
Stability of polling systems with exhaustive

service policies and state dependent routing

Serguei Foss∗and Günter Last

Novosibirsk State University and

Technical University of Braunschweig

Abstract

We consider a polling system with a finite number of stations fed by compound

Poisson arrival streams of customers asking for service. A server travels through

the system and upon arrival at a station the server serves all waiting customers until

the queue is empty, where the service time distribution depends on the station. The

choice of the station to be visited next as well as the corresponding walking time

may depend on the whole current state. Examples are systems with a greedy-type

routing mechanism. Under appropriate independence assumptions it is proved that

the system is stable if and only if the workload is less than one.
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1 Introduction

Consider a server who visits (polls) the stations of a queueing network. The stations

are numbered 1 through K and with each of them there is associated a queue with

infinite waiting capacity fed with an arrival stream of customers with intensity λi,

i = 1, . . . , K . The process of all arrival instants is assumed to be homogeneous Pois-

son. At a given arrival instant however, all stations may simultaneously receive a

group of customers. The joint distribution of these groups should render the expected

group sizes to be positive and finite. The server employs the so-called exhaustive ser-

vice policy at each station. This means that, upon arriving at a non-empty station, he

will provide service there until the moment when the station becomes empty, which

includes service for all those customers who may arrive during the service of the cus-

tomers present at the time of the server’s arrival. The services are independent of the

arrival stream and each served customer departs from the system. The service times at

station i are i.i.d. and are assumed to have a finite positive mean bi. When the server

has finished the batch of services at station i or if he has found that station empty, then

he walks to another station j , say, taking a walking time that might also be zero. The

choice of this station and the associated walking time depend on the whole current

state of the system and may even depend on future arrivals. An example is the greedy

routing mechanism, where the server chooses a station with the maximum number of

customers in a certain neighborhood waiting at the start of the walk.

The subject of the present paper is to establish a stability condition for the queue-

ing network ensuring that the server can handle all the work arriving to the network.

Mathematically this amounts to prove ergodicity of the underlying Markov chain. Un-

der appropriate independence assumptions it will be shown that the system is stable if
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and only if
K∑
i=1

λibi < 1. (1.1)

It is worth mentioning that our stability results can be proved under more general

i.i.d. assumptions on the input using the same ideas. We have decided to work un-

der Poisson assumption in order to avoid technicalities which could obscure the main

arguments.

A special feature of the present model is that the server’s decision which station

to serve next depends on the actual configuration of customers in the system. In Coff-

man and Gilbert (1987) one can find a discussion of a polling system with a greedy

server on a circle and a line as well as a conjecture about the stability condition. The

only earlier paper we are aware of, however, solving the stability problem for polling

systems with state-dependent routing is Schassberger (1993), where the ergodicity of

a symmetric ringlike network with a limited service policy has been proved. These

results are generalized in Foss and Last (1995) dealing with polling systems with a

special greedy routing mechanism on a graph but with rather general service policies

for each station. In this work conditions sufficient for stability and sufficient for in-

stability are presented. These conditions coincide only in special (symmetric) cases

and it is shown by examples that the determination of the exact stability region might

be a difficult task. There are many other papers establishing comparison and stability

results for polling systems with state-independent routing. We refer here to Levy, Sidi

and Boxma (1990), Georgiadis and Szpankowski (1992), Borovkov and Schassberger

(1994), Fricker and Jaibi (1994). Massoulié (1995) constructed a stationary regime

for polling systems with stationary ergodic arrival process and with state-independent

routing mechanism. Thereafter, for a more general model, Foss and Chernova (1995)

proved the stability results using the saturation rule of Baccelli and Foss (1995). In
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this context one should also mention the papers by Kroese and Schmidt (1992, 1994)

proving the stability of a polling model on the circle and by Altman and Levy (1994)

on polling systems in space. For applications of polling models we refer to Coffman

and Gilbert (1987) and Takagi (1990) who gives a survey of the extensive literature.

The idea of the stability proof in this paper is to construct, by induction on the num-

ber of stations, a stopping time at which a certain linear test function satisfies a multi-

plicative drift condition. Ergodicity is then obtained from a general stability result on

Markov chains which is a ‘randomized’ version of stability criteria by Malyshev and

Menshikov (1982), see also Meyn and Tweedie (1993, 1994), Borovkov (1994), Dai

(1995) and Fayolle, Malyshev and Men’shikov (1995).

The paper is organized as follows. Section 2 gives the extensive and exact descrip-

tion of the model and introduces some notation. Section 3 presents the proof of the

stability result. An appendix contains some general results for discrete time Markov

processes needed in the course of our paper.

2 Model description

We consider a queueing system consisting of K stations with infinite waiting capac-

ities. With each station there is associated a queue of customers waiting for service.

One server is traveling through the system. Upon arrival of the server at a station the

corresponding queue is served until it is empty, including customers arriving after the

server’s arrival instant. Each service takes a random time and each served customer

leaves the system.

We letXi(t) denote the number of customers in the ith queue at time t ∈ IR+ . Further

we denote by S(t) the number of the station which is occupied by the server while
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serving is in progress and we let S(t) := 0, otherwise. Both, Xi(t) and S(t) are taken

to be right-continuous. and we can assume that there exist the limits from the left,

denoted by Xi(t−) and S(t−).

Let Tn, n ∈ IN, be the time of nth service completion and T n+1 the time of the

beginning of the next service after time Tn. If XS(Tn−)(Tn) > 0, then Tn = T n+1 . If

XS(Tn−)(Tn) = 0, then

Wn+1 := T
n+1 − Tn,

is the walking time taken by the server to travel from station S(Tn−) to S(T n+1) =

S(Tn+1−). The cases Wn+1 = 0 and S(Tn−) = S(T n+1) are not excluded. It should be

kept in mind that the server may have visited several empty stations before he starts

serving queue S(T n+1). Hence in certain cases the time Wn+1 can be regarded as a sum

of walking times. If the system is empty at time Tn then a part of Wn+1 is in fact used

to wait for the next arriving customer. Hence Wn+1 has to be positive in that case. We

refer here to the model description below as well as to Examples 2.1 and 2.2.

