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Abstract. Estimates are found for the magnitude of overshoot, by a sequence of random
variables, over an arbitrary boundary. If the sequence increments satisfy a so-called condition of
asymptotic homogeneity and the boundary is asymptotically “smooth,” then the occurrence of the
weak convergence to a limit shape (as the boundary is sent away) is established for the distribution
of the overshoot value. As an application, we obtain a uniform (over the class of distributions) basic
renewal theorem and determine the asymptotics of the average time of crossing a curvilinear border
by the trajectories of asymptotically homogeneous Markov chains.
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1. Introduction. Consider a sequence X ≡ {X(n)}n�0, X(0) = 0, of random
variables with finite expectations. Let Fn denote the sigma-algebra generated by
X(0), X(1), . . . , X(n). For x � 0 introduce the time of first crossing the level x

η(x) = min
{
k � 1: X(k) > x

}
(1.1)

and set η(x) = ∞, whenever supkX(k) � x. The overshoot value is defined on the
event {η(x) < ∞} by

χ(x) = X
(
η(x)

)− x.(1.2)

A number of papers (see, e.g., [1], [2], [3], [4], [5], [6], and the references therein)
considered a sequence {X(n)} of the form

X(n) = S(n) + θ(n), S(n) = ξ1 + · · · + ξn,(1.3)

where {ξn} are independent identically distributed (i.i.d.) random variables (r.v.’s)
with positive expectation and the r.v. θ(n) meets a number of conditions, in partic-
ular, θ(n) = o(n) (in a sense), and also the sequences {(ξi, θ(i))}i�n and {ξi}i>n are

mutually independent for any n. In that case, X(n) is often called a “perturbed”
or “nonlinear” renewal process (see, e.g., [4]). Models of this kind arise naturally in
problems of sequential analysis and queuing theory, the main objects of investigation
being the stopping times η(x) and overshoot values χ(x).

One usually assumes that r.v.’s ξn have a finite second moment and r.v.’s θ(n)
admit a representation θ(n) = −γ(n)−h(n), where γ(n) form a stochastically bounded
sequence and h(·) is a deterministic function, h(n) = o(n). The most general results
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in this setting were obtained in [2] under the hypothesis that h is twice differentiable
and, moreover, h

′′
(x) = O(xα−2), h′(x) = O(xα−1) for some α ∈ [0, 1). Under several

additional technical requirements it was shown that
(a) a local renewal theorem is valid for

∑∞
n=1 P{X(n) ∈ (u, u + v]} as u → ∞;

(b) as the boundary is sent away, the distribution of the value of overshoot over
it tends to a limiting one;

(c) for the average crossing time the asymptotic distribution (of accuracy o(1)) is
established.

Set x + h(n) = g(x, n). Then, under the mentioned conditions on θ(n), one has

η(x) = min
{
k � 1: S(k) > g(x, k) + γ(k)

}
,

χ(x) = S
(
η(x)

)− g
(
x, η(x)

)− γ
(
η(x)

)
.

In this situation the distributions of time and value of overshooting a “constant”
boundary x by a sequence X(n) coincide with those for overshooting a nonlinear
boundary g(x, ·) + γ(·) by the sequence of partial sums S(n).

In this paper, the main attention is devoted to studying the distribution of the
value of overshoot over a nonlinear boundary g(x, ·) + γ(·) by a sequence {X(n)}
from a more general class, whose increments X(n + 1) − X(n) need not be equidis-
tributed, need not have finite second moment, and can be dependent. In addition,
the representation x+h(n) for the function g(x, n) in general might fail. It turns out
that in broad assumptions very precise estimates hold for χ(x) and, moreover, the
statements on weak convergence of the overshoot value are valid.

At first we consider the case of “constant” boundary x (i.e., g(x, n) ≡ x, γ(n) ≡ 0
with x increasing to infinity) and demonstrate (see Theorem 2.1) that, under cer-
tain conditions (see (G1)–(G3)), the average time of the first crossing cannot grow
faster than a linear in x function. In this case the distributions of the overshoot
values admit nonimprovable estimates. Next we turn to investigating the case of a
Markov chain {X(n)} (in general, nonhomogeneous) having asymptotically homoge-
neous jumps (with the growth of spatial and temporal variables). Assuming that
the distribution of jump “at infinity” is nonlattice, we prove the weak convergence
(as x → ∞) of the distributions of overshoot values to the limit (see Theorem 2.2),
which is the distribution of overshooting an infinitely distant level by a homogeneous
random walk. Then the last statement is carried over to the case of nonlinear deter-
ministic (Theorem 2.3) and random (Theorem 2.4) boundaries. Further, it is shown
that in general the limit distribution of overshoot value can have a different form
(Theorem 2.5). Along with Markov chains, one may consider in Theorems 2.2–2.5
sequences X(n) of a more general type.

We obtain as corollaries uniform renewal theorems in the “homogeneous” (The-
orems 2.6 and 2.7) and Markovian (Theorem 2.8) cases. After that we give the
corollaries for the first crossing time (Theorem 2.9). They are employed in studying
two Markov chains of special form which play important roles in applications.

All the proofs of our theorems are given in section 3.

2. Main results and their corollaries.

2.1. The statements on the value of overshoot. Let X ≡ {X(n)}n�0,

X(0) = 0, be an arbitrary sequence of r.v.’s and Fn = σ(X(0), X(1), . . . , X(n)).
For any integer l � 0, set

X(l)(n) = X(l + n) −X(l).
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We will need the following conditions:
(G1) There exist a constant A > 0 and an integer m � 1 such that, for all integers

n � 0,

E(X(mn)(m) | Fmn) � A a.s.(2.1)

Condition (G1) says that the sequence X(mn) − An, for n = 0, 1, . . . , forms a
submartingale.

(G2) There exists a distribution F on [0,∞) such that, for any n and x,

P
{
X(n + 1) −X(n) � x | Fn

}
� F ([x,∞)) ≡ F (x) a.s.(2.2)

A random variable ζ with distribution F has the finite expectation

b = E ζ ≡
∫ ∞

0

F (x) dx.(2.3)

(G3) If m > 1, assume additionally the existence of a constant V � 0 such that,
for all k = 0, 1, . . . and j = 1, 2, . . . ,m− 1, the following inequality holds a.s.:

E
(
X(km+j)(m− j) | Fkm+j

)
� −V.(2.4)

Note that if the increments {X(n + 1) − X(n); n = 0, 1, . . .} form a sequence of
independent random variables, then (G3) follows from conditions (G1) and (G2) when
V = mb−A. Indeed, EX(km+j)(m−j) = EX(km)(m)−EX(km)(j) � A−jb � A−mb.

The following statement is true for the variables η(x) and χ(x) defined by (1.1)
and (1.2).

Theorem 2.1. Given validity of conditions (G1)–(G3),
(a) there exists a constant K such that, for any x � 0,

E η(x) � K(1 + x);(2.5)

(b) there exist constants c, c1 such that, for any x, t � 0, one has

P
{
χ(x) > t

}
� c

(
F (t) +

∫ t+x

t

F (u) du

)
,(2.6)

P
{
χ(x) > t

}
� c1E

{
ζI(ζ > t)

}
.(2.7)

Remark 2.1. As will be seen from the proof, the constants K, c, and c1 depend
only on A, m, V , and the function b(t) ≡ E{ζI(ζ > t)}. In particular, if m = 1, one
may set, for any ε ∈ (0, 1),

c = K =
b∗(εA)

A(1 − ε)
,(2.8)

c1 =
K

β
max

(
1, β +

4N

A

)
,(2.9)

where b∗(ε) = min{t: b(t) � ε}, β = 1
2 min{N, 1, A/4}, and N = b∗(A/2).

All of the further results in this section can be proved under the conditions (G1)–
(G3). However, to simplify the proofs, we set m = 1 in condition (G1) and assume
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in the sequel that the sequence X forms a Markov chain (need not be homogeneous):
for n � 0

X(n + 1) = X(n) + ξ
(
n + 1, X(n)

)
,

where the families of r.v.’s {ξ(1, x)}, {ξ(2, x)}, . . . are mutually independent and, for
each n, the r.v. ξ(n, x) ≡ ξ(n, x, ω) is a measurable function of (x, ω).

