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STOCHASTICALLY RECURSIVE SEQUENCES
AND THEIR GENERALIZATIONS

A.A.Borovkov and S.G.Foss 

Abstract

The paper deals with the stochastically recursive sequences { X  ( n ) } defined as the solutions of
equations X  ( n +  1 ) =  f ( X  ( n ) , ξn ) (where ξn is a given random sequence), and with random

sequences of a more general nature, named recursive chains. For those the theorems of existence,
ergodicity, stability are established, the stationary majorants are constructed. Continuous-time processes
associated with ones studied here are considered as well.
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CHAPTER 1. INTRODUCTION

The main objects of study in this paper are random sequences { X  ( n ) } of two types:
(a) the stochastically recursive sequences (SRS) defined by recursive relations of the form

X  ( n +  1 ) =  f ( X  ( n ) , ξn ), (1)

where f is a given function and { ξn } a stationary sequence; (b) sequences { X  ( n ) },

named in the paper the recursive chains (RC), which are characterized by the fact that not
the value of X  ( n +  1 ) itself but only its conditional distribution with respect to the entire
prehistory is a function of ( X  ( n ) , ξn ). SRS were studied in [1]-[5] and other works, RC

were introduced in [6], but they are treated systematically for the first time in the present
paper. The sequences of types (a) and (b) are frequently encountered in applications (see,
e.g., [1]-[5]), and both types are more general than the Markov chains (MC) (it is evident,
that RC belong to the latter class for ξn  ≡   const, and SRS - for independent { ξn }).

Comparing the study of SRS carried out in [2], [4] with the MC ergodic theory, one
can hardly find anything in common from the first glance. The more so that the starting
points for the study of SRS and MC were completely different. However, it appears that
there are some common features. Moreover, the ideas of artificial regeneration construction
for MC, introduced in [7], [8], can be effectively used in the theory of SRS and RC, so
that the general ergodicity conditions for MC and for the processes defined above can be
made rather close both formally and in essence. These conditions are rather general, as
well as those for MC, and imply convergence in a very strong form, which yields also the
convergence in total variation.
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The paper consists of 7 chapters which are subdivided (but for Chapter 1 and Chapter
6) into sections.

In Chapter 2 the ergodicity conditions for MC and SRS are introduced: in Section
1 a well-known ergodicity criterion is formulated for MC satisfying the Harris condition;
in Section 2 the ideas of the renovations methods [2], [4] are developed, which enable one
to establish the ergodicity of SRS; in Section 3 the ergodicity criteria for SRS with
non-stationary driver are introduced; in Section 4 it is demonstrated that for MC the
ergodicity conditions formulated in Section 1 are equivalent in a certain sense to the
"renovation" conditions; and finally some simple estimates of the convergence rate in the
ergodicity theorem for SRS are presented in Section 5.

In Chapter 3 we define RC, a more general object than MC and SRS. In Section 1
the definitions are given and the problems of construction, existence and uniqueness of
RC are discussed. In Section 2 it is shown that a RC can be represented as a SRS with
an "extended" driver.

In Chapter 4 the ergodicity problems for RC are discussed. In Section 1 the general
ergodicity criteria for RC are formulated. In Section 2 the ergodicity criteria for RC with
non-stationary drivers are introduced. Some conditions, which are sufficient for RC ergodicity
and are based on a "mixing" condition for the driver, are presented in Section 3.

In Chapter 5 the study of ergodicity proceeds along with the study of boundedness
in probability for the random sequences. A modification of the ergodicity conditions , which
is connected with the specification of the renovating events structure, is considered in
Section 1. In Sections 2 and 3 certain conditions are presented, which are sufficient for
construction of the so-called V - inducing events (which are components of the renovating
events) for various phase spaces. Section 4 deals with some conditions that ensure
boundedness in probability of random sequences. In Section 5 another way is suggested to
obtain sufficient conditions for the existence of V - inducing events.

In Chapter 6 the theorem on stability of RC is proved.
Chapter 7 considers the stochastic processes in continuous and discrete time, for

which the ergodicity problem may be reduced in a certain sense to the same problem for
"imbedded" RC. In Section 1 the processes admitting embedded RC are defined. In Section
2 the ergodicity conditions for such processes are formulated in the case when the elements
of the driver are independent. Section 3 introduces the notion of a process admitting
imbedded MC, and an ergodicity criterion for such processes is presented in the case when
the imbedded MC is Harris ergodic. In Section 4 the ergodicity conditions are formulated
for general processes admitting imbedded RC. Finally some examples of processes admitting
imbedded RC are given in Section 5.

Enumeration of theorems, lemmas, formulae, etc. is independent in each chapter.
Double numbers are used to refer to contents of another chapter.