The initial conditions are given by a random elementX (0) = (X1(0), . . . , XK (0), S0)

of ZZK+ × {1, . . . , K}. If XS0 (0) = 0 then the server starts walking as described above.

In this case T 1 = W1 is defined as the time of the begin of the first service, and we

set S(0−) := S0 and S(t) = 0 for 0 ≤ t < T 1 . (If T 1 = 0 we have S(0) = S(T 1)). If

XS0 (0) > 0 then the server starts serving until the queue S(0−) = S(0) := S0 is empty.

In this case we defineW1 = T 1 := 0.

In order to explain how the system is operating we will now describe the arrival

processes, the services and the assumptions on the routing and walking times. The

underlying probability space is denoted by (Ω,F , P ). Define

Ft := σ(X (s) : s ≤ t), t ∈ IR+,
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where X (t) := (X1(t), . . . , XK (t), S(t)). Then {Ft : t ∈ IR+} is a right-continuous filtra-

tion describing the internal history of the process. We let Ai(t) denote the number of

customers who have arrived at station i by time t. Hence

Ai(s, t] := Ai(t) − Ai(s), s ≤ t,

is the number of customers who arrived at station i during the time interval (s, t]. We

assume that the arrival instants are different from the times of completion of services

so that

Ai(t) =
∑

s:Xi(s)>Xi(s−)

1{s ≤ t}(Xi(s) −Xi(s−)), t ∈ IR+,

is Ft-measurable. We also note that

Tn+1 = min{t ≥ Tn :
K∑
i=1

Xi(t) <
K∑
i=1

Xi(t−)}, n ∈ ZZ+,

where T0 := 0, and

T n+1 = inf{t ≥ Tn : S(t) 6= 0}, n ∈ ZZ+.

Hence Tn and T n, n ∈ IN, are {Ft}-stopping times. If T is any {Ft}-stopping time then,

as usual,

FT := {A ∈ F∞ : A ∩ {T ≤ t} ∈ Ft for all t ∈ IR+},

denotes the history at time T , where F∞ := σ(
⋃
s>0 Fs).

The sequence (τn) of all arrival instants is assumed to form a homogeneous Poisson

process with intensity λ. Further there is given a sequence (Bn) = ((B1
n, . . . , B

K
n )) of

independent random elements of ZZK+ which is independent of (τn) and such that ai :=

EBi
1 is positive and finite for all i and

∑
iB

i
n > 0. The arrival process Ai(t) is then

assumed to be given by

Ai(t) :=
∑
n≥1

1{τn ≤ t}Bi
n.
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It is a compound Poisson process with intensity λi := λai. Note that the {Ai(t)} are

independent if and only if the components of B1 are independent. We will assume more

generally that ((τn, Bn)) is a marked {Ft}-Poisson process, see e.g. Last and Brandt

(1995). That is to say that ∑
n≥1

1{s < τn ≤ t, Bn ∈ C}

is independent of Fs for all s < t and all measurable C ⊆ ZZK+ . In particular, Ai(t, v] is

independent of Ft, for all t < v. This property generalizes to an {Ft}-stopping time T ,

i.e. Ai(T, v] is independent of FT for all v, where Ai((T, v]) = 0 if v ≤ T . Also,

EAi(T ) = λiET, i ∈ {1, . . . , K},

for any {Ft}-stopping time T . More generally, if S is another {Ft}-stopping time sat-

isfying S ≤ T then

E[Ai(S, T ]|FS ] = λiE[T − S|FS ] P − a.s., i ∈ {1, . . . , K}. (2.1)

We assume that service times are independent of the arrival process and that

P (Tn − T n ∈ ·|FTn ) = Gi(·) P − a.s. on {S(T n) = i}, n ∈ IN, (2.2)

where G1, . . . , GK are distributions on (0,∞) with finite and positive means b1, . . . , bK .

In particular, different service times are independent.

Assume that S(Tn−) = i, n ∈ IN, and Xi(Tn) = 0. Then the server stops serving

station i and the station S(T n+1) = j to be served next satisfiesXj (T n+1) > 0. The choice

of the station j and the random variable Wn+1 may depend on the whole actual state of

the system and even on the arrivals after time Tn and the corresponding conditional

distributions might be quite general, see Examples 2.1 and 2.2. However, we assume
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that there is a finite constant w such that

E[W1|F0] ≤ w P − a.s. on {XS0 (0) = 0}, (2.3)

as well as a constant p > 0 satisfying

P (A(W1) = 0|F0) > p P − a.s. on {XS0 (0) = 0,
∑
k

Xk(0) > 0}, (2.4)

where

A(t) :=
∑
i

Ai(t).

The latter condition excludes some strange behaviour of the server and seems to be

satisfied in all relevant examples. It states that given the server has just completed a

batch of services and the system is non-empty, then the probability that the next batch

of services starts at one of these non-empty stations is uniformly bounded from below

by a positive constant.

Our assumptions imply that the Tn are almost surely finite and satisfy limn→∞ Tn =

∞ and hence we assume these properties to hold everywhere on Ω. Denote

Ŝ(n) := S(Tn−), n ∈ ZZ+,

where we recall that T0 = 0, see also the discussion of the initial values above. The

process

X̂ (n) := (X1(Tn), . . . , XK (Tn), Ŝ(n)), F̂n := FTn , n ∈ ZZ+, (2.5)

is assumed to be a homogeneous Markov chain, where we dispense with making this

assumption more explicit. This could be done by introducing appropriate kernels de-

scribing the conditional distribution of (Wn+1, X1(T n+1), . . . , XK (T n+1), S(T n+1)) given

FTn and XS(Tn−)(Tn) = 0. Because we do not need these kernels later on we prefer to

illustrate our model by examples.
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Example 2.1 Assume that for each i ∈ {1, . . . , K} there is a set N (i) ⊆ {1, . . . , K}

of neighbors of i such that i ∈ N (i). Assume that for all i, j ∈ {1, . . . , K} there is

a sequence k1, . . . , kr ∈ {1, . . . , K} such that k1 = i, kr = j and km+1 ∈ N (km) for

1 ≤ m ≤ r − 1. This means that the neighborhood relation equips {1, . . . K} with

the structure of a directed and connected graph. Assume that S(Tn−) = i, n ∈ IN,

and Xi(Tn) = 0. Then the server stops serving station i and selects another station