Under these assumptions one can rewrite conditions (G1), (G2) as follows:
(MC1) There exists a constant A > 0 such that, for any n and x,

E
∣∣ξ(n, x)

∣∣ < ∞ and Eξ(n, x) � A;

(MC2) There exists a distribution F such that, for any n, x, and t,

P
{
ξ(n, x) � t

}
� F (t)

and the mean b = b(0) in (2.3) is finite.
Let us introduce the condition of “asymptotic homogeneity (AH)”:
(AH) There exists a nonlattice random variable ξ such that

(1) E ξ is finite;
(2) the distributions of the random variable ξ(n, x) are weakly convergent to
that of ξ as n, x → ∞.

The last requirement means that ρ(ξ(n, x), ξ) → 0 as n, x → ∞, where ρ is the
Lévy metric (Fξ being the distribution of ξ):

ρ(ξ1, ξ2) ≡ ρ(Fξ1 , Fξ2) = inf
{
ε > 0: ∀x, Fξi(x) � Fξj (x + ε) + ε, i, j = 1, 2

}
.

We interpret the nonlatticity of the r.v. ξ as the following property: for any C > 0,∑∞
n=−∞ P{ξ = nC} < 1.
Remark 2.2. A number of results below remain valid for the lattice case after a

natural modification of the statements.
Remark 2.3. If a family of r.v.’s {ξ(n, x)} meets conditions (MC1), (MC2),

and (AH), then (MC1) and (MC2) also hold for ξ with the same A and F .

Introduce an auxiliary sequence of i.i.d. r.v.’s {ξn}n�1, where ξ1
d
= ξ (

d
= denotes

here the equality of distributions). For the random walk S(0) = 0, S(n) = ξ1+· · ·+ξn,
set

ηas(x) = min{n � 1: S(n) � x}, χas(x) = S(ηas(x)) − x.

As is known, in the nonlattice case there exists an r.v. χas(∞) (a so-called over-
shoot over the infinitely distant level) such that ρ(χas(x), χas(∞))−→0 as x→∞.
Note that χas(∞) has absolutely continuous distribution. For x � 0, let ρ(x) =
supy�x ρ(χas(y), χas(∞)), and hence ρ(x) → 0 as x → ∞.

For y > 0 set ρN,y = supm�N ;x�y ρ(ξ(m,x), ξ) and N(y) = [y2/3] (here [x]

stands for the integer part of x). Further, we adopt the notation z ≡ z(y) =
{min y, ρ−1

N(y),y}1/3.

Theorem 2.2. Assume that {X(n)} is a Markov chain satisfying conditions
(MC1), (MC2), the r.v. ξ has a nonlattice distribution, and let a number y > 0 be
taken so that z ≡ z(y) � 1. Then, for any x � 2y + 2z(y) + 1, one has

ρ
(
χ(x), χas(∞)

)
� 3(K + b) + 1

z(y)
+ c1b(z) + ρ(z),(2.10)



OVERSHOOTING AN ARBITRARY BOUNDARY BY A RANDOM WALK 235

where χ(x) is defined in (1.2), b(t) in Remark 2.1, and b = b(0). Consequently, under
condition (AH),

ρ
(
χ(x), χas(∞)

)−→ 0 as x → ∞.(2.11)

Inequality (2.10) shows that the values of overshoot χ(x) converge to χas(∞)
uniformly in a certain class of Markov chains. More precisely, the following is valid.

Corollary 2.1. Let B(t) and R(y,N) be nonincreasing functions such that
limt→∞ B(t) = limy,N→∞ R(y,N) = 0 and let the r.v. ξ have a nonlattice distribution
with a finite positive mean. Consider the class X of Markov chains X ≡ {X(n)}
which satisfies conditions (MC1), (MC2), and (AH) with given A and ξ and assume
the validity of inequalities b(t) = E{ζI(ζ > t)} � B(t) and ρy,N � R(y,N) for
all t, y,N (ξ being defined in (2.3)).

Then

sup
X∈X

ρ(χ(x), χas(∞))−→ 0 as x → ∞.(2.12)

In particular, relation

sup
l

sup
y�x

ρ(χ(l)(y), χas(∞))−→ 0 as x → ∞(2.13)

holds for any Markov chain X = {X(n)} satisfying (MC1), (MC2), and (AH).
Here χ(l) denotes the value of the first overshoot over the level x for the sequence
{X(l)(n), n = 0, 1, . . .}.

Theorem 2.2 can be extended to the case of nonlinear boundaries as follows.
Consider a family of functions g(x, ·): R+ → R+, x > 0, with g(x, 0) = x.

We will employ the values g(x, n) at integer n = 1, 2, . . . only. Therefore, with-
out loss of generality it may be assumed that all g(x, t) are continuous in t and
min(g(x, [t]), g(x, [t] + 1)) � g(x, t) � max(g(x, [t]), g(x, [t] + 1)) for any x and t.

Let

ηg(x) = min
{
n � 0: X(n) > g(x, n)

}
(2.14)

be the time of the first overshoot over the boundary g(x, ·) and χg(x) the correspond-
ing overshoot value.

Fix ∆ > 0. Let U ≡ U(x) be the minimal solution of the equation g(x, t) =
(b + ∆) t, where b appears in (2.3). Suppose that the choice of g(x, ·) and ∆ ensures
that U(x) < ∞ for all x > 0, along with the validity of conditions

(g1) lim inf
x→∞

1

x
inf

t∈[0,U(x)]
g(x, t) > 0;

(g2) for any T > 1,

sup
t∈[U,TU ]

∣∣g(x, t) − g(x, t + 1)
∣∣−→ 0

as x → ∞, where A is the same as in (G1) and (MC1).
Instead of (g2) one might consider a seemingly more general condition

sup
t∈[U,TU ]

∣∣g(x, t) − g(x, t + 1) + C
∣∣−→ 0
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for some C < A. However, it reduces to (g2) by means of substituting X(n) by
X(n) − nC in the initial problem.

Remark 2.4. If the function g has a representation g(x, t) = x + h(t), then
conditions (g1), (g2) are valid if and only if limn→∞ supm�n |h(m + 1) − h(m)| = 0.

The examples of functions h(t) meeting these conditions are provided by log t; tα,
α ∈ (0, 1); t/ log t. Note that t/ log t does not belong to the class of functions
considered in [2].

Theorem 2.3. Under assumptions (g1) and (g2) the validity of conditions
(MC1), (MC2), and (AH) implies

ρ
(
χg(x), χas(∞)

)−→ 0 as x → ∞.(2.15)

Corollary 2.2. If, in addition, the r.v. ζ has a finite second moment, the
uniform in x integrability of χ(x) and χg(x) ensues and, consequently, Eχ(x) →
Eχas(∞) < ∞ and Eχg(x) → Eχas(∞) as x → ∞.

Remark 2.5. Having assumed that the strong law of large numbers holds for the
Markov chain X(n), i.e., X(n)/n → a ≡ Eξ a.s. (which is the case if {ξ(n) ≡ ξ(n, x)}
form a sequence of i.i.d. r.v.’s with the mean a, or, more generally, if ξ(n, x) converge
to ξ fast enough), one establishes that the assertion of Theorem 2.3 remains valid if
in (g1), (g2) the function U ≡ U(x) is changed for (a− εx)x and TU , respectively, for
(a + εx)x, where εx > 0 are such that P{|X(n)/n− a| > εx}−→ 0 as x → ∞.

Now note a simple corollary to Theorems 2.1 and 2.3.
Corollary 2.3. Let ϕ: (−∞,∞)−→(−∞,∞) be a strictly monotone function

such that ∣∣ϕ(x) − x
∣∣−→ 0 as x → ∞.(2.16)

If the Markov chain {ϕ(X(n))} meets conditions (MC1) and (MC2), then (2.5)
holds for X(n).

If {ϕ(X(n))} meets conditions (MC1), (MC2), and (AH), then (2.11) is valid. If,
in addition, assumptions (g1), (g2) are fulfilled, then one has (2.15).

Let {γ(n)}n�1 be a sequence of r.v.’s such that, for any n, γ(n) is measurable

with respect to the σ-algebra generated by r.v.’s X(1), . . . , X(n) (or, more gener-
ally, γ(1), . . . , γ(n) and families {ξ(n + 1, x)}x∈R, {ξ(n + 2, x)}x∈R, . . . are mutu-
ally independent). Set η(γ)(x) = min{n � 1: X(n) > x + γ(n)} and χ(γ)(x) =
X(η(γ)(x)) − x− γ(η(γ)(x)).