CHAPTER 2. ERGODICITY CONDITIONS FOR MARKOV CHAINS
AND STOCHASTICALLY RECURSIVE SEQUENCES

1. Markov chains

Let ( X , BX ) be an arbitrary measurable space and let X  =  { X  ( n ) =  X  ( x , n )  ;
  n ≥  0  } be an X-valued homogeneous Markov chain (MC) with the initial state
X  ( x , 0 ) =  x ∈  X. Fairly general ergodicity conditions of MC were established in [7]-[11].
There exist several closely resembling versions of these conditions. We dwell on one of
them introduced in [6], [12], [13].

17 A.A.Borovkov and S.G.Foss



For some set V ∈  B X  denote τV ( x ) =  min { i ≥  1  :  X  ( x , i ) ∈  V }. Suppose that there

exist a set V ∈  B X , a probability measure ϕ on ( X , BX ) , a number p ∈  ( 0 , 1 ), and a

non-negative integer m  ≥  0 such that

(I) P ( τV ( x ) <  ∞  ) =  1 for any x ∈  X ; sup
x ∈  V

    E τV ( x ) <  ∞  ;

(II) inf
x ∈  V

    P ( X  ( x , m  +  1 ) ∈  B ) ≥  p ⋅  ϕ ( B ) for any B ∈  B X . 

Condition (I) means "uniform" positive recurrence of the set V and MC irreducibility.
Condition (II) is a "mixing" condition. It is expressed in terms of the local characteristics
and in this sense it is final. In "practical" problems Condition (I) usually requires additional
consideration.

For the ergodicity of a MC we shall need also the non-periodicity property. If
Conditions (I) - (II) are satisfied, then this property may be expressed in terms of
m  , ϕ , V , τV . 

Let n1 , n2 , … be the integer numbers for which P ( τV ( ϕ ) =  ni ) >  0, where

τV ( ϕ ) =  min { i ≥  1  :  X  ( ϕ , i ) ∈  V }; let X  ( ϕ , i ) be a MC with a random initial value
distributed according to ϕ.

(III) (Non-periodicity condition). There exists a number l >  0 such that the greatest
common divisor of the set ( m  +  n1 +  1 , m  +  n2 +  1 , … , m  +  nl +  1 ) is equal to one. (This

condition is satisfied if m  =  0 , ϕ ( V ) >  0 ).
Denote P ( x , B ) =  P ( X  ( x , 1 ) ∈  B ) ,  B ∈  B X .

Theorem 1. Let Conditions (I)-(III)  be satisfied. Then there exists a stationary MC

{ X  n } with transition probability P ( x , B ) defined on the same probability space with X,
which is independent of X  ( 0 ) and such that for each x ∈  X 

P ( X  ( x , k ) =  X  k  for all  k ≥  n ) → 1 (1)

as n → ∞  .

The sets Dn =  {  X(x , k ) =  X  k for all k ≥  n }  here and in the sequel are not necessarily

events (i.e. belong to B X). In fact in Theorem 1 and a series of consecutive assertions it

is proved that there exist events Cn ⊂  Dn such that P ( Cn ) → 1 . If X is a separable metric

space and B X contains the Borel σ - algebra, then Dn ∈  B X .

Here and whenever needed, we assume the σ - algebra B X to be countably-generated.

(Recall that a σ - algebra B X is called countably-generated if it is generated by a countable

collection of sets from X). It is evident that the σ - algebra of Borel sets in X =  R d  is
countably-generated. The Borel σ - algebra in any metric separable space is also
countably-generated. Therefore the assumption that a σ-algebra is countably-generated is
not too restrictive. For countably-generated σ-algebras the function P ( x , B ) may be
considered to be a measure, whose values are measurable with respect to x (see [11]).

Relation (1) implies necessarily that the distribution of X0  

π ( B ) =  P ( X0 ∈  B ) ,  B ∈  B X ,  

is an invariant measure:
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π ( B ) =     ∫  
X

  π ( d x ) P ( x , B ) ,  B ∈  B X ,  

and the convergence in total variation occurs,

sup
B ∈  B X 

    |  P ( X  ( x , n ) ∈  B ) −  π ( B ) |  → 0 (2)

as n → ∞  .
The following assertion, converse to Theorem 1, is also justified.
Theorem 2. If (2) or (1)  holds for each x ∈  X , then there exist a set V , a probability

measure ϕ and numbers p , m  ,  such that Conditions (I)-(III) are satisfied.
The most essential points of the assertions of Theorems 1,2 have been proved in

[10], [11] (see also [6]).

2. Stochastically recursive sequences

Assume that another measurable space ( Y , BY ) with measure P is considered along

with ( X , BX ) , and let { ξn }n =  0
∞  be a random sequence with values in ( Y , BY ). Thereto,

let a measurable function f  :  X ×  Y → X be specified on  ( X ×  Y , B X ×  B Y ).
Definition 1. We shall say that { X  ( n ) } is a stochastically recursive sequence (SRS)

with driver { ξn } if it satisfies relations

X  ( n +  1 ) =  f ( X  ( n ) , ξn )

for all n ≥  0 . For the sake of simplicity we shall assume the value X  ( 0 ) to be fixed and
non-random (or to be random and independent of { ξn }).