S(T n+1) = j , say, in such a way that j ∈ N (i) and

Xj (Tn) > 0 if
∑
k∈N (i)

Xk(Tn) > 0,

which means that the server walks to one of the non-empty stations in his neighbor-

hood. This a greedy-type routing mechanism. To describe the dynamics of this system

more accurately we assume that for any x = (x1, . . . , xK , i) ∈ ZZK+ ×{1, . . . , K} there is a

set Dx ⊆ Cx := {j ∈ N (i) : xj > 0} such that Dx 6= ∅ whenever Cx 6= ∅. If X (0) = x and

Cx 6= ∅, then

P (W1 ∈ dw,X (W1) = y1, . . . , X (WK ) = yK , S(W1) = j|F0)

= F ′ij (dw)P ((x1 + A1(w), . . . , xK + AK (w)) = (y1, . . . , yK ))1{j ∈ Dx}
1

card Dx

,

where F ′ij is a distribution with a finite mean wij . Assume now that the system starts at

time 0 in a state x = (x1, . . . , xK , i) satisfying
∑

k∈N (i) xk = 0. Then the server chooses a

station j , say, randomly among the neighbors of i. Again it takes the server a random

time W 1 with distribution Fij (x) to walk from i to j . If Xj (W 1) > 0 then we put W1 :=

W 1 . If not then the server chooses another station randomly in the set A(j) of all

stations k ∈ N (j) satisfyingXk(W 1) > 0, if there is such a station. If
∑

k∈N (j)Xk(W 1) =

0 then A(j) := N (j). The server continues in this way until he arrives at a non-empty

station. Assume that infx
∑

i,j wij (x) > 0, where wij (x) is the mean of Fij (x). Under
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obvious independence assumptions it takes the server a finite random timeW1 to arrive

at a non-empty station. The process satisfies (2.3) and (2.4). We conclude this example

with specifying possible choices of the sets Dx.

(i) Assume that

Dx = {j ∈ N (i) : xj = max{xk : k ∈ N (i)}}.

This defines the so-called greedy walking mechanism.

(ii) Assume that there are positive and finite numbers d(i, j) indicating a distance

between j ∈ N (i) and i and that

Dx = {j ∈ N (i) : d(i, j) = min{d(i, k) : k ∈ N (i), xk > 0}},

where min ∅ := 0. In this case the server tries to walk to the nearest non-empty

station in his neighborhood.

(iii) Dx = {j ∈ N (i) : xj > 0}.

(iv) Dx = {j ∈ N (i) : xj = min{xk : xk > 0}}.

(v) Let 0 < c < d and assume that x = (x1, . . . , xk, i) satisfies
∑

k∈N (i) xk > 0. Let

Dx = {j ∈ N (i) : c ≤ xj ≤ d}

if this set is non-empty and let Dx be given as in (i) otherwise.

We give now another example for a routing mechanism which was considered by

Schassberger (1993) in the special case of a ringlike graph. In that case the polling

system could be considered as an approximation of the greedy server on the circle.
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Example 2.2 Consider the situation of Example 2.1(ii). An r-tuple p = (k1, . . . , kr) ∈

{1, . . . , K}r is called a path if km+1 ∈ N (km) for 1 ≤ m ≤ r− 1 and if all km are distinct.

The length d(p) of such a path is defined by d(k1, k2) + . . . + d(km−1, km). Assume that

the system starts at time 0 in state x = (x1, . . . , xK , i) satisfying
∑

k xk > 0. Consider

the set of all paths p starting in i and ending in a station k with xk > 0 and let Hx be the

subset where d(p) becomes minimal. The server chooses then the next station j , say,

randomly in the set

D′x := {l ∈ N (i) : there is a p = (k1, . . . , kr) ∈ Dx with l = k2}.

As in Example 2.1 it takes the server a random time W 1 with some distribution F ′ij to

walk from i to j . If Xj (W 1) > 0 then we put W1 := W 1 . If not then the server chooses

another station randomly in the set D′X (W1 ) . The server continues in this way until he

arrives at a non-empty station at a time W1 . If
∑

k xk = 0 then the server moves as in

the previous example. Once the server has completed a walk at a moment where the

system is non-empty he continues walking as desribed above. It is easy to see that (2.3)

and (2.4) hold. This example could be generalized by allowing the server to change

his destination during a walk if there occurs an arrival at a station that is closer than

that he is currently walking to. In this case the choice of the next destination depends

again on future arrivals.

State-independent routings as in Fricker and Jaibi (1994) are also covered by our

model. A special case is a Markovian routing as described next.

Example 2.3 Let (ri,j )1≤i,j≤K be an irreducible Markovian (routing) matrix and assume

that the server, upon completing a batch of services at station i chooses his next desti-

nation j , say, with probability ri,j independent of everything else. It takes the server a
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random time with distribution F ′ij to walk from i to j . These walking times are indepen-

dent of each other and independent of anything else. If at the moment of the server’s

arrival the jth queue is non-empty then it is served according to the exhaustive policy.

Otherwise the server chooses a next destination according to the routing matrix. As-

suming that the F ′ij have finite means wij satisfying
∑

ij wij > 0, both conditions (2.3)

and (2.4) are fulfilled.

We conclude with a simple example where the only non-zero walking times are

times taken to wait for the next arriving customer. Such a system is very similar to an

M/GI/1–queueing system with batch arrivals. In particular, it is rather easy to see that

stability is implied by inequality (1.1).

Example 2.4 Assume that after a batch of services the system is not empty. Then the

server chooses one of the non-empty stations and resumes servicing instantaneously.

If, on the other hand, the system is empty after a batch of services then the server

waits for the next batch of arriving customers. Then he chooses one of the non-empty

stations and starts serving without further delay.

3 Proof of the stability result

We consider the Markov chain {X̂ (n)} defined by (2.5). All assumptions formulated

in the previous section are supposed to be in force. The main result of our paper is the

following theorem.

