + (r_1 + r_3) \, m \mathbf{E}(Z - x_0)^+$$

(where we used representation (5.1) and Lemma 5.1) and

$$\mathbf{E}L_2(Y_1) - L_2(y) \le r_2 k,$$

so in view of (6.5), (6.6), and (6.7),

$$\mathbf{E}_{x,y}L(X_1,Y_1) - L(x,y) \le \gamma + \gamma - 3\gamma = -\gamma.$$

Furthermore, if  $y \ge y_0$  and  $0 \le x \le x_0$ , then, by Lemma 5.1,

$$\mathbf{E}_{x,y}L_1(X_1) - L_1(x) \le r_1 c \mathbf{E} T_{0,y_0} + r_3 \mathbf{E} Z$$

and, by inequality (6.8),

$$\mathbf{E}L_2(Y_1) - L_2(y) \le -r_2\Delta,$$

 $\mathbf{SO}$ 

402

$$\mathbf{E}_{x,y}L(X_1, X_2) - L(x, y) \le r_1 c \, \mathbf{E}T_{0,y_0} + r_3 \mathbf{E}Z - r_2 \Delta \le \gamma - 3\gamma \le -\gamma,$$

by (6.5) and (6.9). So if x > 0 and if either  $x \ge x_0$  or  $y \ge y_0$ , then

$$E_{x,y}L(X_1, Y_1) - L(x, y) \le -\gamma.$$

Case  $x \leq 0$ 

For the time being, fix any value of  $x_1 < 0$ . First, we observe that if  $y \ge y_0$  where  $y_0$  satisfies inequalities (6.8) and (6.9), then again the increments  $E_{x,y}L(X_1, Y_1) - L(x, y)$  have a "uniformly" negative drift in all  $x_1 < x \le 0$ . Indeed, if  $\widetilde{X}_0 = x \in (x_1, 0]$ , then, for any  $y \ge 0$ ,  $\widetilde{X}_1 = x + T_{x,y} - Z_1$  admits the following bounds:

$$|\tilde{X}_1| \mathbf{I}(\tilde{X}_1 \le 0) \le_{a.s.} (|x| + Z_1) \mathbf{I}(\tilde{X}_1 \le 0)$$
 (6.12)

and

$$\widetilde{X}_1 \mathbf{I}(\widetilde{X}_1 > 0) = \max(0, \widetilde{X}_1) = \max(0, \min(x + cT^{(1,x)}, x + T^{(2,y)})).$$
 (6.13)

From Lemma 5.1 and from independence of  $T^{(1,x)}$  and  $T^{(2,y)}$ , we obtain

$$\widetilde{X}_1 \mathbf{I}(\widetilde{X}_1 > 0) \leq_{st} \min(cT^{(1,0)}, cT^{(2,y)}) = cT_{0,y}.$$
 (6.14)

Therefore, for any  $x_1 < x \leq 0$ 

$$\begin{aligned} \mathbf{E}_{x,y}|L_1(\widetilde{X}_1)| &= r_1 \mathbf{E}_{x,y}(\widetilde{X}_1 \mathbf{I}(\widetilde{X}_1 > 0)) + r_3 \mathbf{E}_{x,y}(|\widetilde{X}_1| \mathbf{I}(\widetilde{X}_1 \le 0)) \\ &\leq r_1 \mathbf{E}_{x,y}(|\widetilde{X}_1| \cdot \mathbf{I}(\widetilde{X}_1 > 0)) + r_3 \mathbf{E}_{x,y}((|x| + \mathbf{E}_2 \mathbf{I})\mathbf{I}(\widetilde{X}_1 \le 0)) \\ &\leq r_1 c \mathbf{E}_{0,y} + r_3 |x| + r_3 \mathbf{E}_2. \end{aligned}$$