Theorem 2.4. Suppose that {γ(n)} converges a.s. to a finite r.v. γ. If a Markov
chain X(n) satisfies conditions (MC1), (MC2), and (AH), then

ρ
(
χ(γ)(x), χas(∞)

)
−→ 0 as x → ∞.(2.17)

In particular, if γ̂ ≡ supn |γ(n)| is an integrable r.v. and the r.v. ζ (appearing
in (G2) and (MC2)) is square integrable, then

Eχ(γ)(x)−→Eχas(∞) as x → ∞.(2.18)

Theorem 2.4 admits a natural extension to cover the case of arbitrary bound-
aries g(x, n).
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Theorem 2.5 given below demonstrates that, in general, the limit distribution in
Theorems 2.2–2.4 may be different from the distribution of χas(∞). For the sake of
simplicity we formulate and prove this theorem only in the case of a homogeneous
random walk X(n) = S(n) = ξ1 + · · ·+ξn and a nonlinear boundary of a special form.

Theorem 2.5. Assume that {ξn} is a sequence formed by i.i.d. r.v.’s with the
mean a = Eξ1 > 0 and the finite variance σ2 = Eξ2

1 − a2 > 0.

Let g(x, t) be representable as x + α1t for t < t0 ≡ t0(x) = x/(a − α1) and
g(x, t) = ax/(a−α1)+(t−t0)α2t for t � t0, with α1, α2 ∈ [0, a) being some constants,
and, moreover, let r.v.’s ξ1 − α1 and ξ1 − α2 have nonlattice distributions.

Then

P
{
χg(x) > t

}−→ 1

2

(
P{χ(1)

as > t} + P{χ(2)
as > t}

)
,

where χ
(i)
as ≡ χ

(i)
as (∞) is the value of overshoot over the infinitely distant barrier by

the random walk with increments {ξn − αi}n�1, i = 1, 2.

It is not difficult to extend the assertion of Theorem 2.5. to the case of Markov
chains and functions g from a wider class. This results in the limit distribution
which is a mixture of distributions of overshoots over the infinitely distant barrier for
homogeneous random walks with “shifted” increments {ξn−α}n�1, the mixing being
due to the standard normal law.

2.2. The uniform convergence theorem for overshoots and the uniform
renewal theorem. It is worth noting that, in view of results of the Wald identity
kind, there is a close connection between the statements concerning the existence of
the limit distribution χ(x) for the sequence X(n) = S(n) and the renewal theorem.
One of the related statements implies the other (see, e.g., [7]). In this paper, we have
chosen the statements on overshoot to be primary. Basing it on them, we establish
the renewal theorem below. But since we succeeded in giving the required results on
the value of overshoot as statements uniform over the class of distributions, the same
uniformity occurs in the renewal theorem.

There exists another approach, equally natural, where one takes as primary the
estimates in the renewal theorem and employs them to establish statements on the
overshoot value. The corresponding results will be published soon.

Let B(t) be an arbitrary nonnegative function, limt→∞ B(t) = 0, and ψ(u), u > 0,
be a strictly positive function. Introduce the class of distributions F ≡ F(A,B, ψ).
We will say that F belongs to the class F if the r.v. ξ with distribution F meets the
following conditions:

(i) E ξ ≡ a(F ) � A;

(ii) E {ξI(ξ > t)} � B(t) for all t � 0;

(iii) |E exp{iuξ} − 1| � ψ(u) for all u > 1.

Condition (iii) means that any distribution F ∈ F is nonlattice and any weak limit
of distribution functions from F is nonlattice as well. Denote by χ(F )(x) the value of

overshoot above the level x for the sequence of sums S(F )(n) = ξ
(F )
1 +· · ·+ξ

(F )
n of i.i.d.

r.v.’s having the common distribution F . Let H(F )(u, v) =
∑
nP{S(F )(n) ∈ (u, u+v]}

be the corresponding renewal function.

Theorem 2.6. 1. The following relation is valid:

lim sup
x→∞

sup
F∈F

ρ(χ(F )(x), χ(F )(∞)) = 0.(2.19)



238 A. A. BOROVKOV AND S. G. FOSS

2. If condition (ii) in the definition of F is changed for the requirement of “two-
sided ” uniform integrability

(ii)
′

sup
F∈F

E
{
|ξ|I(|ξ| > t

)}
� B(t),(2.20)

then, for any v > 0,

lim sup
u→∞

sup
F∈F

∣∣∣∣H(F )(u, v) − v

a(F )

∣∣∣∣ = 0.(2.21)

Note that the additional condition (ii)′ is necessary for establishing the following
result: if F (n) ∈ F weakly converge to F , then a(F (n)) → a(F ) (whenever all the
summands ξn are nonnegative, conditions (ii) and (ii)′ coincide). After this paper was
prepared for publication, we learned that statement (2.21) had already been obtained
in a recent paper [2]. The method of the proof there, based on the apparatus of
characteristic functions, is different from ours.

It is not difficult to formulate a natural analogue of Theorem 2.6 in the lattice
case. To be exact, we have the following theorem.

Theorem 2.7. Let ψ1(u), u ∈ [0, 2π], be a continuous function such that ψ1(0) =
ψ1(2π) = 0 and ψ1(u) > 0 for all u ∈ (0, 2π). Furthermore, let F1 ≡ F1(C,B, ψ1) be
the class of distribution functions which satisfy (i), (ii), and the following conditions:

(iv) Every F ∈ F1 is a distribution function of an integer-valued random variable ξ
with step 1 (i.e., 2π = min{u > 0: E exp{iuξ} = 1});

(v) for an r.v. ξ with a distribution F ∈ F1 and all u ∈ (0, 2π)∣∣E exp{iuξ} − 1
∣∣ � ψ1(u).

Then, for any t = 0, 1, . . ., one has

lim sup
x→∞

sup
F∈F1

∣∣∣P{χ(F )(x) > t
}− P

{
χ(F )(∞) > t

}∣∣∣ = 0,

where x takes integer values.
Having changed (ii) for condition (ii)′, we obtain for x ∈ {1, 2, . . .}

lim sup
x→∞

sup
F∈F1

∣∣∣∣∑
n

P
{
S(n) = x

}− 1

a(F )

∣∣∣∣ = 0.

On account of Theorem 2.2 and Remark 2.1 one can prove natural analogues of
the uniform theorem on convergence of overshoots and the uniform renewal theorem
for asymptotically homogeneous Markov chains.

Let us formulate one of such statements. Given nondecreasing functions B(t) → 0,
t → ∞, and {R(n, x)}, R(n, x) → 0 as n, x → ∞, a Markov chain X = {X(n)} with
increments {ξ(n, x)} is called (B,R)-regular when

(a) it satisfies (MC1), (MC2), and also (AH) with a given estimate of convergence
rate ρ(ξ(n, x), ξ) � R(n, x);

(b) the distribution of the majorant ζ in (2.3) satisfies condition

b(t) = E
{
ζI(ζ > t)

}
� B(t) for all t > 0;

(c) the distribution of r.v. ξ belongs to the class F.
Theorem 2.8. Let X1 be the family of all (B,R)-regular Markov chains. Then

lim sup
x→∞

sup
X∈X1

ρ
(
χ(x), χas(∞)

)
= 0.
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2.3. Corollaries for the mean time of the first crossing and examples.
In this subsection we restrict our attention to the functions g(x, t) = x + h(t). First,
note the existing close connection between the statements on the limit distribution
χg(x) ≡ χ(h)(x) and the asymptotics of the average time of the first crossing η =
ηg(x) ≡ η(h)(x). This is an implication of the identity

X(η) = x + h(η) + χ(h)(x).

Therefore, when convergence in the mean of χ(h)(x) to χ occurs and the asymp-
totics of Eh(η) and EX(η), estimated in terms of E η, is at our disposal, we deduce
an equation for E η.

For example, if h is an upward convex function and X(n) = S(n), the Wald
identity yields

x + h(E η) + Eχ(h)(x) � aE η + o(1).

Thus, if u(x) is a solution of the equation x + h(u) + Eχ = au, then E η(h)(x) �
u(x) + o(1). It can be shown that in broad assumptions the inverse inequality is also
valid. We will not dwell on this point since similar results for smooth h were obtained
in [2].