Theorem 3.1 (i) Assume that (1.1) holds. Then there is a finite subset of ZZK+ ×

{1, . . . , K} which is positive recurrent for the Markov chain {X̂ (n)}. If the chain
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is irreducible, then it is positive recurrent and if it is in addition also aperiodic,

then it is ergodic.

(ii) If the chain {X̂ (n)} is ergodic, then (1.1) holds.

Remark 3.2 In the Examples 2.1–2.4 the Markov chain {X̂ (n)} is irreducible and ape-

riodic. In general these properties are not implied by our model assumptions and must

be checked in each case.

The proof of the theorem is splitted into several lemmas. The basic idea is to prove

that the number of walks can be neglected when compared with the number of services.

A polling system where the server needs no time to travel to a non-empty station as in

Example 2.4 can easily be proved to be stable if (1.1) is satisfied.

Unless stated otherwise we consider in this section a more general model, where

the stochastic behaviour of the system is influenced by a further piecewise constant

process {U (t) : t ≥ 0} taking values in some measurable space (U,U ) and being right-

continuous w.r.t. discrete topology. We let

X (t) := (X1(t), . . . , XK (t), S(t), U (t))

and define the filtration {Ft} as before, where we now use the new process X (t). We

apply the assumptions on the arrival process and the services of section 2 verbatim and

we also assume that

X̂ (n) := (X1(Tn), . . . , XK (Tn), Ŝ(n), U (Tn)), (3.1)

is a homogeneous Markov process. We can assume that it fits the general setting of

the Appendix. Our assumptions (2.3) and (2.4) remain unchanged, but we note that F0

contains also the information induced by U (0).
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Define ν0 := 0 and

νn+1 := min{k > νn : X̂Ŝ(k)(k) = 0}, n ∈ ZZ+.

If X̂Ŝ(0) = 0 (resp. > 0) then νn, n ∈ IN, is the number of completed services before the

server starts his (n + 1)st (resp. nth) walk. Clearly Tνn is an {Ft}-stopping time. Most

of our analysis will be based on the Markov chain (Y (n),Gn), n ∈ ZZ+ , which is defined

by

Y (n) =: (Y1(n), . . . , YK (n), Sn, Un) := X̂ (νn) = X (Tνn ), Gn := FTνn .

Note that (Y (0),G0) = (X (0),F0).

We define a function V on ZZK+ × {1, . . . , K} × U by

V (x) := b1x1 + . . . + bKxK , x = (x1, . . . , xK , i, u). (3.2)

Further we define |x| := x1 + . . . + xK , where x is as above.

Lemma 3.3 Assume (1.1). There are constants d1, d2, d′1, d
′
2, d̃1, d̃2 such that

E[Tν1 |G0] ≤ d′1|Y (0)| + d′2, (3.3)

E[V (Y (1))|G0] ≤ d1V (Y (0)) + d2, (3.4)

E[ν1|G0] ≤ d̃1|Y (0)| + d̃2. (3.5)

PROOF. Unless stated otherwise we assume that X̂Ŝ(0)(0) = 0.

At time T 1 the server enters station Ŝ(1) and then the system operates (indepen-

dently of U (0)) like a stable M/GI/1-queueing system (with batch arrivals) until station

Ŝ(1) is empty. It is well-known that the busy period Tν1 − T 1 satisfies

E[Tν1 − T 1|FT 1 ] ≤ h(XS(T 1 )(T
1)) P − a.s.,
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where h is a linear function and where the independence assumptions have also been

used. Indeed, assume that S(T 1) = i and consider a random walk generated by the

increment Ai(ηi) − 1, where ηi is a generic service time at station i independent of Ai.

Then

E[ν1|FT 1 ] = ciYi(T
1),

where ci is the mean of the number of steps needed by the random walk to decrease by

one. Now the desired inequality follows from Wald’s identity. Using our assumption

(2.3) we hence obtain that

E[Tν1 |G0] = E[W1|G0] + E[E[Tν1 − T 1|FT 1 ]|G0]

≤ w + E[h(XS(T 1 )(T
1))|G0].

¿From (2.1) we have

E[XS(T 1 )(T
1)|G0] ≤ |Y (0)| +

∑
i

E[Ai(T
1)|G0]

≤ |Y (0)| + w
∑
i

λi

and (3.3) follows. Similarly,

E[Yi(1)|G0] ≤ Yi(0) + E[Ai(Tν1 )|G0]

≤ Yi(0) + λiE[Tν1 |G0]

and (3.4) follows. The third assertion follows by similar arguments.

If X̂Ŝ(0)(0) > 0 then the assertions follow by directly refering to the properties of

an M/GI/1–system. ut

Lemma 3.4 Consider a measurable set B∞ ⊆ ZZK+ × {1, . . . , K} × U and assume that

there is an C ∈ F0 satisfying

P (T∞ < τ1|FTn ) > p P − a.s. on {|X (Tn)| = 0} ∩ C, n ∈ ZZ+, (3.6)
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where

T∞ := inf{t : X (t) ∈ B∞} (3.7)

and where we recall that τ1 is the first arrival epoch. Then, for any number N > 0

there is a p(N ) > 0 satisfying

P (T∞ < τ1|F0) ≥ p(N ) P − a.s. on {|X (0)| ≤ N}.

PROOF. Because we could always argue on the set C we will assume for simplicity that

C = Ω. Given F0 one can determine the number ξ of non-empty stations. Assume for

simplicity that XS0 (0) > 0 and put

T :=
ν1∑
i=1

(Ti − T i) +Wν1+1 + . . . +Wνξ−1 +

νξ∑
i=νξ−1+1

(Ti − T i).

Then {A(T ) = 0, A(T∞) = 0, X (T νξ+1) ∈ B∞} ⊆ {T∞ < τ1} and we may use our assump-

tions (2.4), (3.6) and successive conditioning to obtain the estimate

P (T∞ < τ1|F0) ≥ p̃|X (0)|pξ+1,

where

p̃ := min
j
P (A(T1 − T 1) = 0|S(T 1) = j) > 0.