The construction of the distribution of the sequence { X  ( n ) , ξn } on ( ( X ×  Y ) ∞ ,

( B X ×  B Y ) ∞   ) is carried out using finite-dimensional distributions similarly to the

construction of the distribution of MC X  on  ( X ∞  , B X
∞  ) from the transition function

P ( x , B ) =  P ( X  ( x , 1 ) ∈  B ) with evident alterations. The finite-dimensional distributions
 { ( X  ( 0 ) , ξ0 ) , … ,  ( X  ( k ) , ξk ) } are defined according to the relations

P ( X  ( l ) ∈  Al ,   ξl ∈  Bl  ;  l =  0 , … , k ) =   

 =     ∫  
B0 

  …    ∫  
Bk 

   P ( ξl ∈  d yl  ;  l =  0 , … , k ) ⋅    ∏ 
l= 1

k

  I ( fl ( X  ( 0 ) , y0 , … , yl ) ∈  Al ),

where f1 ( x , y0 ) =  f ( x , y0 )  ;  fl ( x , y0 , … , yl ) =  f ( fl− 1 ( x , y0 , … , yl− 1 ) , yl ).
The sequence { ξn } can be considered as specified for any −  ∞  <  n <  ∞  without loss

of generality (for a stationary sequence the required extension may always be realized for
n <  0 with the help of the Kolmogorov theorem).

It should be noted that at present the term "stochastically recursive sequence" may
not be considered conventional. The study of SRS started apparently from [1], where the

case X =  R d  was considered, and the function f was assumed to be monotone in the first
variable. In [2], [4], [14] the general ergodicity and stability theorems for SRS were proved,
which were based on the notion of the so-called renovating (renewing) events. A series
of general constructions and assertions for SRS on the base of the point processes theory
is contained in [3], [5], where the term "recursive stochastic equations" was used to designate
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SRS. In all the cited papers it was supposed that the sequence { ξn } is stationary; the

results obtained were applied to study multi-server queueing systems.
As already mentioned, SRS is a more general object than MC. Namely, any MC can

be represented as a SRS with independent { ξn } (for details see Chapter 3 or [19]).

Define the σ - algebras Fl , n
 ξ  =  σ { ξk  ;  l ≤  k ≤  n }; Fn

 ξ =  σ { ξk  ;  k ≤  n } =  F−  ∞ ,n
 ξ  ;

F ξ =  σ { ξk  ;  −  ∞  <  k <  ∞  } =  F−  ∞ ,∞
 ξ  .

Definition 2. We shall say that an event A  ∈  Fn+ m
 ξ   , m  ≥  0, is renovating (renewing)

on the interval [ n , n +  m  ] for SRS { X  ( n ) } if there exists a measurable function

g  :  Y m+ 1  → X such that on the set A  (i.e., for ω ∈  A  ) 

X  ( n +  m  +  1 ) =  g ( ξn , … , ξn+ m ). (3)

It is evident that the relations of the form

X  ( n +  m  +  k +  1 ) =  gk ( ξn , … , ξn+ m+ k ) 

are valid for all k ≥  0 and for ω ∈  A , where the function gk  depends on the specified

arguments only and is determined by the event A  .

A sequence of events { An  }, An ∈  Fn+ m
 ξ   (where an integer m  ≥  0 is fixed) is said

to be renovating for the sequence { X  ( n ) } if there exists an integer n0 ≥  0 such that

relation (3) holds for any n ≥  n0  on the event  An  with the same function g .

The objects of our basic interest are "positive" renovating events, i.e., the events with
positive probability P ( An ) >  0 .

The simplest example of a renovating event is hitting a fixed point x0  by X  ( n ) :

An =  { X  ( n ) =  x0 }; here m  =  0 . However such an event may have zero probability. We

shall consider below another example, richer in content. More examples of renovating
events can be found in [2], [4], [15-17].

Note that in general the event A  and thus the function g may depend on the initial
value X  ( 0 ).

In the sequel we shall assume the sequence { ξn } to be stationary and metrically

transitive. The symbol U will denote the measure-preserving shift transformation of

F  ξ -measurable random variables generated by { ξn }, so that U ξn =  ξn+ 1 ; and the symbol

T will denote the shift transformation of sets (events) from the σ - algebra F  ξ  :

T { ω  :  ξj ( ω ) ∈  Bj  ;  j =  1 , … , k } =  { ω  :  ξj+ 1 ( ω ) ∈  Bj  ;  j =  1 , … , k }. 

The symbols U n  and T  n , n ≥  0 , will denote respectively the iterations of these

transformations (so that U1 =  U , T1 =  T , while U0  and T0  are identical transformations),

and the symbols U −  n , T  −  n  will denote the transformations inverse to U n  and T  n 
respectively.