Here we consider in detail only a special case playing an important role in appli-
cations. Namely, we assume as before that g(x, n) = x + h(n) and, moreover,

(MC3) X(n) is a Markov chain having representation X(n) = S(n)+ θ(n), where
S(n) = ξ1 + · · · + ξn, the sequence {ξn} consists of i.i.d. r.v.’s with the mean E ξ1 =
a > 0 and the finite second moment E ξ2

1 < ∞, and θ(n) is measurable with respect

to the σ-algebra Fn = σ(ξ1, . . . , ξn), θ(n)
p→ θ, E θ2(n) < C < ∞.

In the sequel we give two examples of Markov chains, often appearing in applica-
tions, that satisfy condition (MC3).

We assume the function h to be smooth upward convex and admitting the rep-
resentation h(t) = tαl(t), α < 1, where l(t) is a slowly variable function “twice
differentiable at infinity.” Namely, we introduce the following condition:

(g3) For all t, v; t � 0, t + v � 0, h(t) is representable in the form

h(t + v) = h(t)

[
1 +

v

t
c(t) +

v2

2t2
c(t, v)

]
,(2.22)

where c(t), c(t, v) are bounded functions and c(t) → α < 1 as t → ∞.
It should be noted that h(t) = tαl(t) meets condition (g3) whenever l(t) is

smooth at infinity (say, l(t) = log t). If α < 1
2 , we do not need the last term in

decomposition (2.22), and it suffices to have representation of the form h(t + v) =
h(t)[1 + vc(t, v)/t].

From now on we denote by u(x) the solution of equation

au = x + h(u) + d,

where d = Eχ − E θ and χ has distribution χas(∞). Such a solution always exists
and is unique if au−h(u) is increasing in u (the last assumption might be superfluous
in view of (g3)).

Theorem 2.9. Given the validity of (MC3), (g3), one has

E η(x) = u(x) + o(1).
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Consider a pair of examples of recursive sequences X(n + 1) = f(X(n), ξn+1),
f(·, ·): R2 → R, which play an important role in the theory of queuing service systems
and in the problems of sequential analysis (see, e.g., [9]). If ξn are i.i.d. r.v.’s, X(n)
form a Markov chain.

Example 1. Consider a stochastically recursive sequence

wn+1 = (wn + ξn+1)
+ ≡ max(0, wn + ξn+1)

and set, for simplicity, the initial value w0 = 0.
Put ξ(n, x) = (x + ξn)

+ − x+. Then wn+1 = wn + ξ(n + 1, wn).
Observe that ξn � ξ(n, x) � ξ+

n a.s. and ξ(n, x) → ξn as x → ∞. So conditions
(MC1), (MC2), and (AH) are fulfilled with A = a, ζ = ξ+

1 , and ξ = ξ1. Hence, the
assertions of Theorems 2.2–2.4 are valid for the sequence {wn}.

Further, note the representation wn = max(0, ξn, ξn + ξn−1, . . . , ξn + · · · + ξ1).
Therefore, the sequence θ(n) ≡ wn − S(n) = max(0,−S(1), . . . ,−S(n)) converges
monotonically to θ ≡ sup(0,−S(1),−S(2), . . .).

The additional moment assumption E ξ2
1 < ∞, E (ξ−1 )3 < ∞, yields the fulfillment

of condition (MC3) and, therefore, the assertion of Theorem 2.9.
We mention that, given the existence of E θ, E ξ2

1 , the conditions E θ2 < ∞,
E (ξ−1 )3 < ∞ are, apparently, superfluous.

Example 2. Consider a stochastically recursive sequence (see [9])

Wn+1 = ξn+1 + log
(
1 + exp(Wn)

)
.

As in the first example, we assume W0 = 0. Note that

max(0, Wn) + ξn+1 < Wn+1 < max(0, Wn) + ξn+1 + 1(2.23)

a.s. for all n.
Let ϕ(x) = x for x � 0 and ϕ(x) = exp(x) − 1 � x for x < 0. The function ϕ

is continuous, strictly increasing, and satisfies the conditions of Corollary 2.3. Set
W ∗
n = ϕ(Wn) and, for x > −1,

ξ(n, x) = ϕ
(
ξn + log

(
1 + exp

{
ϕ−1(x)

}))− x.

For x � −1, set ξ(n, x) = ξn. Then W ∗
n+1 = W ∗

n + ξ(n + 1,W ∗
n) a.s. If x 
 1, then

ξ(n, x) = ξn + O(exp{−x}) a.s. on the event {ξn � −x}. Therefore, ξ(n, x) → ξn a.s.
as x → ∞. Note that ξn � ξ(n, x) � ξ+

n + 2 a.s. for any x. Hence, for the Markov
chain {W ∗

n}, conditions (MC1), (MC2), and (AH) hold with A = a, ζ = ξ+
1 + 2, and

ξ = ξ1. So we can use Corollary 2.3 to conclude that the assertions of Theorems 2.2–
2.4 hold for the sequence {Wn}.

We note further the relations

exp(Wn) = exp
(
S(n)

)[
1 + exp

(− S(1)
)

+ · · · + exp
(− S(n− 1)

)]
.

Thus, the sequence

θ(n) ≡ Wn − S(n) = log

(
n−1∑
i=0

exp(−S(i))

)

converges monotonically to θ ≡ log(
∑∞

0 exp(−S(i))) < ∞. It is not difficult to see
that if the second moment E ξ2

1 is finite, then also E θ2 < ∞. Hence, we arrive at the
assertion of Theorem 2.9.
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3. Proofs.

3.1. Proofs of the statements of subsection 2.1. We shall need several aux-
iliary propositions. Lemma 3.1 proves that, for any x > 0, all the conditional means of
times of overshoots are uniformly bounded by a certain value M(x) (see (3.1)). This
ensues from a natural extension of the Pyke lemma. The function M(x) is subaddi-
tive, as Lemma 3.2 shows, whence the estimates (2.5) and (3.5) follow. Lemma 3.3 is
of a technical nature.

Let ξ(n) = X(n) −X(n− 1) and X(l)(n) = X(l + n) −X(l) for l = 0, 1, . . . . Set
η(l)(x) = min{n: X(l)(n) > x} and χ(l)(n) = X(l)(η(l)(x)) − x.

Lemma 3.1. Under the hypotheses of Theorem 2.1 inequality (2.5) holds. More-
over, for any x � 0,

M(x) ≡ sup
l

vrai sup E
{
η(l)(x) | Fl

}
< ∞.(3.1)

Proof. Taking any 0 < ε < 1, choose r ≡ r(εA/m) to guarantee that

E
{
(ξ(n + 1) − r)+ | Fn

}
� E (ζ − r)+ � εA

m

a.s. for all n (here we use the notation x+ = max(0, x)).
Introducing random variables ξ̃(n) = min(ξ(n), r) we construct upon them the

variables X̃(n) =
∑n
i=1 ξ̃(i); η̃(x); X̃(l)(n), the function M̃(x), and so on. Note the

following inequalities: M(x) � M̃(x) for all x and

E
{
X̃(km+j)(m−j) | Fkm+j

}
� E

{
X(km+j)(m−j) | Fkm+j

}−εA � −V −εA ≡ −Ṽ ,

where V is taken from (G3). We demonstrate that

M̃(x) � m(x + mr + I(m > 1)(V + A))

A(1 − ε)
.(3.2)

For l = km + j (0 � j � m − 1, k � 0) set Y (l)(0) = 0 and, for n � 1, Y (l)(n) =

X̃(l)(nm− j). Let

τ (l) ≡ τ (l)(x) = min
{
n � 1: Y (l)(n) > x

}
.

Then M̃(x) � m supl vrai sup E {τ (l) | Fl} and inequality (3.2) will be proved as soon
as we can show that, for all l,

E {τ (l) | Fl} � x + mr + I(m > 1)(V + A)

A(1 − ε)
a.s.(3.3)

Having fixed an arbitrary l, we write, for the sake of brevity, τ = τ (l), Y (0) = 0,
F(0) = Fl, and Y (n) = Y (l)(n), F(n) = F(k+n)m for n = 1, 2, . . . . The relations

P
{
Y (n + 1) � Y (n) + mr

}
= 1;

E
{
Y (n + 1) − Y (n) | Fn

}
� A(1 − ε) > 0 a.s.

are true for all n � 1. If j = 0, these relations hold also for n = 0. But if j � 1, then

P{Y (1) � (m− j) r} = 1 and E (Y (1) | F(0)) � −Ṽ a.s.
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Introduce a test function L(y) = (x + mr − y)+ � 0. Then τ = min{n � 1:
L(Y (n)) < mr} and inequality (3.3) follows by a natural extension of the Pyke lemma
(establishing a natural counterpart of (3.3) in the case of a homogeneous Markov
chain {Y (n)}). To make the account complete we prove the inequality.