For |X (0)| ≤ N the right hand side of the above inequality is not smaller than p(N ) :=

p̃NpK+1 . ut

We need to introduce some further notation. Let {θn : n ∈ ZZ+} be the flow of shift

operators associated with the process {X̂ (n)}, see the Appendix. Then

θ′ := θν1

is the shift operator associated with {Y (n)}. The symbol O is reserved to denote a

(deterministic) function O : IR+ → IR+ satisfying lim supt→∞O(t)/t < ∞. Further we
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let

D(t) := card {n ≥ 1 : Tn ≤ t},

be the number of departures by time t.

Under (1.1) the assumptions of the following lemma will be proved to hold.

Lemma 3.5 Assume that σ is a {Gn}-stopping time and L, c1, c2 ∈ IR+ , ε, c ∈ (0, 1) are

constants, satisfying

E[V (Y (σ))|G0] ≤ cV (Y (0)) P − a.s. on {V (Y (0)) > L}, (3.8)

E[σ|G0] ≤ c1V (Y (0))
1−ε P − a.s. on {V (Y (0)) > L}, (3.9)

E[νσ|G0] ≤ c2V (Y (0)) P − a.s. on {V (Y (0)) > L}. (3.10)

Then, under the assumptions of Lemma 3.4,

E[τ∞|G0] = O(V (Y (0))1−ε) P − a.s. on C, (3.11)

E[D(T∞)|G0] = O(V (Y (0)) P − a.s. on C, (3.12)

where T∞ is given by (3.7),

τ∞ := min{n ≥ 1 : Y (n) ∈ B∞},

and min ∅ := ∞.

PROOF. Define σ0 := 0 and

σn+1 := σn + σ ◦ θ′σn , n ∈ ZZ+,

γ := min{n ≥ 1 : V (Y (σn)) ≤ cV (Y (0))}, .

where θ′0 denotes the identity on Ω. By (3.8) and Lemma 4.2 we have

E[γ|G0] ≤
1

(1 − c)c
P − a.s. on {V (Y (0)) > L′}, (3.13)
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where L′ := L/c. The {Gn}-stopping time σ′ := σγ satisfies

V (Y (σ′)) ≤ cV (Y (0))

everywhere on {γ <∞}. Moreover, by (3.10) we have, P -almost surely on {V (Y (0)) >

L′}, that

E[νσ′|G0] = E
[
γ−1∑
j=0

(νσj+1 − νσj )|G0

]

= E

[
∞∑
j=0

1{j < γ}E[(νσj+1 − νσj )|Gσj ]|G0

]

≤ c2E

[
∞∑
j=0

1{j < γ}V (Y (σj ))|G0

]

≤ c2E

[
γ∑
j=0

V (Y (σj ))|G0

]
.

¿From Lemma 4.2 we obtain that

E[νσ′|G0] ≤ c′2V (Y (0)) P − a.s. on {V (Y (0)) > L′}, (3.14)

where c′2 := c2/(1 − c). In a similar way we obtain from (3.9) that

E[σ′|G0] = E
[
γ−1∑
j=0

σ ◦ θ′σj |G0

]
≤ c1E

[
γ∑
j=0

V (Y (σj ))
1−ε|G0

]
,

so that, by Lemma 4.2,

E[σ′|G0] ≤ c′1V (Y (0))
1−ε P − a.s. on {V (Y (0)) > L′}, (3.15)

where c′1 := c1/(1 − c). Next we iterate σ′ by defining σ′0 := 0 and

σ′n+1 := σ
′
n + σ

′ ◦ θ′σ′n , n ∈ ZZ+.
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Since Y (σ′n+1) = Y (σ
′) ◦ θ′σ′n , we have

V (Y (σ′n)) ≤ cnV (Y (0)). (3.16)

Denote

τ ′ := min{n ≥ 1 : V (Y (n)) ≤ L′}.

Then we can bound τ ′ ≤ σ′γ′ , where

γ′ := min{n ≥ 1 : V (Y (σ′n)) ≤ L′}.

Arguing as above we get from (3.15) and (3.16), P -almost surely on {V (Y (0)) > L′},

that

E[τ ′|G0] ≤ E

[
γ′−1∑
j=0

(σ′j+1 − σ′j )|G0

]

=
∞∑
j=0

E[1{j < γ′}E[σ′ ◦ θ′σ′j |Gσ′j ]|G0]

≤ c′1

∞∑
j=0

E[1{j < γ′}V (Y (σ′j ))1−ε|G0]

≤ c′1V (Y (0))
1−ε

∞∑
j=0

c(1−ε)j

and hence

E[τ ′|G0] ≤ c̃1V (Y (0))
1−ε P − a.s. on {V (Y (0)) > L′}, (3.17)

where c̃1 := c′1/(1 − c(1−ε)). Similarly we obtain from (3.14) that

E[ντ ′|G0] ≤ c̃2V (Y (0)) P − a.s. on {V (Y (0)) > L′}, (3.18)

where c̃2 := c′2/(1 − c).
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To prove (3.11) and (3.12) we define inductively for n ∈ ZZ+

T ′n+1 := inf{t ≥ T ∗n : V (X (t)) ≤ L′},

T ∗n+1 := inf{t > T ′n+1 : A(t) > A(t−)},

where T ∗0 := 0. Note that T ′n+1 = T
∗
n if V (X (T ∗n )) ≤ L′. Let

B(t) := card {n ≥ 1 : Tνn ≤ t},

be the number of completed batches of services by time t. We have the following

inequalities

T ′1 ≤ Tντ ′ , D(T ′1) ≤ ντ ′ , B(T ′1) ≤ τ ′. (3.19)

Let

σ∗ := min{n ≥ 1 : X (t) ∈ B∞ for some t with T ′n ≤ t ≤ T ∗n}.