Since  $y_0$  satisfies inequalities (6.8) and (6.9), we have, for all  $x_1 < x \le 0$  and  $y \ge y_0$ ,

$$\mathbf{E}_{x,y}L(\widetilde{X}_1,\widetilde{Y}_1) - L(x,y) \le r_1 c \mathbf{E} T_{0,y_0} + r_3 \mathbf{E} Z - r_2 \Delta \le -\gamma_2$$

We now choose  $x_1 << -1$  so large that the increment of  $L(\widetilde{X}, \widetilde{Y})$  has a uniformly negative drift for all  $x \leq x_1$ . We start with the assumption that

$$x_1 \le -cv_0. \tag{6.15}$$

Therefore, if  $\widetilde{X}_0 = x \leq x_1$  and  $\widetilde{Y}_0 = y$ , then

$$L_1(\widetilde{X}_1) = r_3(-x - c\widetilde{T}_{x,y} + Z \mathbf{I}(T_{x,y} \le v_0)) \le r_3(-x - c\widetilde{T}_{x,y} + Z)$$

and

$$L_2(\widetilde{Y}_1) = r_2 \left( y \exp\{-\alpha \widetilde{T}_{x,y}\} + k \mathbf{I}(T_{x,y} \le v_0) \right) \le r_2 \left( y \exp\{-\alpha \widetilde{T}_{x,y}\} + k \right).$$

We impose two additional constraints on  $x_1$  making it even more negatively large. Since  $\varphi(x) \to 0$  as  $x \to -\infty$ , one can choose  $x_1 < -cv_0$ ,  $x_1 << -1$  such that

$$\exp\left\{-\int_{0}^{v_{0}}\varphi(x_{1}+cv)dv\right\} \geq \frac{1}{2}.$$
(6.16)

403

Secondly, it follows that  $T^{(1,x)} \to \infty$  in probability as  $x \to -\infty$ , and therefore, from (6.10), one can choose  $x_1 \leq -cv_0$  such that

$$y \mathbf{E}(1 - \exp\{-\alpha \widetilde{T}_{x,y}\}) - k \ge \Delta$$
, for all  $y \ge y_0$  and  $x \le x_1$ . (6.17)

Assume that  $x_1$  satisfies all of the three conditions (6.15)–(6.17). If  $y \ge y_0$  then, for any  $x \le x_1$ ,

$$\begin{aligned} \mathbf{E}_{x,y}L(\widetilde{X}_1,\widetilde{Y}_1) - L(x,y) &\leq r_3(-c\mathbf{E}\widetilde{T}_{x,y} + \mathbf{E}Z) + r_2(y\mathbf{E}\exp\{-\alpha\widetilde{T}_{x,y}\} + k) - r_2y\\ &\leq -r_2\Delta + r_3\mathbf{E}Z \leq -\gamma, \end{aligned}$$

by (6.17).

If instead  $y \leq y_0$  and  $x \leq x_1$ , then

$$\mathbf{P}(T_{x,y} > v_0) \ge \mathbf{P}(T_{x,y_0} > v_0) \ge \frac{1}{2} \exp\{-y_0/\alpha\},\$$

since the random variables  $T_{x,y}$  are stochastically decreasing in y (again by Lemma 5.1). Therefore, for  $\widetilde{T}_{x,y} = \min(v_0, T_{x,y})$ ,

$$\mathbf{E}T_{x,y} \ge \mathbf{E}\widetilde{T}_{x,y} \ge v_0 \cdot \mathbf{P}(T_{x,y} \ge v_0) \ge \frac{v_0}{2} \exp\{-y_0/\alpha\},\tag{6.18}$$

and

$$\begin{aligned} \mathbf{E}_{x,y}L(\widetilde{X}_1,\widetilde{Y}_1) - L(x,y) &\leq r_3(-c\mathbf{E}\widetilde{T}_{x,y} + \mathbf{E}Z) + r_2(y\mathbf{E}\exp\{-\alpha\widetilde{T}_{x,y}\} + k) - r_2y\\ &\leq -\frac{r_3cv_0}{2}\exp\{-y_0/\alpha\} + r_3\mathbf{E}Z + r_2k < -\gamma, \end{aligned}$$

due to (6.11).