For any N � 1 write

τN = min{τ,N}; FN = E

{
τN∑
1

L
(
Y (n)

) | Fl
}
.

Observe that, for any n, the event {τ � n} enters the σ-algebra F(n − 1). There-
fore, one has (using in the following formulas the shortened notation El{·} instead
of E {· | Fl} and Pl{·} instead of P{· | Fl})

FN = El

(
N∑
n=1

L
(
Y (n)

)
I(τ � n)

)

= ElL
(
Y (1)

)
+ El

(
N∑
n=2

E
{
L
(
Y (n)

)
I(τ � n) | F(n− 1)

})

= ElL
(
Y (1)

)
+ El

(
N∑
n=2

I(τ � n)E
{
L
(
Y (n)

) | F(n− 1)
})

� ElL
(
Y (1)

)
+ El

(
N∑
n=2

I(τ � n)
[
L
(
Y (n− 1)

)−A(1 − ε)
])

� EL
(
Y (1)

)
+ El

(
N∑
n=2

I(τ � n− 1)L
(
Y (n− 1)

))−A(1 − ε)

N∑
n=2

Pl{τ � n}.

In particular, if j = 0, then ElY (1) � A(1−ε) a.s. and, for any N = 1, 2, . . . , we have

A(1 − ε)

N∑
n=1

Pl{τ � n} � x + rm,

and if j � 1, ElY (1) � −Ṽ a.s. and

A(1 − ε)

N∑
n=1

Pl{τ � n} � x + rm + Ṽ + A(1 − ε) ≡ x + rm + V + A.

Letting N tend to infinity, we see first that
∑∞

1 Pl{τ � n} = Elτ , and second that
j = 0 when m = 1. This yields (3.3) which proves the lemma.

Lemma 3.2. Let K = M(1) < ∞. Under the hypotheses of Theorem 2.1 one has

1) for any v � 0

M(v) � K(1 + v);(3.4)

2) for any v, t > 0, l = 0, 1, . . .

P
{
χ(l)(v) > t | Fl

}
� M(v)F (t) a.s.;(3.5)
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3) for any v, t > 0, l = 0, 1, . . .

P
{
χ(l)(v) > t | Fl

}
� K

(
F (t) +

∫ t+v

t

F (x) dx

)
,(3.6)

P
{
χ(l)(v) > t | Fl

}
� c1E

{
ζI(ζ > t)

}
(3.7)

a.s. with c1 defined in (3.9).
Proof. First, M(v) is nondecreasing in v � 0. Second, this function is subadditive:

for any u, v � 0

M(v + u) � M(v) + M(u).(3.8)

Indeed,

η(l)(v + u) = η(l)(v) +

∞∑
m=1

∫ v+u

v+0

I
(
η(l)(v) = m

)
I
(
θ(l)S(m) ∈ dy

)
η(l+m)(v + u− y)

� η(l)(v) +

∞∑
m=1

I
(
η(l)(v) = m

)
η(l+m)(u).

Therefore,

E
{
η(l)(v + u) | Fl

}
� E

{
η(l)(v) | Fl

}
+

∞∑
m=1

P
{
η(l)(v) = m | Fl

}
vrai sup E

{
η(l+m)(u) | Fl+m

}
� M(v) + M(u).

Consequently, for any v > 0, we have

M(v) � M
(
[v] + 1

)
� K

(
[v] + 1

)
� K(1 + v),

where [v] is the integer part of v. We prove the second assertion (denoting P{· | Fl}
by Pl{·}):

Pl

{
χ(l)(v) > t

}
=
∑
n

Pl

{
η(l)(v) = n, X(l)(n) > t + v

}
�
∑
n

Pl

{
η(l)(v) = n, ξ(n + l) > t

}
�
∑
n

Pl

{
η(l)(v) � n, ξ(n + l) > t

}
�
∑
n

Pl

{
η(l)(v) � n

}
vrai sup P

{
ξ(n + l) > t | Fl+n−1

}
� F (t)

∑
n

Pl

{
η(l)(v) � n

} ≡ F (t)M(v).

In particular, for any v0 ∈ [0, 1] and any integer l,

Pl{χ(l)(v0) > t} � KF (t).

We turn to proving (3.6).
Let v = v0 + N , where 0 � v0 � 1, N � 1. Then

Pl

{
χ(l)(v) > t

}
� Pl

{
χ(l)(v − 1) > t + 1

}
+
∑
n

∫ 1

0

Pl

{
η(l)(v − 1) = n, χ(l)(v − 1) ∈ v − 1 + y + dy, χ(l+n)(1 − y) > t

}
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and the second summand in the right-hand side of the last inequality is estimated
from above by the expression∑

n

∫ 1

0

Pl

{
η(l)(v − 1) = n, χ(l)(v − 1) ∈ v − 1 + y + dy

}
× vrai sup P

{
χ(n+l)(1 − y) > t | Fn+l

}
� KF (t)

∑
n

∫ 1

0

Pl

{
η(l)(v − 1) = n, χ(l)(v − 1) ∈ v − 1 + y + dy

}
� KF (t).

Proceeding by induction, we establish the estimate

Pl

{
χ(l)(v) > t

}
� K

N−1∑
k=0

F (t + k).

The last expression does not exceed K(F (t) +
∫ t+v
t

F (u) du).
Now we prove (3.7). Let N > 0 be taken to ensure that b(N) ≡ E {ζI(ζ � N)} �

A/(2m). Put β = 1
2 min{N, 1, A/(4m)}. Then

A

m
� E ζ = E {ζI(ζ < 2β)} + E {ζI(2β � ζ < N)} + b(N) � 2β + NF (2β) +

A

2m
,

and, consequently, F (2β) � A/(4Nm). Observe that, for t � β

b(t) = tF (t) +

∫ ∞

t

F (u) du � β

(
F (t) +

∫ ∞

t

F (u) du

)
,

whereas for t < β

b(t) �
∫ ∞

t

F (u) du �
∫ t+β

t

F (u) du � βF (2β) � βA

4Nm
F (t).

Therefore, for any t, v � 0

F (t) +

∫ t+v

t

F (u) du � b(t)
1

β
max

(
1, β +

4Nm

A

)
,

and inequality (3.7) is valid when

c1 =
K

β
max

(
1, β +

4Nm

A

)
; β =

1

2
min

{
1, N,

A

4m

}
; N = b∗

(
A

2m

)
.(3.9)

The lemma is proved.
Lemma 3.3. Let ε ∈ (0, 1) be arbitrary and assume that (G1) holds for m = 1.

Then inequality (3.6) remains valid if we substitute the constant K = M(1) with
K ′ = r(εA)/A(1 − ε). Here, as before, r(t) is the smallest r satisfying E (ζ − r)+ � t
and r(t) � b∗(t).

Proof. Taking m = 1 in the proof of Lemma 3.1, we get

K = M(1) � M̃(1) � 1 + r(εA)

A(1 − ε)
.

For any z > 0 consider an auxiliary sequence Xz(n) = X(n)/z. It fulfills conditions
(G1), (G2) with the constant Az = A/z and Fz(t) = F (tz). So rz(t) = r(t)/z and,
for any z > 0,

P
{
χ(v) > t

} ≡ P

{
χz

(
v

z

)
>

t

z

}
� Kz

(
F (t) +

∫ t+v

t

F (x) dx

)
,
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where

Kz =
1 + rz(εA)

Az(1 − ε)
=

z + r(εA)

A(1 − ε)
.

Letting z tend to zero we obtain the required assertion.
The proof of Theorem 2.1 ensues from Lemmas 3.1 and 3.2. The assertion (2.8)

of Remark 2.1 follows from Lemma 3.3, and (2.9) from (3.9).
It is worth noting that we can give an alternative natural proof of Theorem 2.1

based on estimates of the renewal function (also see the remarks in subsection 2.2).
Presumably, publication of the corresponding results may be expected before long.

