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Abstract. We consider the sums Sn = ξ1 + · · · + ξn of independent identically dis-
tributed random variables. We do not assume that the ξ’s have a finite mean. Under
subexponential type conditions on distribution of the summands, we find the asymptotics
of the probability P{M > x} as x → ∞, provided that M = sup{Sn, n ≥ 1} is a proper
random variable. Special attention is paid to the case of tails which are regularly varying
at infinity.

We provide some sufficient conditions for the integrated weighted tail distribution
to be subexponential. We supplement these conditions by a number of examples which
cover both the infinite- and the finite-mean cases. In particular, we show that the subex-
ponentiality of distribution F does not imply the subexponentiality of its integrated tail
distribution F I .

Keywords: supremum of sums of random variables, large deviation probabilities, subex-

ponential distribution, integrated weighted tail distribution

1. Introduction

Let ξ, ξ1, ξ2, . . . be independent random variables with common non-degenerate
distribution F on the real line R. We let F (x) = F ((−∞, x]) and F (x) = 1−F (x).
In general, for any distribution G, we denote its tail by G(x) = G((x,∞)). In
this paper, an important role is played by the negative truncated mean function

m(x) ≡ Emin{ξ−, x} =

∫ x

0
P{ξ− > y} dy, x ≥ 0,

where ξ− = max{−ξ, 0}; the function m(x) is continuous, m(0) = 0 and m(x) > 0
for any x > 0.

Put S0 = 0, Sn = ξ1 + · · · + ξn, and

M = sup {Sn, n ≥ 0}.
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Our main assumption is that M is finite a.s. The latter occurs if and only if
Sn → −∞ as n → ∞ with probability one (see Theorem 1 in [13, Chapter XII,
Section 2]). It is known that

(i) if E|ξ| < ∞, then Sn → −∞ a.s. as n → ∞ if and only if Eξ < 0;

(ii) if E|ξ| = ∞, then Sn → −∞ a.s. as n → ∞ if and only if

∫ ∞

0

x

m(x)
F (dx) is finite, (1)

see Corollary 1 in [12]. Note that the function x
m(x) is increasing, since

d

dx

x

m(x)
=

m(x) − xm′(x)

m2(x)
=

m(x) − xP{ξ− > x}
m2(x)

≥ 0. (2)

In the case (ii), m(x) → ∞ as x → ∞, with necessity. Roughly speaking, the
condition (1) means that the right tail of the distribution F is lighter than the
left one.

The main goal of the present paper is to investigate the asymptotic behaviour
of the probability P{M > x} as x → ∞ when the distribution of the summands is
heavy-tailed. As far as applications are concerned, (a) in queueing, M coincides
in distribution with the stationary waiting time in the corresponding GI/G/1
queue; (b) in risk theory, P{M > x} is the probability of ruin.

We recall the definitions of some classes of functions and distributions which
will be used in the sequel.

Definition 1. The function f is called long-tailed if, for any fixed t, the limit of
the ratio f(x + t)/f(x) is equal to 1 as x → ∞. We say that the distribution G
is long-tailed (and write G ∈ L ) if the function G(x) is long-tailed.

Definition 2. The distribution G on R+ with unbounded support belongs
to the class S (and is called a subexponential distribution) if the convolution
tail G∗G(x) is asymptotically equivalent to 2G(x) as x → ∞.

It is shown in [6] that any subexponential distribution G is long-tailed with
necessity. Sufficient conditions for some distribution to belong to the class S

may be found, for example, in [6, 14, 18]. The class S includes, in particular,
the following distributions on [0,∞): (i) any distribution G whose tail G(x) is
regularly varying at infinity with index α < 0, that is, for any fixed t > 0,
G(xt) ∼ tαG(x) as x → ∞; (ii) the lognormal distribution with the density
e−(ln x−lnα)2/2σ2

/x
√

2πσ2 with α > 0; (iii) the Weibull distribution with the tail
G(x) = e−xα

with α ∈ (0, 1).

It is known (see [19] and [10]) that, if Eξ = −a is finite negative number and
the integrated tail distribution F I ,

F I(x) = min
(
1,

∫ ∞

0
F (x + u) du

)
, x > 0, (3)
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is subexponential, then the distribution tail of the maximum of sums is equivalent,
up to a constant, to the integrated tail of the distribution of one summand, that
is,

P{M > x} ∼ F I(x)/a as x → ∞. (4)

The converse is also true (see [16]): if the asymptotic (4) holds, then the integrated
tail distribution F I is subexponential.

In the present paper, we consider mainly the case where the ξ’s have infinite
mean. In this case, we should assume Eξ− = ∞, otherwise M = ∞. Without
further assumptions, we can provide lower and upper bounds only.