As an outcome, we have that if  $y_0$  satisfies conditions (6.8)–(6.9), if  $v_0$  satisfies (6.10)–(6.11), and if  $x_1$  satisfies (6.15)–(6.17), then the increments of  $\mathbf{E}L(\widetilde{X}_1,\widetilde{Y}_1)$  have a drift bounded above by  $-\gamma$  for all initial values such that either  $x \leq x_1$ , or  $x \leq 0$  and  $y \geq y_0$ .

The set

$$V = [x_1, x_0] \times [0, y_0]$$

is therefore positive recurrent for the Markov chain  $(\widetilde{X}_n, \widetilde{Y}_n)$ .

Also, as follows from the classical proof of Foster's criterion, for any initial value  $(\widetilde{X}_0, \widetilde{Y}_0) = (x, y)$ , a random variable

$$\tau_{x,y}(V) = \min\{n \ge 1 : (\widetilde{X}_n, \widetilde{Y}_n) \in V \mid (X_0, Y_0) = (x, y)\}$$

is almost-surely finite and, moreover, there exists an absolute constant C > 0 such that

$$\mathbf{E}\tau_{x,y}(V) \le C(L(x,y)+1),$$

for all (x, y) (see, e.g., [11] or [8]). The proof of Theorem 6.1 is complete.  $\Box$ 

### 7. Harris ergodicity

We recall the following classical result (see for instance [11]).

**Proposition 7.1.** Assume that a Markov chain  $W_n, n \ge 0$ , taking values in a measurable space  $(\mathcal{W}, \mathcal{B}_{\mathcal{W}})$  is aperiodic and that there exists a positive recurrent set V that admits a minorant measure, i.e. there exist a positive integer m, a positive  $p \le 1$  and a probability measure  $\mu$  such that

$$\mathbf{P}(W_m \in \cdot \mid W_0 = w \in V) \ge p\mu(\cdot). \tag{7.1}$$

Then the Markov chain is Harris ergodic, which means that there exists a unique stationary distribution (say  $\pi$ ) and that, for any initial value  $W_0 = w$ , there is a convergence of the distributions of  $W_n$  to the stationary one in the total variation norm,

$$\sup_{B \in \mathcal{B}_{\mathcal{W}}} |P(W_n \in B) - \pi(B)| \to 0, \quad n \to \infty.$$

In practice, the most technical part in applying this criterion is to verify the aperiodicity. There are a number of sufficient conditions available for the Markov chain to be aperiodic and Harris ergodic.

We mention two of them. The most common is the following condition.

Sufficient condition 1 (SC1). A Markov chain  $W_n$  is Harris ergodic if there exists a positive recurrent set V such that condition (7.1) holds with m = 1 and with  $\mu$  such that  $\mu(V) > 0$ .

However, in our proof, it seems to be easier to verify another — slightly more general — sufficient condition.

Sufficient condition 2 (SC2). A Markov chain  $W_n$  is Harris ergodic if there exists a positive recurrent set V such that condition (7.1) holds with a finite number of different values of m, say  $m_i$ , i = 1, 2, ..., k which are such that

$$g.c.d.\{m_i, 1 \le i \le k\} = 1.$$

We will apply condition (SC2) with k = 2 and with  $m_1 = 2$  and  $m_2 = 3$ . For that, we introduce a condition on the distribution of Z which leads to (SC2). **Condition (CZ).** There exist  $0 \le z_1 < z_2 < \infty$  such that, for some h > 0 and for any  $[u_1, u_2] \subseteq [z_1, z_2]$ ,

$$\mathbf{P}(Z \in [u_1, u_2]) \ge h(u_2 - u_1).$$

In other words, the distribution of Z has an absolutely continuous (with respect to Lebesgue measure) component whose density function is above level h everywhere in the interval  $[z_1, z_2]$ .