Proof of Theorem 2.2. We begin with some remarks.
Remark 3.1. By the Strassen theorem, if ρ(F,G) � δ one can define on the same

probability space an r.v. ψ1 with the distribution function F and an r.v. ψ2 with the
distribution G so that P{|ψ1 − ψ2| > δ} � δ.

The following fact is an immediate corollary. Let {X(n)} be a Markov chain
having increments ξ(n) = X(n)−X(n−1). Write Fn+1 ≡ Fn+1(ω) for the conditional
expectation of ξ(n + 1) with respect to the σ-algebra Fn:

Fn+1(x) = P
{
ξ(n + 1) < x | Fn

}
.

Suppose now the existence of the distribution function G and of the events
An+i−1 ∈ Fn+i−1 for some n and all i = 1, . . . , l, such that ρ(Fn+i, G) � δ a.s.
on An+i−1. Then, on the same probability space, one can define r.v.’s ξ(1), . . . ,
ξ(n + l) and i.i.d. r.v.’s ξ1, . . . , ξl with the joint distribution G, so that

(a) r.v. ξ1 is independent of {ξ(1), . . . , ξ(n)} and, for any i = 1, . . . , l− 1, the r.v.
ξi+1 is independent of {ξ(1), . . . , ξ(n + i), ξ1, . . . , ξi};

(b) the inequality

P
{|ξ(n + i) − ξi| � δ ∀ i = 1, . . . , l | Fn

}
� 1 − lδ − P

{
l−1⋃
i=1

An+i | Fn
}

holds a.s. on the event An.
Remark 3.2. Consider two numerical sequences z1, . . . , zl and z̃1, . . . , z̃l such

that |zi − z̃i| � δ for all i = 1, . . . , l. Set Zi = z1 + · · · + zi and Z̃i = z̃1 + · · · + z̃i.

Take x > 0 and t > 2lδ arbitrarily and let Nx = min{i: Zi > x}, Hx = ZNx − x (Ñx

and H̃x are defined similarly). The validity of the following implication is easily seen:

If Nx � l and Hx > t, then Ñx+lδ � l and H̃x+lδ > t− lδ.
Now we turn directly to the proof of Theorem 2.2. Let

ρ(z) = sup
u�z

ρ
(
χas(x), χas(∞)

)
.

Observe, that, for all u � z and t � ρ(z), one has

P
{
χas(∞) > t

}
� P

{
χas(u) > t− ρ(z)

}
+ ρ(z).

Let at first x = 2y + 2z, y and z being arbitrary positive numbers. For any N � 1,

P
{
χas(∞) > t

}
� ρ(z) + P

{
η(2y) < N

}
+ P

{
χ(2y) > z

}
+

∞∑
n=N

∫ z

0

P
{
η(2y) = n; χ(2y) ∈ dv

}
×P
{
χas(x− 2y − v) > t− ρ(z)

}
.
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Here P{χ(2y) > z} � c1b(z) and, by the Chebyshev inequality

P
{
η(2y) < N

}
� P

{
η(2y) < N

}
� P

{
ζ1 + · · · + ζN−1 > 2y

}
� E ζ1 ·N

2y
≡ bN

2y

(where {ζn} is a sequence of i.i.d. r.v.’s distributed as ζ). Further on, take ε = ρy,N
and integer l � 1. According to Remarks 3.1 and 3.2, the following inequality holds
a.s., for t− ρ(z) > lε, v � z, and n � N :

P
{
χas(x− 2y − v) > t− ρ(z)

}
� P

{
χ(x + lε) > t− ρ(z) − lε | η(2y) = n, χ(2y) ∈ (v, v + dv)

}
+ P

{
η̃(2z) > l

}
+ lε + P

{
min
1�i�l

X(n + i) < y | η(2y) = n, χ(2y) ∈ (v, v + dv)
}
.

By the Kolmogorov inequality the last summand in the right-hand side does not
exceed 2bl/y and by the Chebyshev inequality P{η̃(2z) > l} � K(1 + 2z)/l. Hence,

P
{
χas(∞) > t

}− P
{
χ(x + lε) > t− ρ(z) − lε

}− ρ(z) − c1b(z)

� bN

2y
+

2bl

y
+

K(1 + 2z)

l
+ lε .

Take N ≡ N(y) = [y2/3], l = [min(y, ε−1)]2/3, and z ≡ z(y) = l1/2. Then (for
z � 1) the right-hand side of the inequality does not exceed

b

2
y1/3 + 2by1/3 + ε1/3 + 3Kε1/3 �

(
3(K + b) + 1

)
z−1.

Put Q(z) = c1b(z)+ρ(z)+(3(K +b)+1)z−1. Then, for x = 2y+2z(y), t > Q(z),
we have

P
{
χas(∞) > t

}
� P

{
χ(x + lε) > t−Q(z)

}
+ Q(z).(3.10)

Now note that if we take any x � 2y + 2z(y) with y and z = z(y) fixed, inequal-
ity (3.10) retains its validity. Indeed, it suffices to put x = 2y′ + 2z(y) with y′ � y
and repeat the above reasoning.

In full similarity we establish the lower bound

P
{
χas(∞) > t

}
� P

{
χ(x− lε) > t + Q(z)

}−Q(z).

Having observed that lε � 1, we establish the assertions of the theorem.
Proof of Theorem 2.3. Write

c(x) = inf
t∈[0,U(x)]

g(x, t) and u(x) =

(
c(x)

b + ∆

)1/2

.

Let {ζ(n)} be a sequence of i.i.d. r.v.’s distributed as ζ. We mention that

P
{
ηg(x) < U(x)

}
� P

{∃n � u(x): X(n) > c(x)
}

+ P
{
∃n ∈ (u(x), U(x)

)
: X(n) > (b + ∆)n

}
.

The first summand on the right-hand side does not exceed

P

{
u(x)∑
i=1

ζ(i) > c(x)

}
� bu(x)

c(x)
−→ 0, x → ∞,
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whereas the second one

P

{
sup

n�u(x)

ζ(1) + · · · + ζ(n)

n
> b + ∆

}
−→ 0, x → ∞.

Put U = U(x), G(x, T ) = supt∈[U,TU ] |g(x, t)− g(x, t + 1)| and v(x) = U(b + ∆ +
G(x, T ) (T − 1)). By the Chebyshev inequality for any T > 1,

P
{
ηg(x) > TU

}
� P

{
η
(
v(x)

)
> TU

}
+ P

{
η
(
v(x)

)
� U

}
� K(1 + u(x))

TU
+ o(1)−→O

(
1

T

)
as x → ∞.

Introduce auxiliary r.v. {X(n)}, letting X(n) = X(n) for n � U ; X(n) = X(n)+
g(x, n)−g(x, U) for U < n � TU ; and X(n) = X(n)+g(x, TU)−g(x, U) for n > TU .
Set ξ(n) = X(n) − X(n − 1), η(y) = min{n: X(n) > y}, and χ(y) = X(η(y)) − y.
Then we have

P
{
χg(x) > t

}
= P

{
χ
(
U(x)

)
> t
}

+ O

(
1

T

)
+ o(1).

Note the inequality valid for {X(n)}:
ρy,N ≡ sup

v�y,m�N
ρ(ξ(v,m), ξ) � G(x, T ) + ρy,N ,

whence, in view of Theorem 2.6,

ρ
(
χ
(
U(x)

)
, χas(∞)

)
= O

(
1

T

)
+ o(1)

for any fixed T . Theorem 2.3 is proved.
Proof of Corollary 2.3. The first assertion is due to the fact that supx>0 |ϕ(x)−x|

is finite. Remark 3.2 and condition (2.16) imply the second assertion of the corollary.
Proof of Theorem 2.4. For any ε > 0 find l so that P{supn�l |γ(n)− γ| > ε} � ε

and also L to ensure that P{|γ| > L− ε} � ε and P{|X(l)| > L} � ε. Introduce the
event A = {supn�l |γ(n) − γ| > ε}⋃{|γ| > L− ε}⋃{|X(l)| > L}. When t > ε,

P
{
χ(γ)(x) > t

}
� P

{
η(γ)(x) � l

}
+ P{A} + P

{
χ(γ)(x) > t; I(A) = 0, η(γ)(x) > l

}
,

where the last summand does not exceed

P
{
χ(k)
(
x−X(k) − γ(k)

)
> t− ε; I(A) = 0

}
+

∫ L

−L

∫ L

−L
P
{
χ(k)(x− u− v) > t− ε

}
P
{
X(k) ∈ du; γ(k) ∈ dv

}
.