Theorem 1. Suppose Eξ− = ∞ and the condition (1) holds. Let the distribu-
tion F be long-tailed and the distribution G1 with the tail

G1(x) = min

(
1,

∫ ∞

0
F (x + t) d

t

m(t)

)
(5)

be subexponential. Then the following estimates hold:

1 ≤ lim inf
x→∞

P{M > x}
G1(x)

≤ lim sup
x→∞

P{M > x}
G1(x)

≤ 2.

In the case where the function m(x) is regularly varying, we get the following
sharp asymptotics (the symbol Γ stands for the Gamma function):

Theorem 2. Suppose Eξ− = ∞ and the condition (1) holds. Let m(x) be
regularly varying at infinity with index 1 − α ∈ [0, 1]. If the distribution F is
long-tailed and the distribution G1 with the tail (5) is subexponential, then

P{M > x} ∼ G1(x)

Γ(1 + α)Γ(2 − α)
as x → ∞. (6)

If α ∈ (0, 1], then the assumption of the subexponentiality of G1 can be replaced
by that of the subexponentiality of the distribution G2 with tail

G2(x) = min

(
1,

∫ ∞

1

F (x + t)

m(t)
dt

)
, (7)

and then

P{M > x} ∼ G2(x)

Γ(α)Γ(2 − α)
as x → ∞. (8)
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The proofs of Theorems 1 and 2 are given in Section 4. Theorem 2 answers
some questions on the behaviour of the maximums of sums of independent random
variables raised by E. B. Dynkin in [7, § 7]. Some related results for Lévy processes
can be found in [15].

Both the tails (5) and (7) are lighter than the integrated tail F I (if the latter
exists).

If both the tail F (t) and the function m(t) are regularly varying at infinity, we
can specify the assertion of Theorem 2 in the following way (the corresponding
calculations are carried out in Section 4):

Corollary 1. Suppose Eξ− = ∞ and the condition (1) holds. Let F (t) =
t−βL∗(t) and m(t) = t1−αL∗(t), where L∗(t) and L∗(t) are functions that are
slowly varying at infinity, 0 < α ≤ 1, α ≤ β. If α < β, then

P{M > x} ∼ Γ(β − α)

Γ(β)Γ(2 − α)

xF (x)

m(x)
. (9)

If α = β, then

P{M > x} ∼ 1

Γ(α)Γ(2 − α)

∫ ∞

x

F (t)

m(t)
dt ≡ 1

Γ(α)Γ(2 − α)

∫ ∞

x

L∗(t)

tL∗(t)
dt.(10)

R e ma r k 1. Let α ∈ [0, 1) and L(x) be a slowly varying at infinity function.
Then m(x) ∼ x1−αL(x) as x → ∞ if and only if F (−x) ∼ (1 − α)x−αL(x) (see
[13, Chapter XIII, Section 5]).

An asymptotic equivalence like (9) for α ∈ (0, 1), α < β is established in [5,
Theorem 4.1] by other methods and under some additional technical assumptions.
With regard to (10), note that, for any fixed A > 0,

∫ ∞

x

L∗(t)

tL∗(t)
dt ∼

∫ ∞

Ax

L∗(t)

tL∗(t)
dt as x → ∞,

since, by the Uniform Convergence Theorem for regularly varying functions (see
Theorem 1.5.2 in [4]) and by Karamata’s Theorem (see Proposition 1.5.9b in [4])

∫ Ax

x

L∗(t)

tL∗(t)
dt ∼ L∗(x)

L∗(x)
lnA = o

(∫ ∞

x

L∗(t)

tL∗(t)
dt
)
. (11)

Sufficient conditions for the subexponentiality of the distributions (5) and (7)
are given in Section 5. In particular, G1 and G2 are subexponential distributions
if F is either a Pareto, Log-normal or Weibull distribution. However, in general,
the subexponentiality of F only does not imply that of G1 and G2 (see Section
6).

The paper is organized as follows. In Sections 2 and 3, we prove some auxiliary
results concerning the first descending and ascending ladder heights of a random
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walk. In Section 4, we give the proofs of the theorems concerning the asymptotics
for P{M > x}. Sufficient conditions for the subexponentiality of (5) and (7) may
be found in Section 5. Finally, Section 6 is devoted to examples.