On the set {V (X (0)) > L′} we have by (3.18) and (3.19)

E[D(T ∗σ∗ )|F0]

= E

[
∞∑
j=0

1{j < σ∗}(D(T ∗j+1) −D(T ∗j ))|F0

]

= E

[
∞∑
j=0

1{j < σ∗}(D(T ∗j+1) −D(T ′j+1))|F0

]

+ E

[
∞∑
j=0

1{j < σ∗}E[D(T ′j+1) −D(T ∗j )|FT ∗j |F0

]

≤ L′′E[σ∗|F0] + c̃2E

[
∞∑
j=0

1{j < σ∗}1{V (X (T ∗j )) > L′}V (X (T ∗j ))|F0

]
≤ (L′′ + c̃2(L

′ + 1))E[σ∗|F0] + c̃2V (X (0)),

where L′′ is a finite constant satisfying |x| ≤ L′′ whenever V (x) ≤ L′. Here we have

also used, for n ≥ 1, the easy to prove inequality

E[V (X (T ∗n ))|FT ′n ] ≤ L′ + max
i
λibi,
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where we assume for notational simplicity that λibi ≤ 1 for all i. Similarly we obtain

from (3.17) and (3.19) that

E[B(T ∗σ∗ )|F0] ≤ (K + c̃1(L
′ + 1)1−ε)E[σ∗|F0] + c̃2V (X (0))1−ε.

By standard arguments it follows that τ ′′ := B(T ∗σ∗ ) is a {Gn}-stopping time. Since

clearly, ντ ′′ ≤ D(T ∗σ∗ ) and τ∞ ≤ τ ′′ we could use our estimates to conclude the assertions

(3.11) and (3.12) if we knew that E[σ∗|F0] is bounded on {V (X (0)) > L′}. To this end

we note that Lemma 3.4 implies, P -a.s. on C ,

P (X (t) ∈ B∞ for some t with T ′n ≤ t ≤ T ∗n}|FT ′n ) ≥ p(L′′),

so that a geometrical trial argument completes the proof. ut

Lemma 3.6 Assume (1.1). Then there exists a {Gn}-stopping time σ and constants

L, c1, c2 ∈ IR+ , ε, c ∈ (0, 1), such that equations (3.8)–(3.10) in Lemma 3.5 are satisfied.

PROOF. We proceed by induction on the number of stations. For K = 1 we can take

σ = 1. Then (3.8) and (3.9) are trivial while (3.10) is a well-known property of a stable

M/GI/1-queueing system, see Lemma 3.3.

Now we suppose that the assertion is true for all polling systems with K stations

satisfying the our general assumptions and (1.1). We consider a polling system with

K + 1 stations described by the process

X (t) = (X1(t), . . . , XK+1(t), S(t), U (t)).

To exploit our induction hypothesis we couple X (t) with another auxiliary polling sys-

tem with stations {1, . . . , K} described by the process X̃ (t). This auxiliary process
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should behave like the original process until the time when the server first enters sta-

tion K + 1. Hence we define

(X̃1(t), . . . , X̃K (t), S̃(t)) := (X1(t), . . . , XK (t), S(t)), t < T̃∞,

where

T̃∞ := inf{t : S(t) = K + 1}.

Further we let Ũ (t) := (U (t), XK+1(0) + Ak+1(t)) for t < T̃∞ and Ũ (t) = u∞ for t ≥ T̃∞,

where u∞ is not in the space U × ZZ+ . Hence the process Ũ (t) takes values in the set

U × ZZ+ ∪ {u∞}. Assume that T̃∞ = T n+1 for n ∈ ZZ+ . In particular XS(Tn−)(Tn) = 0 and

we recall that T n+1 = Tn is possible. We distinguish two cases. First we assume that∑
i6=K+1Xi(Tn) > 0. Then we let T̃ n+1 := T n+1 be the moment of the beginning of the

(n + 1)th service for the process {X̃ (t)} and assume that

X̃ (T n+1) = (X1(T
n+1), . . . , XK (T

n+1), S̃(T n+1), u∞),

where S̃(T n+1) is assumed to be in the set {j 6= K + 1 : Xj (T n+1) > 0}. The second case

is
∑

i6=K+1Xi(T n+1) = 0. In that case we put

T̃ n+1 := inf{t > T n+1 :
∑
i6=K+1

Ai(t) >
∑
i6=K+1

A(t−)}

and

X̃i(t) = Xi(Tn) + Ai(Tn, t], Tn ≤ t ≤ T̃ n+1.

Further we set S(t) = 0 for Tn ≤ t < T̃ n+1 and we assume that S̃(T n+1) is an ele-

ment of of {i 6= K + 1 : X̃i(T̃ n+1) > 0}. In both cases we assume that the process

(X̃1(t), . . . , X̃K (t), S̃(t)) evolves after time T̃ n+1 as in Example 2.4.

So far we have given a pathwise description of the process X̃ (t). We skip here the

obvious technical details describing the joint distribution of {X̃ (t)} and {X (t)} and
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ensuring that {X̃ (t)} will indeed become a process satisfying the general assumptions

of this section. Assumption (2.4) also implies (3.6) for B∞ := ZZK+ ×{1, . . . , K}×{u∞}

and C = {XK+1(0) > 0}, a set which is σ{X̃ (0)}-measurable, by definition. Hence we

can apply the induction hypothesis to obtain (3.11) and (3.12) with τ∞ replaced by

τ̃∞ := min{n ≥ 1 : Sn = K + 1}

and T∞ replaced by T̃∞ This argument works just as well for any station other than

K + 1.

There is a G0-measurable random element ξ of {1, . . . , K + 1} with the property

Yξ(0) ≥
|Y (0)|
(K + 1)

. (3.20)

We claim that (3.8)–(3.10) are satisfied with

σ :=

 min{n ≥ 1 : ξ = Sn} if S0 6= ξ,

0 otherwise.
(3.21)

Since ξ is G0-measurable we can use the above argument to conclude that

E[σ|G0] = O(V (Y (0))1−ε), (3.22)

E[D(T̃ )|G0] = O(V (Y (0)), (3.23)

where

T̃ := inf{t ≥ 0 : S(t) = ξ}.