If |u| � L and |v| � L,

P
{
χ(k)(x− u− v) > t− ε

}− P
{
χas(∞) > t− ε

}
� sup

k
sup

y�x−2L

ρ(χ(k)(y), χas(∞)) ≡ q(x− 2L),

where q(x) → 0 as x → ∞. Consequently,

P
{
χ(γ)(x) > t

}
� P

{
η(γ)(x) � l

}
+ 3ε + q(x− 2L) + P

{
χas(∞) > t− ε

}
.
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Letting x tend to infinity we obtain the inequality

lim sup P
{
χ(γ)(x) > t

}
� 3ε + P

{
χas(∞) > t− ε

}
for any ε > 0 and t > ε. In full similarity one can also establish the lower estimate

lim inf P
{
χ(γ)(x) > t

}
� P

{
χas(∞) > t + ε

}− 3ε.

Therefore, lim sup ρ(χ(γ), χas(∞)) � 3ε for any ε > 0 and so (2.17) is valid.
If r.v.’s γ̃ and ζ2 are integrable, then χ(γ)(x) are uniformly in x integrable r.v.’s,

which entails (2.18).
Proof of Theorem 2.5. Take y ≡ y(x) = at0(x)−x1/2. Then η(y) < ηg(x) a.s. For

the renewal process η(y), y � 0, the central limit theorem is valid: the distributions
of random variables (η(y) − y/a) (σy1/2a−3/2)−1 are weakly convergent to a standard
normal distribution as y → ∞. In particular, P{η(y) < y/a} tends to 1

2 and, for
ε > 0 small enough, one can choose numbers 0 < δ � N < ∞ to guarantee that
P{|η(y) − y/a| � δy1/2} � ε/4 and P{|η(y) − y/a| � Ny1/2} � ε/4 for all y large
enough. Take C 
 1 such that P{χ(y) > C} � ε/2 for all y. Then, with probabilities
close to 1

2 , the random walk will cross either a linear boundary x + α1t or a linear
boundary at0 + α2(t− t0).

It is well known that in both cases the value of overshoot (over the rectilinear
boundary) converges weakly (as x → ∞) to the corresponding value of overshoot over
the infinitely distant barrier.

3.2. Proofs of statements of subsection 2.2.
Proof of Theorem 2.6. We begin with the claim (2.19).
Assume the value of limit in (2.19) to be positive. Then there exist ε > 0, t > 0, a

sequence of distributions {F (m)}, and a numerical sequence {x(m)}, x(m) → ∞, such
that ∣∣∣P{χ(F (m))(x(m)) > t

}− P
{
χ(F (m))(∞) > t

}∣∣∣ � 2ε.(3.11)

Note that F is a compact family: from any sequence {F (m)} belonging to F one can
select a subsequence {F (mk)} weakly convergent, say, to some distribution F ∈ F.
Without loss of generality, it can be assumed that already the initial sequence {F (m)}
is convergent. Then r.v.’s χ(F (m))(∞) converge weakly to χ(F )(∞). Since the r.v.

χ(F )(∞) has continuous distribution, (3.11) implies that |P{χ(F (m))(x(m)) > t} −
P{χ(F )(∞) > t}| � ε for all m large enough. We will not lose in generality by
assuming that this inequality holds for all m.

For any fixed 0 < δ < t, choose y > δ so that ρ(χ(F )(z), χ(F )(∞)) � δ for all
z � y − δ.

By Corollary 2.1,

sup
F∈F

sup
x

P
{
χ(F )(x) > t

}
� C1B(t).

Hence we can choose a constant C > 0 so that P{χ(F )(x) > C} � δ for all x and all
F ∈ F.

Put l = [K(y + C)/δ] + 1, K being the constant defined in Lemma 3.2. For any
function F ∈ F,

P
{
η(F )(y + C) > l

}
� K(y + C)

l
� δ.
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Finally, take m0 ≡ m0(δ) such that xm0
> y + C + δ and ρ(F (m), F ) � δ/l for any

m � m0. In this case

P
{
χ(F (m))(x(m)) > t

}
=

∫ ∞

0

P
{
χ(F (m))(x(m)) > t, χ(F (m))(x(m) − y − C) ∈ (u, u + du)

}
= O(δ) +

∫ C

0

.

From Remarks 3.1 and 3.2 one deduces that, uniformly in u, 0 < u � C,

P
{
χ(F (m))(y + C − u) > t

}
= P

{
χ(F (m))(y + C − u) > t, η(F (m))(y + C − u) � l

}
+ O(δ)

� P
{
χ(F )(y + δ + C − u) > t− δ

}
+ O(2δ)

� P
{
χ(F )(∞) > t

}
+ O(3δ).

In the same manner it can be shown that

P
{
χ(F (m))(y + C − u) > t

}
� P

{
χ(F )(∞) > t

}−O(3δ).

Thus, ∣∣∣P{χ(F (m))(x(m)) > t
}− P

{
χ(F )(∞) > t

}∣∣∣ � 5δ

for any δ > 0 and m � m0(δ), which contradicts assumption (3.11). So we have
proved assertion (2.19).

Passing to the proof of relation (2.21) we need some auxiliary statements.

Let S(F )(n) be a sequence of sums of i.i.d. r.v.’s with distribution F and

h(F )(y, v) = E

η(F )(v)∑
1

I
(
S(F )(n) � y

) .(3.12)

Observe that h(F )(y, v) � E η(F )(v) for any v � 0 and y.

Lemma 3.4. For any function F ∈ F and numbers v � 0 and y we have

H(F )(y, v) � h(F )(y + v, v) � E η(F )(v).

In particular, H(F )(y, v) � K(1 + v), where K is the same for all F constant defined
by way of (2.8).

Proof. Having fixed F , set H = H(F ), h = h(F ), η = η(F ), χ = χ(F ). For
N = 1, 2, . . . we write

HN (y) = E

(
N∑
n=1

I(S(n) � y)

)
and hN (y, v) = E

min(N,η(v))∑
1

I(S(n) � y)

 ,

where S(n) is a sequence of sums of i.i.d. r.v.’s with distribution F . Then, for any
fixed v � 0 and y, the sequence of differences HN (y + v) − HN (y) is nondecreasing
in N and H(y, v) = limN→∞(HN (y + v) − HN (y)), whereas the sequence hN (y, v)
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is monotonically increasing in N and tends to h(y, v) as N → ∞. The following
relations hold for any N :

HN (y) =

∫ y

−∞
dHN (x) =

∫ y

−∞
dxh

N (x, v)

+

N−1∑
k=1

∫ ∞

z=0

∫ y−v−z

x=−∞
P
{
χ(v) ∈ dz, η(v) = k

}
dHN−k(x)

� hN (y, v) +

∫ ∞

0

∫ y−v−z

−∞
P
{
χ(v) ∈ dz, η(v) < N

}
dHN (x)

� h(y, v) + HN (y − v).

Therefore, HN (y) − HN (y − v) � h(y, v) for all N and, consequently, H(y, v) �
h(y + v, v) � E η(v) � K(1 + v) for any v � 0 and y.

Lemma 3.5. The families of random variables {χ(F )(v)}F∈F and {η(F )(v)}F∈F

are uniformly in F ∈ F integrable for any fixed v � 0, provided that conditions (i),
(ii)′, and (iii) hold.

Proof. For any fixed function F , from (3.4) and (3.5) we get the following estimate:

P
{
χ(v) > x

}
� P{ξ1 > x}E η(v) � K(1 + v) P{ξ1 > x}.

Since the constant K is the same for all F , the uniform integrability of the family
{χ(F )(v)} follows.

The task is now to show the same for the second family. As in the proof of the

first part of the theorem, it will be enough to demonstrate that a sequence {η(F (m))} is
uniformly integrable, whenever F (m) ∈ F weakly converge to F and a(F (m)) → a(F ).

We point out that

P
{
S(F )(n) �= y ∀n � η(F )(y)

}
= 1(3.13)

for all y, with possible countable exceptions. Choose y � v rendering the valid-

ity of (3.13). Then χ(F (m))(y) are weakly convergent to χ(F )(y) and, respectively,

η(F (m))(y) to η(F )(y). Indeed, for any fixed n one has

P
{
η(F (m))(y) > n

}
= P

{
S(F (m))(k) � y ∀ k � n

}
−→P

{
S(F )(k) � y ∀ k � n

}
= P

{
η(F )(y) > n

}
and, for any v � 0,

P
{
χ(F (m))(y) > v

}
=

∞∑
n=1

P
{
S(F (m))(n) > y + v, S(F (m))(k) � y ∀ k < n

}
.