2. Asymptotics and bounds for the first descending ladder height

in the infinite mean case

Let η∗ = min{n ≥ 1 : Sn ≤ 0} be the first descending ladder epoch (we put
min ∅ = ∞) and χ∗ = −Sη∗ be the corresponding descending ladder height.
Since M is finite, η∗ and χ∗ are proper random variables. Moreover (see, e.g.,
Theorem 2.3(c) in [1, Chapter VII]), Eη∗ < ∞ and

p ≡ P{M = 0} = 1/Eη∗. (12)

For the stopping time η∗, we have Wald’s identity Eχ∗ = −Eη∗Eξ, provided
the mean value of ξ is finite and negative (see Theorem 2(ii) in [13, Chapter XII,
Section 2]). In our analysis of the infinite-mean case, the key role will be played
by the following analogue of this identity:

Lemma 1. Suppose Eξ− = ∞ and the condition (1) holds. Then

Emin {χ∗, x}
m(x)

→ Eη∗ as x → ∞. (13)

In addition, for any x ≥ 0,

Emin {χ∗, x} ≤ m(x)Eη∗. (14)

Proof. Define the taboo renewal measure on R

H∗(B) = I{0 ∈ B} +

∞∑

n=1

P{S1 > 0, ..., Sn > 0, Sn ∈ B}.

This measure is finite since H∗((−∞, 0)) = 0 and

H∗([0,∞)) = 1 +
∞∑

n=1

P{S1 > 0, . . . , Sn > 0}

= 1 +

∞∑

n=1

P{η∗ > n} = Eη∗ < ∞. (15)

By the total probability formula, for u ≤ 0,

P{−χ∗ ≤ u} =

∫ ∞

0
F (u − t)H∗(dt).
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Therefore,

Emin{χ∗, x}
m(x)

=
1

m(x)

∫ x

0
P{χ∗ ≥ u}du

=
1

m(x)

∫ x

0

∫ ∞

0
F (−u − t)H∗(dt) du

=

∫ ∞

0

m(x + t) − m(t)

m(x)
H∗(dt). (16)

For any fixed z ≥ 0, the function min{z, x} is concave in x > 0. Hence, the
function m(x) = Emin{ξ−, x} is concave as well. In particular, the function
m(x) is long-tailed. Taking into account also that m(x) → ∞ as x → ∞ (since
Eξ− = ∞), we deduce the convergence, for any fixed t ≥ 0,

m(x + t) − m(t)

m(x)
→ 1 as x → ∞.

By m(0) = 0 and by the concavity of m(x),

m(x + t) − m(t)

m(x)
=

m(x + t) − m(t)

m(x) − m(0)
≤ 1. (17)

Applying now the dominated convergence theorem to the finite measure H ∗, we
obtain the following convergence of the integrals, as x → ∞:

∫ ∞

0

m(x + t) − m(t)

m(x)
H∗(dt) →

∫ ∞

0
H∗(dt) = H∗([0,∞)) = Eη∗,

by (15). Together with (16), this implies the convergence (13). The inequality
(14) follows from (17) and (16). The proof is complete.

Let χ∗1, χ∗2, . . . be independent copies of χ∗. Define a renewal measure on
R+

H∗(B) ≡ I{0 ∈ B} +

∞∑

n=1

P{χ∗1 + · · · + χ∗n ∈ B}.

If Eξ is finite and negative, then H∗([0, x]) ∼ xEχ∗ as x → ∞, by the Key
Renewal Theorem. When Eξ is infinite, we know only lower and upper estimates
in general:

Lemma 2 (see [12, Lemma 1] or [4, Section 8.6.3]). Without any assumptions,
for every x ≥ 0,

x

Emin{χ∗, x}
≤ H∗([0, x]) ≤ 2x

Emin{χ∗, x}
.



SUPREMUM OF A RANDOM WALK 7

However, in the regularly varying case, the asymptotic behaviour of H∗([0, x])
is known:

Lemma 3 (see [11, Theorem 5]). If the function Emin{χ∗, x} is regularly vary-
ing at infinity with index 1 − α, α ∈ [0, 1], then H∗([0, x]) is regularly varying at
infinity with index α and

H∗([0, x]) ∼ 1

Γ(1 + α)Γ(2 − α)
· x

Emin{χ∗, x}
as x → ∞.

Using Lemma 1 and the equality (12), we obtain from Lemmas 2 and 3 the
following corollaries.

Corollary 2. Suppose Eξ− = ∞ and the condition (1) holds. Then

p ≤ lim inf
x→∞

H∗([0, x])m(x)

x
≤ lim sup

x→∞

H∗([0, x])m(x)

x
≤ 2p.

Corollary 3. Suppose Eξ− = ∞ and the condition (1) holds. If m(x) is regularly
varying at infinity with index 1 − α, α ∈ [0, 1], then, as x → ∞,

H∗([0, x]) ∼ p

Γ(1 + α)Γ(2 − α)
· x

m(x)
.