A sequence of events { Ak } is said to be stationary if Ak =  T  k A0  for any k .
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E xa m p l e  1 . Consider a real-valued sequence X  ( n +  1 ) =  ( X  ( n ) +  ξn ) +  ,

X  ( 0 ) =  a ≥  0 , where x +  =  max ( 0 , x ) and { ξn } is a stationary metrically transitive

sequence. For any n0  the events An =  T  n A0 , where

A0  ≡   A0 , a =  { ξ− 1 ≤  0 , ξ− 1 +  ξ− 2 ≤  0 , … , ξ− 1 +  … +  ξ− n 0  ≤  0  ; 

ξ− 1 +  … +  ξ− n0  +  … +  ξ− n0 − l  ≤  −  a   for all  l ≥  1 } , (4)

form a stationary sequence of renovating events for m  =  0 , g ( y )  ≡   y +  , since for
n ≥  n0  

X  ( n +  1 ) =  ξn
 +   a.s. on An .

If we assume that E ξ1 <  0, the sequence { ξn } is metrically transitive and, hence,

ξ− 1 +  … +  ξ− n  → −  ∞  a.s. for n → ∞ , then there exists such a number n0 =  n0 ( a ), that

P ( An 0
 ) >  0.

On the other hand, if we define the events Bn , the number m  and the function

g : R  m+ 1 → R according to the equalities:

m  =  n0  ; Bn =  T  m An  ; g ( y0 , … , ym )  ≡   ym
 +  ,

then the events  Bn ∈  Fn+ m
 ξ   will be renovating for { X  (n) } on the interval [ n , n +  m  ]

for any n ≥  n 0 ≡  0.

Similar reasoning can be applied to arbitrary renovating events. Therefore in the
sequel we shall assume without loss of generality that the number n0 , involved in the

definition of a sequence of renovating events, is equal to zero.
The following assertion was proved in [2], [14] .
Theorem 3. Let there exist a stationary sequence { An }, P ( A0 ) >  0, of renovating events

for SRS { X  ( n ) }. Then on the same probability space with { X  ( n ) } a stationary sequence

{ X  n  ≡   U n X  0  } can be defined, which satisfies the equations X  n+ 1  =  f ( X  n , ξn ) and the

relations 

P  {  X  ( k ) =  X  k   for all  k ≥  n }  → 1 (5)

as n → ∞ .

Note that if we introduce the measure π ( B ) =  P ( X0 ∈  B ) similarly to Theorem 1,
then (5) yields convergence in total variation:

sup
B ∈  B X 

    |  P ( X  ( n ) ∈  B ) −  π ( B ) |  → 0 

for n → ∞ .
As the renovating events An  (and also the number m  and the function g) generally

depend on the initial state X  ( 0 ) =  x ∈  X , the stationary sequence { X  n } may also depend
on x. However, if we assume that for some set V0 ∈  B X it is possible to find a stationary

sequence of events An ∈  Fn+ m
 ξ  , which is renovating for { X  ( n ) } (with the same g ) for
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any X  ( 0 ) =  x ∈  V0 , then the limiting stationary sequence { X  n } and, hence, the measure

π will not depend on X  ( 0 ) ∈  V0 . It is clear that if the initial value X  ( 0 ) be random,

P ( X  ( 0 ) ∈  V0 ) =  1 , then the sequence { X  ( n ) } will also converge to { X  n } in the

sense of (5).
All the above implies the following assertion. 

Let there exist an increasing sequence of sets { Vk } ,  ∪
κ= 1

∞
   Vk =  X , such that for any

k there exists a stationary sequence of events { An k  }, which is renovating (with the same

function  gk  ) for { X  ( n ) } with arbitrary X  ( 0 ) =  x ∈  Vk  . Then the limiting stationary

sequence { X  n  } and the measure π will not depend on the initial value X  ( 0 ) =  x  for
arbitrary x ∈  X .

E x a m p l e  2 .  Consider the sequence X  ( n ) from Example 1. Since the function

f ( x , y ) =  ( x +  y ) +   is monotone increasing, the events An k  defined in (4) for a =  k are

renovating for { X  ( n ) } for any initial value X  ( 0 ) ≤  k. Hence, one may take
Vk =  [ 0 , k ] for the sets Vk .

R e m a r k  1 .  One of the many distinctions between SRS and MC consists in the
following fact. We know that periodicity and ergodicity are incompatible for MC (in the
sense of relations (1), (2)). This is not so for SRS .

E x a m p l e  3 .  Let X =  Y =  { 0 , 1 }, f ( x , y ) =  y , and { ξn } be a stationary metrically

transitive sequence of the form ξn+ 1 =  1 −  ξn , where P ( ξ0 = 1)= P ( ξ0 = 0)=  1⁄2 . It is

evident that { ξn } form a stationary periodic MC. For the SRS considered we obtain

X  ( n +  1 ) =  f ( X  ( n ) , ξn ) =  ξn for any X  ( 0 ) ∈  { 0 , 1 }; the conditions of the ergodicity

theorem are evidently satisfied. On the other hand, SRS X  is 2-periodic in the following
sense:

P ( X  ( n +  1 ) =  1  |  X  ( n ) =  0 ) =  P ( X  ( n +  1 ) =  0  |  X  ( n ) =  1 ) =  1 . 