**Theorem 7.1.** Assume condition (CZ) holds. Then the Markov chain  $(X_n, Y_n)$  is Harris ergodic.

*Proof.* We may assume without loss of generality that  $z_2 - z_1 \le x_0 - x_1$ . Let  $\tilde{y}_1 = y_1 + k$  and

$$\widetilde{x}_0 = \inf\{x \ge x_0 : \varphi(x) > 0\} + z_2 + 2,$$

and let

$$V_1 = [x_1, \widetilde{x}_0] \times [0, \widetilde{y}_0],$$

so  $V \subset V_1$ . Then, for any  $(x, y) \in V$ ,  $\mathbf{P}_{x,y}(Y_1 \leq \tilde{y}_0) = 1$ , so, by Lemmas 5.1–5.2,

$$\mathbf{P}_{x,y}((X_1, Y_1) \in V_1) = \mathbf{P}_{x,y}(X_1 \in [x_1, \tilde{x}_0])$$
  

$$\geq \mathbf{P}(x + T_{x,y} \in [\tilde{x}_0 + z_1 - 1, \tilde{x}_0 + z_1], Z_1 \in [z_1, z_2])$$
  

$$\geq \mathbf{P}(x_1 + cT^{(1,x_1)} \in [\tilde{x}_0 + z_1 - 1, \tilde{x}_0 + z_1])$$
  

$$\times \mathbf{P}(cT^{(2, \tilde{y}_0)} > \tilde{x}_0 + z_1 - x_1) \mathbf{P}(Z_1 \in [z_1, z_2]).$$

Denote by  $R_0$  the value of the rightmost side of the above inequality (note that it is positive). Then, for any  $(x, y) \in V_1$ ,

$$\mathbf{P}_{x,y}((X_1, Y_1) \in V_1) \ge R_0 > 0.$$

Take some small positive  $\varepsilon < (z_2 - z_1)/4$  (to be specified later). Choose  $t_2 > 0$  so large that  $x_2 := x_1 + ct_2 > \tilde{x}_0 + z_2$  and  $y_0 \exp\{-\alpha(x_2 - \tilde{x}_0)\} \le \varepsilon$ . Let  $b = \varphi(x_2 - z_2)$  and note that b > 0. Then, for any  $(x, y) \in V_1$ ,

$$\mathbf{P}(x + cT_{x,y} \in [x_2, x_2 + \varepsilon], y \exp\{-\alpha T_{x,y}\} \le \varepsilon)$$
  
 
$$\ge b\varepsilon \,\mathbf{P}(T^{(1,x_1)} > (x_2 - x_1)/c) \,\mathbf{P}(T^{(2,y_0)} > (x_2 - x_1)/c).$$

Denote by  $R_1$  the right-hand side of the inequality above (which is a positive number). Then, for any  $(x, y) \in V_1$  and for  $(X_1, Y_1) = (x + T_{x,y} - Z_1, y \exp\{-\alpha T_{x,y}\} + k)$ ,

$$\mathbf{P}_{x,y}((X_1, Y_1) \in [x_2 - z_1 - \varepsilon, x_2 - z_1] \times [k, k + \varepsilon]) \ge R_1 \frac{b\varepsilon}{z_2 - z_1} =: R_2 > 0.$$

Let

$$\widehat{V} = [x_2 - z_1 - \varepsilon, x_2 - z_1] \times [k, k + \varepsilon]$$

From the construction above, one may conclude that, for any  $(x, y) \in V$ ,

$$\inf_{(x,y)\in V} \mathbf{P}_{x,y}((X_1, Y_1) \in \widehat{V}) \ge R_2 > 0$$
(7.2)