3. Asymptotics and bounds for the first ascending ladder height

in the infinite mean case

Let η∗ = min{n ≥ 1 : Sn > 0} be the first ascending ladder epoch and χ∗ = Sη∗

the corresponding first ascending ladder height. Since M is finite a.s., η∗ and χ∗

are defective random variables, i.e. P{η∗ < ∞} = 1 − p by (12).
The starting point in our analysis of the distribution of χ∗ is the following

representation (see [13, Chapter XII, Section 3]):

P{χ∗ > x} =

∫ ∞

0
F (x + t)H∗(dt). (18)

Lemma 4. Suppose Eξ− = ∞ and the condition (1) holds. If the distribution
F is long-tailed, then, for any fixed T ≥ 0,

P{χ∗ > x} ∼
∫ ∞

x+T
H∗([0, t − x])F (dt) as x → ∞.

Proof. Since F is long-tailed and H∗([0,∞)) = ∞,

F (x) = o

(∫ ∞

0
F (x + t)H∗(dt)

)
as x → ∞. (19)
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Integration of (18) by parts gives

P{χ∗ > x} = F (x + t)H∗([0, t])
∣∣∣
∞

0
+

∫ ∞

x
H∗([0, t − x]) dtF (t). (20)

Using the upper bound of Corollary 2, we obtain, for sufficiently large t,

F (x + t)H∗([0, t]) ≤ F (t)H∗([0, t]) ≤ 3pF (t)
t

m(t)
= 3p

∫ ∞

t

t

m(t)
F (ds).

Since the function x
m(x) is increasing (see (2)),

F (x + t)H∗([0, t]) ≤ 3p

∫ ∞

t

s

m(s)
F (ds) → 0 as t → ∞,

due to condition (1). Substituting this into (20), we arrive at the equality (recall
that H∗({0}) = 1)

P{χ∗ > x} = −F (x) +

∫ ∞

x
H∗([0, t − x])F (dt).

Applying now the relation (19), we deduce the equivalence of the lemma.
In the same way we obtain the following

Lemma 5. Suppose Eξ− = ∞ and the condition (1) holds. If the distribution
F is long-tailed, then, for any fixed T ≥ 0,

∫ ∞

0
F (x + t) d

t

m(t)
∼
∫ ∞

x+T

t − x

m(t − x)
F (dt) as x → ∞.

Lemma 6. Suppose Eξ− = ∞ and the condition (1) holds. If the distribution
F is long-tailed, then

p ≤ lim inf
x→∞

P{χ∗ > x}∫∞
0 F (x + t) d t

m(t)

≤ lim sup
x→∞

P{χ∗ > x}∫∞
0 F (x + t) d t

m(t)

≤ 2p.

Proof. Fix ε > 0. It follows from Corollary 2 that there exists T > 0 such that,
for t > T ,

(p − ε)
t

m(t)
≤ H∗([0, t]) ≤ (2p + ε)

t

m(t)
.

Applying Lemma 4, we obtain, for x sufficiently large,

(p − 2ε)

∫ ∞

x+T

t − x

m(t − x)
F (dt) ≤ P{χ∗ > x} ≤ (2p + 2ε)

∫ ∞

x+T

t − x

m(t − x)
F (dt).

The asymptotic equivalence in Lemma 5 completes the proof, since ε > 0 was
choosen arbitrary.

Using Corollary 3 instead of Corollary 2, we may deduce the following
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Lemma 7. Suppose Eξ− = ∞ and the condition (1) holds. Let the function
m(x) be regularly varying at infinity with index 1−α, α ∈ [0, 1]. If the distribution
F is long-tailed, then

P{χ∗ > x} ∼ p

Γ(1 + α)Γ(2 − α)

∫ ∞

0
F (x + t) d

t

m(t)
as x → ∞.

Proof. It follows from Corollary 3 that there exists T > 0 such that, for t > T ,

p − ε

Γ(1 + α)Γ(2 − α)
· t

m(t)
≤ H∗([0, t]) ≤ p + ε

Γ(1 + α)Γ(2 − α)
· t

m(t)
.

By Lemma 4, for x sufficiently large,

p − 2ε

Γ(1 + α)Γ(2 − α)

∫ ∞

x+T

t − x

m(t − x)
F (dt) ≤ P{χ∗ > x}

≤ p + 2ε

Γ(1 + α)Γ(2 − α)

∫ ∞

x+T

t − x

m(t − x)
F (dt).

Applying Lemma 5 completes the proof.

4. The asymptotics and bounds for the distribution tail of the supre-

mum

We start with a general theorem which describes the tail behaviour of the supre-
mum in terms of the renewal measure H∗.

Theorem 3. Suppose Eξ− = ∞ and the condition (1) holds. Let the distribu-
tion F be long-tailed and the distribution G with the tail

G(x) = min

(
1,

∫ ∞

0
F (x + t) d

t

m(t)

)

be subexponential. Then, as x → ∞,

P{M > x} ∼ 1

p

∫ ∞

0
F (x + t)H∗(dt).

Proof. Consider the distribution GH with the tail

GH(x) = min

(
1,

∫ ∞

0
F (x + t)H∗(dt)

)
.