The very notion of periodicity for SRS may be substantially wider, both in the sense
of deeper dependence on the prehistory and in the sense of lack of determination,
characteristic for the equalities presented above. In order to make this point clear, let us
modify Example 3. Along with the sequence { ξn } of Example 3 we shall consider a

stationary sequence of independent random variables { ηn } (e.g., normally distributed),

independent of { ξn }, and take the stationary metrically transitive sequence { ξn , ηn } as

a driver, so that in this case Y =  {  0 , 1 }  ×  R  ; y =  ( y1 , y2 ). Set f ( x , y ) =  y1 +  y2 ; then

{ X  ( n ) } will be an ergodic SRS, but its periodicity will not be deterministic and will
concern only distributions.

In order to formulate the assertion converse to Theorem 3, let us consider along
with (5) another type of convergence of random sequences. Let us first introduce one more
notion.

Let X0  be a random variable with values in the space X , measurable with respect

to σ - algebra F ξ , and { X  n =  U n X0  } the stationary sequence constructed on the base of

X0 .
Definition 3. We shall say that a SRS { X  ( n ) } coupling-converges (or c-converges)

to { X  n } and write X  ( n ) → c  X  n  if (5) is justified.
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One can reformulate Theorem 3 applying this definition in the following form: if
there exists a "positive" stationary sequence of renovating events for SRS { X  ( n ) }, then
{ X  ( n ) } coupling-converges to some stationary sequence.

If we introduce the random variable

µ0 =  min  { n ≥  0  :  X  ( n ) =  X  n   }  ≡   min { n ≥  0  :  X  ( k ) =  X  k   for  k ≥  n },

then assertion (5) can also be rewritten in the form

P ( µ0 <  ∞  ) =  1 . (6)

For k =  0 , 1 , 2 , … consider along with { X  ( n ) } the sequence

Xk ( n ) =  U −  k X  ( n +  k ) , n ≥  −  k ,

obtained applying shifts  U − k  to the initial sequence { X  ( n ) }. In other words,
{ Xk ( n ) } is determined by the initial value Xk ( −  k ) =  X  ( 0 ) at time  ( −  k ) and by

recursive relations Xk (n +  1) =  f ( Xk (n) , ξn ) for n ≥  −  k . If we denote µk= min {n≥ − k :

 Xk (n) =  X  n  }, then it is easy to see that µk =  U −  k µ0 −  k . Hence, the coupling-

convergence of the sequence { X  ( n ) } implies for any k ≥  0 the coupling-convergence of

the sequence { Xk ( n ) , n ≥  −  k } to { X  n  } (or, equivalently, that of the sequence

{ Xk ( n ) , n ≥  0 }).

Denote by µ0 =    sup
k≥ 0

   µk  the time at which the coupling with the sequence { X  n  }

is completed for all the sequences {{Xk ( n ) },  k ≥  0 }.

Definition 4. We shall say that the sequence { X  ( n ) } strongly coupling-converges

to the sequence { X  n  ≡   U n X0  } (or sc-converges) and write X  ( n ) → sc  X  n  if µ0 <  ∞  a.s.
Note that sc-convergence is stronger than c-convergence, i.e., the a.s. finiteness of

the random variable µ0  does not imply in general the finiteness of µ0 , which is demonstrated

by following example.
E xa m p l e  4 .  Let X =  {0 , 1 , 2 , … } be the set of non-negative integers,X  ( 0 ) = 0,

and let { ξn } be a sequence of independent identically distributed random variables with

values 1 , 2 , 3 , … , such that E ξn =  ∞  ,

f ( x , y ) =  







y          for  x =  0 ,
x −  1  for  x ≥  2 ,
x          for  x =  1 .

 

Assume that X  n  ≡   1, −  ∞  <  n <  ∞ . It is easy to see that the SRS { X  ( n ) }
c-converges to { X  n  }. Indeed, µ0 =  ξ0 +  1 <  ∞  a.s. On the other hand,

Xk ( 0 ) =  U −  k X  ( k ) =  U −  k ( 1 +  ( ξ0 −  k ) +  ) =  1 +  ( ξ−  k −  k ) +  . 

Thus

µ0 =  min { n ≥  0  :  ( ξ−  k −  k ) +  =  0   for all  k ≥  n } =   

 =  min { n ≥  0  :  ξ−  k ≤  k   for all  k ≥  n } =  ∞  a.s.
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Let us present also another version of the definition of sc-convergence. Denote

ν =  min { n ≥  0  :  U −  k X  ( k ) =  X0   for all  k ≥  n }. It is easily seen that the distributions

of the random variables µ0  and ν coincide. Indeed,

P ( µ0 ≤  n ) =  P ( Xk ( n ) =  X  n   for all  k ≥  0 ) =   

 =  P ( Xk+ n ( 0 ) =  X0   for all  k ≥  0 ) =   

 =  P ( Xl ( 0 ) =  X0   for all  l ≥  n ) =  P ( ν ≤  n ) .