Each term of the last series converges to the required limit, whereas the “tails” of the
series are bounded uniformly in m.

Note further that, by virtue of uniform integrability, Eχ(F (m))(y)−→Eχ(F )(y).
From the representation χ(y) = S(η(y)) − y and the Wald identity we infer the
convergence

E η(F (m))(y) =
Eχ(F (m))(y) + y

a(F (m))
−→ Eχ(F )(y) + y

a(F )
= E η(F )(y).
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It is well known that if a sequence of nonnegative r.v.’s converges weakly and also if
the respective means converge to a finite mean of the limiting r.v., then the sequence of
r.v.’s is uniformly integrable. This establishes the uniform integrability of the family

{η(F (m))(y)}. Since 0 � η(F (m))(v) � η(F (m))(y) a.s., the family {η(F (m))(v)} is also
uniformly integrable. The lemma is proved.

Corollary 3.1. For any fixed y > 0, the family of r.v.’s {η(F )(u+y)−η(F )(u)}
is integrable uniformly in F ∈ F and u � 0.

In fact, since S(F )(η(F )(u)) = χ(F )(u) + u � u, η(F )(u) being a Markov time, one
has

0 � η(F )(u + y) − η(F )(u) = min
{
n � 0: S(F )

(
n + η(F )(u)

)
> u + y

}
= min

{
n � 0: χ(F )(u) + S̃(F )(n) > y

}
� min

{
n � 0: S̃(F )(n) > y

} d
= η(F )(y),

where

S̃(F )(0) = 0, S̃(F )(n) =

n∑
i=1

ξ̃
(F )
i , ξ̃

(F )
i = ξ(F )(i + η(F )(u)),(3.14)

and {ξ̃(F )
i } form a sequence of independent r.v.’s distributed as ξ

(F )
1 and independent

of χ(F )(u). Additionally, in view of the uniform in F integrability of the family of
r.v.’s {η(F )(y)}, the same is true of {η(F )(u + y) − η(F )(u)}. The corollary is proved.

Because of the relation

ψ(F )(u, y, v) ≡
η(F )(u+y)−1∑
n=η(F )(u)

I
(
S(F )(n) ∈ (u, u + v]

)
� η(F )(u + y) − η(F )(u),

the last statement implies uniform, in F ∈ F and u � 0, integrability of the family of
r.v.’s {ψ(F )(u, y, v)} for any fixed y, v � 0.

Corollary 3.2. For any fixed v � 0 uniformly in F ∈ F

h(F )(y, v) → 0

as y → −∞.
Indeed, for any ε > 0, we can find N ≡ N(ε) such that E (η(F )(v)I(η(F )(v) �

N)) � ε with any F . Then

h(F )(y, v) � ε + NP

{
−

N∑
k=1

∣∣ξ(F )(k)
∣∣ � y

}
� ε + N2B(0)

|y| −→ ε

as y → −∞. The corollary is proved.

For any y � v the following representation is valid:

H(F )(u, v) = E

( ∞∑
n=η(F )(u)

I
(
S(F )(n) ∈ (u, u + v]

))

= E
{
ψ(F )(u, y, v)

}
+

∫ ∞

0

P
{
χ(F )(u + y) ∈ dz

}
H(F )(−y − z, v)

≡ E
(F )
1 (u, y, v) + E

(F )
2 (u, y, v),
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where, for v fixed, 0 � E
(F )
2 (u, y, v) � supx�y H

(F )(−x, v)−→ 0 uniformly in F ∈ F
as y → ∞. In quite the same manner, having written

ψ(F )(∞, y, v) =

η̃(F )(y)−1∑
n=0

I
(
χ(F )(∞) + S(F )(n) ∈ (0, v]

)
,

with χ(F )(∞) independent of {ξ(F )
n } and η̃(F )(y) = min{n � 0: χ(F )(∞) + S(F )(n) >

y}, we establish that

v

a(F )
= lim
u→∞H(F )(u, v) ≡ H(F )(∞, v) = Eψ(F )(∞, y, v) + E

(F )
2 (∞, y, v),

where 0 � E
(F )
2 (∞, y, v) � supx�y H

(F )(−x, v).

We pass directly to the proof of (2.21). It suffices to demonstrate that, given a
sequence of distribution functions {F (m)} and a numerical sequence u(m) → ∞ such

that {F (m)} converges weakly to F ≡ F (∞), the limit limm→∞ H(F (m))(u(m), v) exists
and coincides with v/a(F ).

Take an arbitrary ε > 0 and find y = y(ε) so that H(F )(−x, v) � ε for all x � y
and F ∈ F. Then we get∣∣∣∣H(F (m))(u(m), v) − v

a(F )

∣∣∣∣ � ∣∣∣Eψ(F (m))(u(m), y, v) − Eψ(F )(∞, y, v)
∣∣∣+ 2ε.

As was already proved in the first part of the theorem, r.v.’s χ(F (m))(u(m)) weakly
converge to the r.v. χ(F )(∞) having continuous distribution. Therefore, for each n =

1, 2, . . . we have weak convergence of r.v.’s I(χ(F (m)))(u(m) + S̃(F (m))(n)) ∈ (0, v]) to

I(χ(F )(∞)+S(F )(n) ∈ (0, v]); convergence of r.v.’s (η(F (m)))(u(m) +y)−η(F (m))(u(m))

to η̃(F )(y); and convergence of r.v.’s ψ(F (m))(u(m), y, v) to ψ(F )(∞, y, v).

Due to the uniform integrability of the last r.v.’s their means Eψ(F (m))(u(m), y, v)
converge to Eψ(F )(∞, y, v). In view of the arbitrariness of ε > 0, the assertion (2.21)
holds. The theorem is proved.

The proofs of Theorems 2.7 and 2.8 are different from that of Theorem 2.6 only
in minor modifications, so we omit them.

3.3. Proof of Theorem 2.9.

Lemma 3.6. For η ≡ η(x) one has

E η =
x

a
, E η <

x

a
+ u(x), E (η − E η)2 < cx.

Proof. The first two claims are obvious. The last one is known for the linear
boundaries h(t) = εt and θ(n) ≡ 0 (when < cx is changed for ≈ (σ2/a3)x).

If θ(n) → θ, E (θ(n))2 < c < ∞, the standard argument on convergence of η(x)
(for linear boundaries) to the normal distribution together with two moments does not
need any essential modification. The same refers to the uniformity of this convergence
as ε → 0.

So we will assume that

E (η − E η)2 < cx(3.15)
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for x 
 1, provided that θ(n) → θ and h(t) = εt is any linear boundary. For arbitrary
boundaries h we have

E (η − E η)2 = E
(
(η − E η)2I (η > E η)

)
+ E

(
(η − E η)2I (η � E η)

)
� E

(
(ηtangent − E η)2I (η > E η)

)
+ E

(
(ηchord − E η)2I (η � E η)

)
,

where ηtangent and ηchord are the respective times of crossing the linear boundaries
gtangent(x, t) = x+h(E)+ (t−E)h′(E) and gchord(x, t) = x+ th(E)/E. However, the
values E ηtangent and E ηchord are known to equal E η +C1 and E η +C2, respectively
(for some constants C1, C2). Therefore,

E (η − E η)2 � E (ηtangent − E ηtangent − C1)
2 + E (ηchord − E ηchord − C2)

2 < cx

for x 
 1 in view of (3.15).
Now we can pass to proving the theorem. Note that the sequence S(n) forms

a martingale. Hence ES(η) = aE η ≡ aE. Because of S(η) = X(η) − θ + o(1) =
x + h(η) + χ − θ + o(1), we have aE = x + Eh(η) + d + o(1), and, on account of
condition (g3),

Eh(η) = Eh
(
E + (η − E)

)
= h(E) +

E (η − E)2

2E2
h(E) E c(E, η − E),

where the first factor in the last summand has order (x/x2)xα = xα−1 −→ 0 and the
second factor is bounded. Therefore E g(η) = g(E) + o(1) and we obtain an equation
for E: aE = x + h(E) + d + o(1). The continuous dependence of the solution in o(1)
is obvious. The theorem is proved.
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