This distribution is long-tailed because F is long-tailed. In addition, by Lemma
6, the tail of GH is sandwiched asymptotically between the subexponential tails
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pG and 2pG. Therefore, by the weak equivalence property (see Theorem 2.1 in
[14] or Lemma 1 in [3]) the distribution GH is subexponential as well.

Let us define non-defective random variable χ̃ with distribution on (0,∞)

P{χ̃ ∈ B} =
P{χ∗ ∈ B}

1 − p
.

The distribution of χ̃ is subexponential. Let χ̃1, χ̃2, . . . be independent copies
of the random variable χ̃. Notice that there exists i ≥ 1 such that Si exceeds a
level x if and only if one of the ladder heights exceeds this level. Hence, by the
formula of total probability we have the equality:

P{M ∈ B} =

∞∑

n=1

(1 − p)npP{χ̃1 + · · · + χ̃n ∈ B}.

Since the random variable χ̃ has a subexponential distribution, we may apply
the stopping time theorem (see, e.g., Lemma 1.8 [2, Chapter IX, Section 1] or
Lemma 1.3.5 [8, Section 1.3.2]) and write

P{M > x} ∼ P{χ̃ > x}
∞∑

n=1

(1 − p)npn =
P{χ∗ > x}

p
.

The proof is complete.
The latter result looks strange in the sense that while the conditions are

expressed in terms of the reference distribution F , the resulting integral is taken
with respect to the renewal measure which is a rather complicated object. In
general, we are unable to write the asymptotics for the integral

∫ ∞

0
F (x + t)H∗(dt)

in terms of the distribution F itself, due to the lack of the information about the
asymptotic behaviour of the renewal function H∗([0, x]) as x → ∞ in the case of
infinite mean. We may deduce the lower and upper bounds only: combining the
asymptotics in Theorem 3 and the bounds in Lemma 6, we get the assertion of
Theorem 1.

To the best of our knowledge, the case when the function m(x) is regularly
varying is the only one where the asymptotic behaviour of H∗([0, x]) is known.
In this case, combining Theorem 3 and Lemma 7, we obtain the relation (6) of
Theorem 2.

For α ∈ [0, 1], tF (−t) = (1 − α + o(1))m(t) as t → ∞. Thus, it follows from
(2) that

d

dt

t

m(t)
=

α + o(1)

m(t)
as t → ∞.
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For α ∈ (0, 1], we can apply this result to deduce (8) from (6).
Finally, we prove Corollary 1. Notice that the distribution (5) is subexpo-

nential in this case by Lemma 8 from the next section. We start with the case
0 < α ≤ 1, α < β. Fix ε > 0 and A > 0. We have

∫ εx

1

F (x + t)

m(t)
dt ≤ F (x)

∫ εx

1

1

m(t)
dt ∼ F (x)

α

εx

m(εx)
as x → ∞ (21)

and
∫ ∞

Ax

F (x + t)

m(t)
dt ≤

∫ ∞

Ax

F (t)

m(t)
dt ∼ 1

β − α

AxF (Ax)

m(Ax)
as x → ∞. (22)

Next,
∫ Ax

εx
F (x + t)

1

m(t)
dt =

F (x)

m(x)

∫ Ax

εx

F (x + t)

F (x)

m(x)

m(t)
dt

=
xF (x)

m(x)

∫ A

ε

F (x(1 + s))

F (x)

m(x)

m(xs)
ds

∼ xF (x)

m(x)

∫ A

ε

(1 + s)−β

s1−α
ds as x → ∞, (23)

since, by the Uniform Convergence Theorem for regularly varying functions (see
Theorem 1.5.2 in [4])

F (x(1 + s))

F (x)

m(x)

m(xs)
→ (1 + s)−β

s1−α

as x → ∞ uniformly in s ∈ [ε,A]. Letting ε → 0 and A → ∞, we obtain from
(21), (22) and (23) that

P{M > x} ∼ 1

Γ(α)Γ(2 − α)

xF (x)

m(x)

∫ ∞

0
(1 + s)−βsα−1 ds =

B(β − α, α)

Γ(α)Γ(2 − α)

xF (x)

m(x)
,

which implies (9); here B is the Beta function.
We now consider the case 0 < α ≤ 1, α = β. Fix A > 0. Now we have

∫ Ax

1

F (x + t)

m(t)
dt ≤ F (x)

∫ Ax

1

dt

m(t)
∼ F (x)

α

Ax

m(Ax)

∼ Aα

α

L∗(x)

L∗(x)
= o
(∫ ∞

x

L∗(t)

tL∗(t)
dt
)
, (24)

since α = β and using (11). Further, for any small δ > 0 there exists A sufficiently
large such that F (x + t) ≥ (1 − δ)F (t) for any t ≥ Ax. Then

∫ ∞

Ax

F (x + t)

m(t)
dt ≥ (1 − δ)

∫ ∞

Ax

F (t)

m(t)
dt = (1 − δ)

∫ ∞

Ax

L∗(t)

tL∗(t)
dt. (25)



12 D. DENISOV, S. FOSS AND D. KORSHUNOV

On the other hand,

∫ ∞

Ax

F (x + t)

m(t)
dt ≤

∫ ∞

Ax

F (t)

m(t)
dt =

∫ ∞

Ax

L∗(t)

tL∗(t)
dt. (26)

The relations (24), (25), (26) and (11) imply (10). Corollary 1 is proved.