So the following theorem is true (see [4], [18]).
Theorem 4. The conditions of Theorem 3 (viz., existence of the stationary sequence of

renovating events { An  } with P ( An ) >  0 ) are necessary and sufficient for sc- convergence

X  ( n ) → sc  X  n  .

For the sake of completeness we present the 
Proof of Theorem 4.
N e c e s s i t y . Let the sequence X  ( n +  1 ) =  f ( X  ( n ) , ξn ) sc-converge to the

stationary sequence X  n+ 1 =  f ( X  n , ξn ). Choose the number m  ≥  0 so that the event

A0≡  { µ0 =  m  +  1 } ∈  Fm
 ξ has a positive probability. Introduce a function g :  Y m+ 1 → X ,

g ( y0 , … , ym ) =  f  m+ 1 ( X  ( 0 ) , y0 , … , ym ) ; y0 , … , ym ∈  Y  m+ 1 ,

where f 1  ≡   f and f i+ 1 ( x , y0 , … , yi ) =  f ( f i ( x , y0 , … , yi− 1 ) , yi ) , i ≥  1, are iterations of

f . Then the relations 

Xk ( m  +  1 ) =  X0 ( m  +  1 )  ≡   g ( ξ0 , … , ξm ) , k ≥  0 

hold a.e. on the set A0 . Hence, for any n ≥  0 

U n Xk ( m  +  1 ) =  U n X0 ( m  +  1 ) =  g ( ξn , … , ξn+ m ) , k ≥  0

a.s. on the set An  ≡   T  n A0 . In particular, for k =  n 

U n Xn ( m  +  1 )  ≡   X  ( n +  m  +  1 ) =  g ( ξn , … , ξn+ m ) 

a.s. on the set An .

S u f f i c i e n c y .  Let the sequence X  ( n +  1 ) =   f ( X  ( n ) , ξn ) have a stationary

sequence of renovating events { An  }, P ( A0 ) >  0 . For each n, −  ∞  <  n <  ∞ , define the

random variable X  n+ m+ 1  by the equalities:

X  n+ m+ 1 =  g ( ξn , … , ξn+ m ) 

on the set An  and, for k ≥  1, 

X  n+ m+ 1 =  f k ( g ( ξn− k , … , ξn− k+ m ) , ξn− k+ m+ 1 , … , ξn+ m ) 
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on the set An− k   ∩  (    ∩
i= 1

k
   A
__

n− k+ i  ).

Since P (    ∪
i= 0

∞
   An− i ) =  1 (see [2] ), the random variables { X  n  } are defined a.s. By

the construction, the sequence { X  n  } is stationary. Moreover, the stationarity of { An  }

implies that for all n , k ≥  0 the following equalities hold a.s. on the set An :

Xk ( n +  m  +  1 ) =  g ( ξn , … , ξn+ m ).

Thus

P ( µ0 ≤  n ) ≥  P (     ∪
i= 0

n− 1
   Ai  ) → 1 for n → ∞  .

Finally, it follows from the type of convergence and the equalities Xk ( n +  1 ) =

=  f ( Xk ( n ) , ξn ) that the elements of the sequence { X  n  } are connected by recursive

relations X  n+ 1 =  f ( X  n , ξn ). The proof of the theorem is completed.

A natural question arises. When are the c-convergence and sc-convergence equivalent,

i.e., when does µ0 <  ∞  a.s. imply µ0 <  ∞  a.s. ? There exist some rather simple sufficient

conditions, providing for the required equivalence, which are based on the monotonicity
of the function f in the first variable; for instance, queueing systems in series possess this
property.

Lemma 1. Suppose that a partial order relation (  ≤   ) is defined on the space X , and
the function f and the initial condition X  ( 0 ) =  x possess the following monotonicity properties:

1) f ( x , y ) ≥  x for each y ∈  Y ,
2) if x1 , x2 ∈  X ,  and  x1 ≤  x2 , then f ( x1 , y ) ≤  f ( x2 , y ) for all y ∈  Y.

Then µ0 =  µ0  a.s.

Proof of Lemma 1 is practically obvious. Indeed, it follows from the monotonicity
properties that

X  ( 0 ) =  x ≤  U− 1 X  ( 1 ) ≤  … ≤  U − n X  ( n ) ≤  U − n− 1 X  ( n+ 1 ) ≤  … ≤  X0  a.s.

Thus

P ( µ0 ≤  n ) =  P ( X  ( n ) =  X  n ) =  P ( U − n X  ( n ) =  X0 ) =   

 =  P ( U− i X  ( i ) =  X0   for all  i ≥  n ) =  P ( ν ≤  n ) =  P ( µ0 ≤  n ).

These equalities and the relation µ0 ≤  µ0  a.s. imply the equality µ0 =  µ0  a.s.