Next we are going to show that σ does satisfy the drift condition (3.8). We have

Yi(σ) = Yi(0) + Ai(Tνσ ) − νiσ, (3.24)

where

νin := card {k ∈ IN : k ≤ νn : Ŝ(k) = i}, n ∈ IN. (3.25)
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Using the very definitions of the polling system as well as (2.2) and (2.3) we can cal-

culate

E[Tνσ |F0] = E

[
∞∑
m=0

1{m + 1 ≤ σ}(Wνm+1 +
νm+1∑

n=νm+1

(Tn − T n))|F0

]

= E

[
∞∑
m=0

1{m + 1 ≤ σ}E[Wνm+1|FTνm ]|F0

]

+E

[
∞∑
m=0

1{m + 1 ≤ σ}
K+1∑
i=1

1{S(T νm+1) = i}

∞∑
n=1

1{νm + 1 ≤ n ≤ νm+1}E[Tn − T n|FTn ]|F0

]

≤ wE

[
∞∑
m=0

1{m + 1 ≤ σ}|F0

]

+E

[
∞∑
m=0

1{m + 1 ≤ σ}
K+1∑
i=1

1{S(T νm+1) = i}bi(νm+1 − νm)|F0

]
,

where we have taken advantage of the stopping time properties of σ and νm which

imply, for example, that

{m + 1 ≤ σ, S(T νm+1) = i, νm + 1 ≤ n ≤ νm+1} ∈ FTn .

Hence

E[Tνσ |F0] ≤ wE[σ|F0] + E[ζ|F0],

where

ζ :=
K+1∑
i=1

biν
i
σ.

Using

E[Ai(Tνσ )|F0] = λiE[Tνσ |F0]

we obtain from (3.22) and (3.24) that

E[V (Y (σ))|F0] ≤ V (Y (0)) − (1 − ρ)E[ζ|F0] + O(V (Y (0))
1−ε̃, (3.26)
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where the workload

ρ :=
K+1∑
i=1

λibi

is srictly less than one by assumption. From the definitions (3.20) and (3.21) we have

νσ =
K+1∑
i=1

νiσ ≥
|Y (0)|
K + 1

,

yielding (all bi are positive) that

E[ζ|F0] ≥ c̃V (Y (0)),

where

c̃ =
min bi

(K + 1) max bi
.

Inserting this into (3.26) we obtain (3.8) for a suitable chosen constant L.

Next we want to prove (3.10) making use of the equality

E[νσ|F0] = E[D(T̃ )|F0] + E[E[D(Tνσ ) −D(T̃ )|FT̃ |F0].

The first summand can be bounded according to (3.23). For the second we can use

(3.5) and

E[V (X (T̃ ))|F0] = O(V (X (0)),

which can be proved as (3.26). ut

In the remainder of the section we return to the setting of Section 2 which is obtained

by letting U (t) ≡ 0.

PROOF OF THEOREM 3.1 (I).

Assume (1.1). By Lemma 3.6 we can use Theorem 4.3 with (X̂ (n), νσ) in place of

(X (n), σ). The assumption (4.6) of that theorem is clearly satisfied and the set {x :

V (x) ≤ L} is finite for any L > 0. The other assertions are standard. ut
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In case {Y (n)} is ergodic we let π denote its stationary initial distribution and define

w̄ :=
∑
x

w(x)π(x),

where w(x), x ∈ ZZK+ × {1, . . . , K}, satisfies

w(x) = E[W1|F0] P − a.s. on {Y (0) = x}.

Hence w̄ is the average time taken by a walk after a batch of services. Since π((0, . . . , 0, i))

> 0 for all i ∈ {1, . . . , K} it is clear from the definition of W1 that w̄ has to be positive.

Consider now the Markov chain Y ′(n) denoting the system states at the consecutive

polling instants, i.e.

Y ′(n) := X (T νn+1), n ∈ ZZ+,

and let π′ denote its equlibrium distribution if the chain is ergodic. Note that π′ has to

be concentrated on the set of all those x = (x1, . . . , xK , i) satisfying xi > 0. On this set

we define a function B(·) by

B(x) = E[ν1|F0] P − a.s. on {Y (0) = x}.

Let

πi := π
′(ZZK+ × {i}) = π(ZZK+ × {i}).

Then

B̄i := π
−1
i

∑
x∈ZZK+

B((x, i))π′({(x, i)}),

is the stationary average batch size given that the server is at station i.

Next we turn to the proof of the necessity part of Theorem 3.1. This proof will

also yield an equilibrium equation for the process {X̂ (n)}. A shorter proof could be

obtained by comparing the system with a polling system as in Example 2.4. The latter

system can easily be proved to be unstable if (1.1) does not hold.
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PROOF OF NECESSITY OF (1.1).

Let n ∈ IN. We can use the calculations which led to (3.25) (with n in place of σ) to

obtain that

E[Yi(n)|F0] = Yi(0) + λiE[(W (n) + ζn)|F0] − E[νin|F0], (3.27)

where

ζn :=
K∑
i=1

biν
i
n,

W (n) :=
n−1∑
m=0

Wνm+1

and νni is given by (3.25).

In the remainder of the proof we follow Borovkov and Schassberger (1994). Unless

stated otherwise we assume that ρ 6= 1, where

ρ :=
K∑
i=1

λibi.

Let f : IRK → IRK be the linear transformation given by

f (ei) := ei +
bi

1 − ρ
~λ, i ∈ {1, . . . , K},

where ei is the ith unit vector and the ith component of ~λ is λi. We apply this transfor-

mation to obtain from (3.27) by a straightforward calculation that

E[fj ((Y1(n), . . . , YK (n)) − (Y1(0), . . . , YK (0)))|F0] (3.28)

=
λj

1 − ρ
E[W (n)|F0] − E[νjn|F0], j ∈ {1, . . . , K},

where fj is the jth component of f .

Assume now that {X̂ (n)} and hence also {Y (n)} and {Y ′(n)} are ergodic. Dividing

both sides of (3.28) by n and letting n→∞ the left-hand side tends to 0 and we obtain
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that
λjw̄

1 − ρ
= B̄jπj, j ∈ {1, . . . , K}. (3.29)

In particular we have ρ < 1. Assume now that ρ = 1. Dividing (3.27) by n and letting

n→∞ we obtain

B̄iπi = λiw̄ + λi

K∑
j=1

bjB̄jπj.

Multiplying with bi and summing up yields an equation contradicting w̄ > 0. ut

Corollary 3.7 If {X̂ (n)} is ergodic then (3.29) holds.

Remark 3.8 Consider Example 2.1 or Example 2.2 and let R(t) denote the residual

walking time at time t ∈ IR+ if S(t) = 0 and let R(t) be the residual service time,

otherwise. Then {(X (t), R(t)) : t ∈ IR+} is an homogeneous Markov process. Using

Theorem 3.1 and the properties of the Poisson process, it is not hard to prove that

{(X (t), R(t))} is Harris ergodic if (1.1) holds. Under natural additional assumptions

this conclusion could also be made in the general case.