5. Sufficient conditions for the integrated weighted tail

distribution to be subexponential

In this Section, we present sufficient conditions for the subexponentiality of the
distributions (5) and (7). We consider an even more general problem: Let F be
a distribution on R+ and H a non-negative measure on R+ such that

∫ ∞

0
F (t)H(dt) is finite. (27)

In this case we can define the distribution GH with the tail

GH(x) ≡ min

(
1,

∫ ∞

0
F (x + t)H(dt)

)
, x ≥ 0. (28)

We can formulate the following question: what type of conditions on F imply the
subexponentiality of GH?

First, recall that if F is long-tailed, then GH is long-tailed as well.
Definition 3. The distribution F on R+ is called dominated varying (F ∈ D)
iff, for some c > 0, F (2x) ≥ cF (x) for any x.

It is known that (L ∩ D) ⊂ S. Also, it is known that if F ∈ D, then
F I ∈ L ∩ D, but the converse is not true in general (see [14, Section 4]).

Lemma 8. If F ∈ D ∩ L, then GH ∈ D ∩ L and, therefore, GH ∈ S.

Proof. This result follows from the inequalities:
∫ ∞

0
F (2x + t)H(dt) ≥ c

∫ ∞

0
F (x + t/2)H(dt) ≥ c

∫ ∞

0
F (x + t)H(dt).

Definition 4. The distribution F on R+ with finite mean m belongs to the
class S ∗ if

∫ x

0
F (x − y)F (y)dy ∼ 2mF (x) as x → ∞.

It is known (see [14]) that

F ∈ S
∗ implies F ∈ S and F I ∈ S. (29)
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It turns out that the following more general conclusion holds. For any b > 0,
define the class Hb of all non-negative measures H on R+ such that

sup
t

H((t, t + 1]) ≤ b.

Lemma 9. Let F ∈ S ∗ and H ∈ Hb, b ∈ (0,∞). Then GH ∈ S. Moreover,

GH ∗ GH(x) ∼ 2GH(x)

as x → ∞ uniformly in H ∈ Hb.

R e ma r k 2. Here are four examples of such measures H: (i) if H(B) = I{0 ∈
B}, then GH = F ; (ii) if H(dt) = dt is Lebesgue measure on R+, then GH = F I ;
(iii) if H is the renewal measure H∗, then GH is the distribution of the first
ascending ladder height χ∗; (iv) if H([0, x]) = x/m(x), then GH is G1 from (5).

R e ma r k 3. Lemma 9 also implies that any S ∗-distribution is strongly subex-
ponential in the sense of [17] (see definition 3 of that paper).

R e ma r k 4. It is natural to consider the following two questions:
(i) may the assumption F ∈ S ∗ of Lemma 9 be weakened to F ∈ S ? In the

case of Lebesgue measure H, i.e. when GH = F I , this question is raised in [8,
Section 1.4.2].

(ii) is the converse of (29) also true?
In the next Section, we show (by examples) that the answers to both these

questions are negative.
Proof of Lemma 9. Since GH is long-tailed uniformly in H ∈ Hb, it is sufficient
to show that

lim
A→∞

lim sup
x→∞

sup
H∈Hb

1

GH(x)

∫ x−A

A
GH(x − y)GH(dy) = 0, (30)

see, e.g., Proposition 2 in [3].
The mean value of F is finite. Thus, F (t)H((0, t]) = o(1/t)O(t) → 0 as t → ∞

and integration by parts yields, for x large enough,

GH(x) =

∫ ∞

x
H((0, t − x])F (dt).

Hence,

GH((x, x + 1]) =

∫ ∞

x
H((t − x − 1, t − x])F (dt) ≤ bF (x).

In addition, GH is long-tailed. Therefore, (30) holds if and only if

lim
A→∞

lim sup
x→∞

sup
H∈Hb

1

GH(x)

∫ x−A

A
GH(x − y)F (y) dy = 0. (31)
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Fix ε > 0. Since F ∈ S ∗, there exist x0 and A such that, for all x ≥ x0,

∫ x−A

A
F (x − u)F (u) du ≤ εF (x).