3. Ergodicity of SRS with non-stationary drivers

Ergodic theorems similar to Theorem 3 can be also formulated for a non-stationary
driver { ζn  } which converges to a stationary one. We introduce two versions of such

assertions below (Theorems 5, 6).
Theorem 5. Let there be given a stationary metrically transitive sequence { ξn }, a sequence

{ ζn  }, and a set V0 ∈  B X such that
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1) there exists a stationary sequence of events An ∈  Fn+ m
 ξ  , which is renovating (with

the same function g ) for SRS X  ( n +  1 ) =  f ( X  ( n ) , ξn ) with arbitrary X  ( 0 ) =  x ∈  V0  ;

2) the sequence { ζn  } c-converges to { ξn };

3) the sequence { Y ( n ) } defined by the relations Y ( n +  1 ) =  f ( Y ( n ) , ζn ) satisfies

the condition

P (   ∪
i ≥  n

   { Y ( i ) ∈  V0 } ) =  1 for all n .

Let { X  n  } be a stationary sequence such that { X  ( n ) } sc-converges to { X  n  } for

an arbitrary initial value X  ( 0 ) ∈  V0  . Then { Y ( n ) } c-converges to { X  n }, and { X  n }

does not depend on X  ( 0 ) ∈  V0  .

Proof. Set

γ =  min { n ≥  0  :  ξi =  ζi   for all  i ≥  n }. 

For a given value of ε >  0 one can find a number nε  such that P ( γ ≤  nε ) ≥  

1 −  ε . Consider for i ≥  nε  on the set { Y ( i ) ∈  V0  } the sequence

X~  ( i +  n +  1 ) =  f ( X~  ( i +  n ) , ξi +  n )  ;  n ≥  0 ,

where X~  ( i ) =  Y ( i ). According to Theorem 3 and the remarks to follow, the sequence

{ X~  ( n ) }, n ≥  i, c-converges to { X  n } on the set { Y ( i ) ∈  V0  }. Define on the set

{ Y ( i ) ∈  V0  } the random variable µ ( i ) =  min { n ≥  i  :  X~  ( n ) =  X  n }. One can find a

number Nε  such that

P 







    ∪
i= nε

Nε
   { Y ( i ) ∈  V0 } 








 ≥  1 −  ε . 

Denote µ0 =  min { n ≥  0  :  Y ( i ) =  X  i   for  i ≥  n }. Then for sufficiently large n 

P ( µ0 >  n ) ≤  ε +  P ( γ ≤  nε , µ0 >  n ) ≤   

 ≤  2 ε +      ∑  
i= nε

Nε 

  P ( γ ≤  nε ;  Y ( i ) ∈  V0 ;  µ ( i ) >  n ) ; 

and the right-hand side goes to 2ε as n → ∞ . The choice of ε >  0 being arbitrary, the
assertion of Theorem 5 is proved.

Theorem 5 can be generalized.
Theorem 6. Let there be given a stationary metrically transitive sequence { ξn }, a sequence

{ ζn }, and a non-decreasing sequence of sets Vk ∈  B X such that

1) for each k =  1 , 2 , … there exists a stationary sequence of events An,k  , which are

renovating (with the same parameter mk  and function gk  ) for the sequence X  ( n +  1 ) =
=  f ( X  ( n ) , ξn ) with arbitrary X  ( 0 ) =  x ∈  Vk  ;

2) the sequence { ζn  } c-converges to { ξn } .
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Denote by { X  n } the stationary sequence such that { X  ( n ) } sc-converges to { X  n }

for some initial value X  ( 0 ) =  x ∈  X . Then { X  n } does not depend on X  ( 0 ) , and the

sequence Y ( n +  1 ) =    f ( Y ( n ) , ζn ) c-converges to { X  n } for any (possibly, random) initial

value Y ( 0 ) ∈  X .
Proof. Denote, as before,

γ =  min { n ≥  0  :  ξi =  ζi   for all  i ≥  n }.

Let us find, for an arbitrary sufficiently small value of ε >  0, a number nε  such that

P ( γ ≤  nε ) ≥  1 −  ε , and define the number kε  so that P ( Y ( nε ) ∈  Vkε 
 ) ≥  1 −  ε . Consider

the sequence

X~  ( nε +  l +  1 ) =  f ( X~  ( nε +  l ) , ξnε + l ) , l ≥  0 ,

where

X
~  ( nε ) =  








 Y ( nε ) , for  Y ( nε ) ∈  Vkε 
 ,

  y0 ,         else ,
 

and y0 ∈  Vkε 
  is an arbitrary fixed element.

In accordance with Theorem 3 and the remarks to follow, the sequence { X~  ( n ) }
c-converges to { X  n }. Thus for n ≥  nε  

P ( Y ( l ) =  X  l   for all l ≥  n ) ≥   

 ≥  P ( Y ( l ) =  X~  ( l ) =  X  l   for all  l ≥  n ; γ ≤  nε ; Y ( nε ) ∈  Vkε 
 ) ≥   

 ≥  P ( X~  ( l ) =  X  l   for all  l ≥  n ) −  2 ε ,

and the right-hand side goes to 1− 2ε as n → ∞ . The choice of ε >  0 being arbitrary, the
theorem is proved.