4 Appendix

This Appendix contains some results for discrete time Markov processes and Markov

chains. We consider a Markov process X = {X (n) : n ∈ ZZ+} taking values in the

measurable space (X,X ). The process X is assumed to fulfill the following (standard)

properties. The random elements X (n) are defined on (Ω,F ) and are measurable with

respect to Fn, where {Fn : n ∈ ZZ+} is a increasing sequence of σ-fields. For each

n ∈ ZZ+ there is a measurable mapping θn : Ω → Ω such that θm+n = θm ◦ θn. Hence θn is

the nth iteration of the shift operator θ := θ1 . We assume that

X ◦ θm(n) = X (m + n), m, n ∈ ZZ+,
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where the process X ◦ θm is given by X ◦ θm(n)(ω) := X (n)(θmω). We call θn, n ∈ ZZ+ ,

the family of shift operators associated with X . Further there is a family Px, x ∈ X, of

probability measures on (Ω,F ) such that Px(X (0) = x) = 1 and the mapping x→ Px(A)

is measurable for all A ∈ F and such that for any {Fn}-stopping time T

Px(X ◦ θT ∈ ·|FT ) = PX (T )(X ∈ ·) Px − a.s. on {T <∞},

where we interpret all processes as random elements of the corresponding function

space equipped with Kolmogorov’s product σ-field. This is the strong Markov property

of X . In particular,

Py(X ∈ ·|F0) = Px Py − a.s. on {X (0) = x}, y ∈ X.

Assume that σ is a finite {Fn}-stopping time and define

σn+1 := σn + σ ◦ θσn , n ∈ ZZ+, (4.1)

where σ0 := 0 and θ0 is the identity on Ω. Then the σn are stopping times and Y (n) :=

X (σn), n ∈ ZZ+ is again a Markov process in discrete time. One can take the same

family Px, x ∈ X, of probability measures while the shift operator is given by θσ and

the filtration by {Fσn : n ∈ ZZ+}.

In the following P denotes a probability measure on (Ω,F ) of the form

P (·) =
∫
Px(·)µ(dx),

where µ is a probability measure on (X,X ).

Under additional technical assumptions the conditions of the next lemma are known

to imply the so-called geometric ergodicity. The proofs of this as well as of the next

result are not difficult and can follow along the lines of Meyn and Tweedie (1993,

1994) for example.

29



Lemma 4.1 Assume that there are numbers c ∈ (0, 1) and L ∈ IR+ as well as a measur-

able function V : X → IR+ such that

E[V (X (1))|F0] ≤ cV (X (0)) P − a.s. on {V (X (0)) > L}.

Define

τL := min{n ≥ 1 : V (X (n)) ≤ L}, (4.2)

where min ∅ := ∞. Then, for any 0 < δ ≤ 1,

E

[
τL∑
n=0

V (X (n))δ|F0

]
≤ V (X (0))δ

1 − cδ
P − a.s. on {V (X (0)) > L}

and

E[τL|F0] <∞ P − a.s. on {V (X (0)) > L}.

Lemma 4.2 Assume that the assumptions of Lemma 4.1 hold and denote

γ := min{n ≥ 1 : V (X (n)) ≤ cV (X (0))}.

Then, for any 0 < δ ≤ 1,

E

[
γ∑
n=0

V (X (n))δ|F0

]
≤ V (X (0))δ

1 − cδ
P − a.s. on {V (X (0)) > L/c}. (4.3)

Moreover,

E[γ|F0] ≤
1

(1 − c)c
P − a.s. on {V (X (0)) > L/c}.

The next result is similar to Theorem 2.2 in Meyn and Tweedie (1994). For the

reader’s convenience we will present the proof.
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Theorem 4.3 Assume that there are numbers c ∈ (0, 1) and L, c2, d > 0, a measurable

function V : X → IR+ and a finite {Fn}-stopping time σ ≥ 1 such that

E[V (X (σ))|F0] ≤ cV (X (0)) P − a.s. on {V (X (0)) > L}, (4.4)

E[σ|F0] ≤ c2V (X (0)) P − a.s. on {V (X (0)) > L}, (4.5)

E[V (X (1))|F0] ≤ d P − a.s. on {V (X (0)) ≤ L}. (4.6)

Then

E[τL|F0] ≤ c′ max{V (X (0)), L} P − a.s.

for some finite c′, where τL is given by (4.2). In particular, the set {x ∈ X : V (x) ≤ L}

is positive recurrent, in the sense that

E[τL|F0] < c′L P − a.s. on {V (X (0)) ≤ L},

τL < ∞ P − a.s. on {V (X (0)) > L}.

PROOF. Let σ0 := 0 and, recursively, σn+1 := σn + σ ◦ θσn , n ≥ 1. Denoting

τ := min{n ≥ 1 : V (X (σn)) ≤ L},

we obtain from (4.5) that

E[στ |F0] = E

[
τ−1∑
i=0

σ ◦ θσi |F0

]

= E

[
∞∑
i=0

1{i < τ}E[σ ◦ θσi |Fσi ]|F0

]

≤ c2E

[
∞∑
i=0

1{i < τ}V (X (σi))|F0

]
.

By (4.4) we can apply Lemma 4.1. Hence,

E[στ |F0] ≤
c2

1 − c
V (X (0)) P − a.s. on {V (X (0)) > L}. (4.7)
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Since τL ≤ στ , this yields the assertion for V (X (0)) > L. To prove the other case we

can use inequality τL ≤ 1 + στ ◦ θ1 for V (X (1)) > L to obtain from (4.7)

E[τL|F0] = E[1{V (X (1)) ≤ L}τL|F0] + E[1{V (X (1)) > L}τL|F0]

≤ P (V (X (1)) ≤ L|F0) + E
[
1{V (X (1)) > L}E[στ ◦ θ1 + 1|F1]|F0

]
≤ 1 +

c2
1 − c

E[1{V (X (1)) > L}V (X (1))|F0].

By assumption (4.6) the proof is complete. ut
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