Then, for x ≥ x0,

∫ x−A

A
GH(x − y)F (y) dy =

∫ x−A

A

(∫ ∞

0
F (x + t − y)H(dt)

)
F (y)dy

≤
∫ ∞

0

(∫ x+t−A

A
F (x + t − y)F (y)dy

)
H(dt)

≤ ε

∫ ∞

0
F (x + t)H(dt) = εGH(x).

Letting ε to 0, we get (31). The proof is complete.

6. Examples

In this Section, we give an example of F ∈ S with finite mean such that F I /∈ S.
In fact, we provide a more general example: for any fixed α ∈ [0, 1), we construct
a subexponential distribution F with finite mean such that the distribution Gα

with the tail

Gα(x) = min
(
1,

∫ ∞

1

F (x + y)

yα
dy
)

(32)

is not subexponential. In particular, when α = 0, F I does not belong to S.
In our second example, we show that two conditions F ∈ S and F I ∈ S

taken together do not imply that F ∈ S ∗.
Both examples are based on the following construction.
Define two increasing sequences of positive numbers, namely {tn} and {Rn},

such that, as n → ∞,

tn = o(tn+1), (33)

Rn+1 − Rn → ∞. (34)

Define the hazard function R(x) ≡ − lnF (x) as

R(x) = Rn + rn(x − tn) for tn ≤ x ≤ tn+1,

where

rn =
Rn+1 − Rn

tn+1 − tn
∼ Rn+1 − Rn

tn+1
. (35)

by (33) and (34). In other words, the hazard rate r(x) ≡ R′(x) is defined as
r(x) = rn for x ∈ (tn, tn+1], where rn is given by (35).
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Note that

Jn ≡
∫ tn+1

tn

F (u)du =

∫ tn+1

tn

e−R(u)du =
e−Rn − e−Rn+1

rn
<

e−Rn

rn
,

and that the mean value of F is finite provided

∑

n

e−Rn

rn
< ∞. (36)

We assume that (36) holds. Assume also that

rn+1 = o(rn) and rntn → 0 as n → ∞. (37)

It follows from (37) that rktn → 0 as n → ∞ uniformly in k ≥ n. However,

rntn+1 ∼ Rn+1 − Rn → ∞ (38)

from (35) and (34). It follows from (37) that r(x) decreases eventually to 0, and
we can apply the following results:

Proposition 1 (see Corollary 3.8 and Theorem 3.6 in [14]). If the hazard rate
exists and is eventually decreasing to 0, then F ∈ L and

(i) F ∈ S if and only if

lim
x→∞

r(x)

∫ x

0
eyr(x)F (y)dy = 0. (39)

(ii) F ∈ S ∗ if and only if F has finite mean and

lim
x→∞

∫ x

0
eyr(x)F (y) dy =

∫ ∞

0
F (y) dy. (40)

Note that (40) is equivalent to

lim
t→∞

lim
x→∞

∫ x

t
eyr(x)F (y) dy = 0. (41)

Put

In,k =

∫ tk+1

tk

eyrnF (y) dy and In =

∫ tn+1

1
eyrnF (y) dy =

n∑

k=1

In,k.

In our case, (39) holds if and only if

rnIn → 0 as n → ∞. (42)
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The relation (41) fails, in particular, if

lim inf
n→∞

In,n > 0. (43)

From (37),

In,k = e−Rk+rktk
e(rn−rk)tk − e(rn−rk)tk+1

rk − rn
≤ e−Rk+rntk

rk − rn
∼ e−Rk

rk

as k → ∞ uniformly in n ≥ k + 1. Thus, for some C < ∞,

n−1∑

k=1

In,k ≤ C

n−1∑

k=1

e−Rk

rk
≤ C

∞∑

k=1

e−Rk

rk
< ∞ (44)

if (36) holds. Further,

rnIn,n = rn(tn+1 − tn)e−Rn+rntn ∼ (Rn+1 − Rn)e−Rn (45)

from (35) and (37). Thus, rnIn,n → 0 if

Rn+1 = o(eRn). (46)

Hence, under the conditions (33), (34), (36), (37), and (46), F is a subexponential
distribution with finite mean.

We now turn to the examples.

Example 1. Fix α ∈ [0, 1) and put Rn+1 = eγRn , where the constant γ =
γ(α) ∈ (0, 1) will be specified later. If we take R1 = R1(γ) sufficiently large,
then the sequence Rn will be increasing and, moreover, Rn+1/Rn → ∞. Put
tn+1 = e2γRn = R2

n+1; the condition (33) is satisfied. We have

F (tn) = e−
√

tn .

We also have rn ∼ Rn+1/tn+1 = e−γRn .

The condition (36) is valid since Jn ∼ e−Rn(1−γ). The condition (37) holds
since rn+1/rn ∼ e−γ(Rn+1−Rn) and rntn ∼ e−γRn+2γRn−1 = e−γRn+o(Rn). Finally,
the condition (46) follows since Rn+1e

−Rn = e−(1−γ)Rn . Hence, F has a finite
mean and is subexponential.