(since  $V \subset V_1$ ) and then that, by the Markov property,

$$\mathbf{P}_{x,y}((X_2, Y_2) \in \widehat{V}) \ge R_0 \cdot \inf_{(x,y) \in V_1} \mathbf{P}_{x,y}((X_1, Y_1)\widehat{V}) = R_0 R_2 > 0.$$
(7.3)

Now take  $\varepsilon > 0$  so small that one can choose positive numbers  $t_3$  and  $t_4$  such that  $t_4 > t_3 > z_2$ , that

$$k_2 := k \exp\{-\alpha t_3\} > (k + \varepsilon) \exp\{-\alpha t_4\} =: k_1,$$

and that

$$\delta := \varepsilon + c(t_4 - t_3) < \frac{z_2 - z_1}{2}.$$

Then, for any  $y \in [k, k + \varepsilon]$ , we have the inclusion

$$[k_1, k_2] \subseteq [y \exp\{-\alpha t_4\}, y \exp\{-\alpha t_3\}].$$

For any  $(x, y) \in \widehat{V}$  denote by  $g_{x,y}(u)$  a density function of random variable  $y \exp\{-\alpha T_{x,y}\}$  (which clearly has an absolutely continuous distribution).

Then direct computations show that

$$c_0 := \inf_{(x,y)\in\hat{V}} \inf_{u\in[k_1,k_2]} g_{x,y}(u).$$
(7.4)

Indeed, let

$$c_1 = \inf_{0 \le t \le k_2/k_1} \frac{\ln(1+t)}{t}$$

and

$$c_2 = \inf_{(x,y)\in\widehat{V}} \inf_{\ln(k/k_2) \le a < b \le \ln((k+\varepsilon)/k_1)} \frac{\mathbf{P}(a \le T_{x,y} \le b)}{b-a}$$

Then both  $c_1$  and  $c_2$  are positive and, for  $[a, b] \subseteq [k_1, k_2]$ ,

$$\mathbf{P}\big(y\exp\{-\alpha T_{x,y}\}\in[a,b]\big)=\mathbf{P}\Big(\frac{\ln(y/b)}{\alpha}\leq T_{x,y}\leq\frac{\ln(y/a)}{\alpha}\Big)\geq\frac{c_1c_2}{\alpha}(b-a),$$

so (7.4) holds with  $c_0 = c_1 c_2 / \alpha$ .

Furthermore, let  $x_3 = x_2 - z_1 - \varepsilon + t_3$ . Note that if  $(x, y) \in \widehat{V}$  and  $T_{x,y} \in [t_3, t_4]$ , then  $x + cT_{x,y} \in [x_3, x_3 + \delta]$ . Then, by condition (CZ), given  $x + cT_{x,y} = v \in [x_3, x_3 + \delta]$ , the random variable  $v - Z_1$  has an absolutely continuous component with a uniform distribution on the interval  $[x_3 - (z_1 + z_2)/2, x_3 - z_1]$ .

We may therefore conclude that, for any  $(x, y) \in \widehat{V}$ ,

$$\mathbf{P}_{x,y}((X_1, Y_1) \in \cdot) \ge 2(z_2 - z_1)^{-1} h c_0^{-1} \mu(\cdot)$$
(7.5)

where  $\mu$  is a two-dimensional uniform distribution on the rectangle

$$V_2 := [x_3 - (z_1 + z_2)/2, x_3 - z_1] \times [k_1, k_2],$$

coefficient h is from condition (CZ), and  $c_0$  is from (7.4).

It follows from inequalities (7.2), (7.3), and (7.5), that condition (SC2) is satisfied with k = 2 and with  $m_1 = 2$  and  $m_2 = 3$ , and this completes the proof.

**Corollary 7.1.** Assume again that  $k < \alpha$  and that condition (SZ) holds. Consider the Markov chain  $(\widetilde{X}_n, \widetilde{Y}_n)$  and let  $0 \leq S_1 < S_2 < \ldots S_k < \ldots$  be consecutive times of the ends of discrete-time "cycles" where random vectors  $(\widetilde{X}_{S_k}, \widetilde{Y}_k)$  have uniform distribution in the rectangle  $V_2$ . Then random variables  $l_k = S_k - S_{k-1}, k \geq 2$ , are i.i.d. with a finite mean.

A proof of this result can be found, for instance, in [1].

#### 8. Stability in continuous time

**Theorem 8.1.** Under condition (CZ),

- (1) there exists a unique stationary version of the continuous-time Markov process (X(t), Y(t)) (which is also ergodic);
- (2) for any initial value  $X(0) = X_0 = x$ ,  $Y(0) = Y_0 = y$ , the process (X(t), Y(t)) converges to the stationary one in the total variation norm.

*Proof.* Consider again the embedded Markov chain  $(\widetilde{X}_n, \widetilde{Y}_n)$  and its cycles of length  $l_k$ . Then the corresponding cycles in continuous time are defined as

$$L_k = \sum_{i=S_{k-1}+1}^{S_k} \widehat{T}_{\widehat{X}_i, \widehat{Y}_i}, \quad k = 1, 2, \dots$$

which are again i.i.d. for  $k \geq 2$ .

Then a proof of the theorem follows from the two results below, Statement 8.1 and Statement 8.2 (see, for instance, [1], Proposition 3.8, p.203 or [2], Section 7, or [3], Chapter 3).  $\Box$ 

**Statement 8.1.** The distribution of random variables  $L_k$ ,  $k \ge 2$  has an absolutely continuous component with a density function which is separated from 0 on a finite time interval of positive length.

# Statement 8.2. $EL_2$ is finite.

Statement 8.1 may be verified directly using arguments similar to those in the previous section. Furthermore, since  $C := \sup_{x,y} \mathbf{E} \widetilde{T}_{x,y} < \infty$ ,

$$\mathbf{E}L_2 \le C\mathbf{E}l_2 < \infty,$$

and the result follows.

#### References

- [1] S. ASMUSSEN (2003) Applied Probability and Queues, 2nd ed., Springer, New York.
- [2] A.A. BOROVKOV AND S.G. FOSS (1992) Stochastically recursive sequences and their generalizations. *Siberian Advances in Mathematics* 2, 16–81.
- [3] A.A. BOROVKOV (1998) Ergodicity and Stability of Stochastic Processes, John Wiley, New York.
- [4] P. BRÉMAUD (1981) Point Processes and Queues: Martingale Dynamics, Springer, New York.
- [5] P. BRÉMAUD AND L. MASSOULIÉ (1996) Stability of nonlinear Hawkes processes. Ann. Prob. 24, 1563–1588.
- [6] P. BRÉMAUD, G. NAPPO AND G. TORRISI (2002) Rates of convergence to equilibrium of marked Hawkes processes. J. Appl. Probab. 39, 123–136.
- [7] D. DALEY AND D. VERE-JONES (2003) An Introduction to the Theory of Point Processes, 2nd ed., Vol. I, Springer, New York.
- [8] S. FOSS AND T. KONSTANTOPOULOS (2004) An overview of some stochastic stability methods. *Journal of Operations Research Society Japan* 47, 275–303.
- [9] G. LAST (2004) Ergodicity properties of stress release, repairable system and workload models. Adv. Appl. Probab. 36, 471–498.
- [10] G. LAST AND A. BRANDT (1995) Marked Point Processes on the Real Line; The Dynamical Approach. Springer, New York.
- [11] S.P. MEYN AND R.I TWEEDIE (1993) Markov Chains and Stochastic Stability. Springer, New York.
- [12] Y. OGATA (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J. Amer. Statist. Assoc. 83, 9–27.
- [13] F. SCHOENBERG AND B. BOLT (2000) Short-term exciting, long-term correcting models for earthquake catalogs. Bulletin of the Seismological Society of America 90 (4), 849–858.