Take now the distribution Gα defined in (32) and estimate its density. For
x ∈ (tn, tn+1 − 1],

G′
α(x) = −

∫ ∞

1

F
′
(x + y)

yα
dy =

∫ ∞

1

r(x + y)F (x + y)

yα
dy

≥
∫ tn+1−x

1

r(x + y)F (x + y)

yα
dy = rnVn(x), (47)
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where

Vn(x) =

∫ tn+1−x

1
F (x + y)y−αdy.

We also have that, for any x < tn+1 − 1,

Gα(x) ≥ Vn(x). (48)

For any x ∈ (tn, tn+1 − 1],

Gα(x) =

(∫ tn+1

x+1
+

∞∑

k=n+1

∫ tk+1

tk

)
F (y)(y − x)−αdy ≡ Vn(x) +

∞∑

k=n+1

Wk(x).

For x ∈ (tn, tn+1] and k ≥ n + 1, by (37) and (38),

Wk(x) = e−Rk+rktk

∫ tk+1

tk

e−rky(y − x)−αdy

∼ e−Rk

∫ tk+1

tk

e−rky(y − x)−αdy =
e−Rk

r1−α
k

∫ rktk+1

rktk

e−y(y − rkx)−αdy

∼ e−Rk

r1−α
k

∫ ∞

0
e−yy−αdy =

e−Rk

r1−α
k

Γ(1 − α) as k → ∞.

Similarly, for x ∈ (tn, tn+1/2],

Vn(x) = e−Rn+rntn−rnx

∫ tn+1−x

1
e−rnyy−αdy

∼ e−Rn−rnx

r1−α
n

∫ rn(tn+1−x)

rn

e−zz−αdz ∼ e−Rn−rnx

r1−α
n

Γ(1 − α) as n → ∞.

Since γ < 1,

Wk+1(x)

Wk(x)
∼
(

rk

rk+1

)1−α

e−Rk+1+Rk ∼ e[γ(1−α)−1](Rk+1−Rk) → 0.

Take any integer l ≥ 2 such that γ(1 − α) < (l − 1)/l. Then, as n → ∞,

Wn+1(x)

Vn(tn+1/l)
∼
(

rn

rn+1

)1−α

e−Rn+1+Rn+rntn+1/l = e[γ(1−α)−(l−1)/l]Rn+1+o(Rn+1) → 0.

Therefore,

Gα(tn+1/l) ∼ Vn(tn+1/l) ∼
e−Rn−rntn+1/l

r1−α
n

Γ(1 − α) as n → ∞.
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On the other hand, by (47), for n sufficiently large,

Gα ∗ Gα(tn+1/l) ≥
∫ tn+1/2l

tn

Gα(tn+1/l − y)Gα(dy)

≥ rn

∫ tn+1/2l

tn

Gα(tn+1/l − y)Vn(y) dy.

Applying now (48), we get

Gα ∗ Gα(tn+1/l) ≥ rn

∫ tn+1/2l

tn

Vn(tn+1/l − y)Vn(y) dy

∼ Γ2(1 − α)

r1−2α
n

∫ tn+1/2l

tn

e−Rn−rn(tn+1/l−y)−Rn−rny dy

∼ Γ2(1 − α)

r1−2α
n

tn+1

2l
e−2Rn−rntn+1/l.

Then the ratio
Gα ∗ Gα(tn+1/l)

Gα(tn+1/l)

is asymptotically not less than

Γ(1 − α)

2l
rα
ntn+1e

−Rn ∼ Γ(1 − α)

2l
eRn(−γα+2γ−1) → ∞

as n → ∞ provided γ(2 − α) > 1. Thus, for any γ ∈ (1/(2 − α), 1), F ∈ S and
has finite mean, but Gα /∈ S.

Example 2. For γ > 2, take Rn = nγ and tn+1 = eRn = enγ
. Then

F (tn) = t
−( n

n−1
)

γ

n .

Conditions (33), (34), and (37) are satisfied, rn ∼ γnγ−1/tn+1, and (36) holds.
Further, (46) holds too. Hence, F ∈ S.

On the other hand, for x ∈ (tn, tn+1],

F I(x) ≤
∞∑

k=n

Jk and F I(2x) ≥
∞∑

k=n+2

Jk.

In addition, Jk ∼ 1/γkγ−1 as k → ∞. Thus, F I(2x) ∼ F I(x) as x → ∞ and the
function F I(x) is slowly varying at infinity. Hence, F I ∈ S.

However, from (45) and (35),

In,n ∼ tn+1e
−Rn = 1

and so, from (43), F cannot belong to S ∗.
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