Let us consider one more particular case of SRS with a non-stationary driver, for
which it is possible to obtain a stronger assertion, viz., to establish sc-convergence instead
of c-convergence.

Assume, as before, that X  ( n +  1 ) =  f ( X  ( n ) , ξn ) is a SRS with the driver { ξn },

( Z , BZ )  is some measurable space, and F  :  Z ×  X  →  Z is a measurable function. Define

the SRS

Z  ( n +  1 ) =  F ( Z  ( n ) , X  ( n ) ) , Z  ( 0 ) =  const ,

assuming values in the space ( Z , BZ )  and driven by { X  ( n ) }. Note that for each n the

random variable Z  ( n +  1 ) is measurable with respect to the σ - algebra Fn
 ξ.

In this setting it is possible to prove
Theorem 7. Suppose that
1) the conditions of Theorem 3 are satisfied for SRS X  ( n ) ;
2) there exist a non-negative integer M and a stationary "positive" sequence of events

Dn ∈  Fn+ M
 ξ  , which are renovating for SRS Z  ( n +  1 ) =  F ( Z  ( n ) , X  ( n ) ), i.e., for some

function G  :  X M+ 1  → Z the equality 
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Z  ( n +  M +  1 ) =  G ( X  ( n ) , … , X  ( n +  M ) )

holds for all n ≥  0 and ω ∈  Dn  .

Then the sequence { Z  ( n ) } sc-converges to some stationary sequence { Z  n  } , satisfying

relations Z  n+ 1 =  F ( Z  n , X  n ) , where { X  n } is the "sc-limit" of { X  ( n ) }.
Proof. Define the random variable

µ0 =  min { n ≥  0  :  U− l X  ( i +  l ) =  X  i   for all  l ≥  0 , i ≥  n }. 

Let us find a number i0 >  0 such that

P ( µ0 ≤  i0 ) ≥  1 −  P ( D0 )  ⁄  2 . 

Denote C0 =  { U − i 0  µ0 ≤  i0 }; Cn =  T  n C0 ; En =  Dn  ∩  Cn .

As soon as P ( En ) ≥  P ( D0 )  ⁄  2 >  0 , the events En  form a stationary "positive"

renovating sequence for { Z  ( n ) }; thereto the equality 

Z  ( n +  M +  1 ) =  G ( X  n , … , X  n+ M ) =  U− l Z  ( n +  M +  l +  1 ) 

holds for any ω ∈  En , n ≥  i0  , l ≥  0 , and

Z  ( j +  1 ) =  F ( Z  ( j ) , X  j ) =  U− l Z  ( j +  l +  1 ) 

for any j >  n +  M and l ≥  0.
The further reasoning is a verbatim copy of the proof of the first part of Theorem 4.

4. Juxtaposition of ergodicity conditions for MC and SRS

Theorem 8. If the σ - algebra B X is countably-generated, then each MC is SRS, and its

trajectory can be represented in the form

X  ( n +  1 ) =  f ( X  ( n ) , ξn ) , X  ( 0 ) =  x , (7)

for a suitable function f and i.i.d. real-valued { ξn }. If Conditions (I)-(III) are satisfied for

a MC { X  ( n ) } and the initial value x ∈  X is such that E τV ( x ) <   ∞  , then the sequence

{ X  ( n ) } sc-converges to some stationary sequence { X  n } which satisfies (7).
Proof. The first part of the assertion of Theorem 8 is a particular case of Theorem

3.1 proved in the next chapter (see also [19]). Let us prove the second part of the theorem.
If Conditions (I)-(II) hold, the approach introduced in [7], [8] enables one to expand MC
so that it acquires regeneration points. If we assume { X  ( n ) } to be already an expanded
MC, then Conditions (I)-(II) are transformed into the following ones:

1) there exist a set V and a probability measure ϕ such that P ( y , B ) =  ϕ ( B ) for
each y ∈  V , B ∈  B X ;

2) E τV ( y ) <  ∞  for y ∈  V.
Note that property 1) implies the independence of the distribution of τV ( y ) from

y ∈  V. Thus if we fix a point y0 ∈  V and introduce a new function f ′  determined by the

equality

f ′  ( y , z ) =  




f ( y , z )    for  y ∉  V ,
f ( y0 , z )  for  y ∈  V , 
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where the function f is defined according to the first part of the theorem for the already
"expanded" chain, then all the finite-dimensional distributions of the MC { X ′  ( n +  1 ) =
=  f ′  ( X ′  ( n ) , ξn ) } , X ′  ( 0 ) =  x coincide with the corresponding finite-dimensional

distributions of the MC { X  ( n ) }. Thus we can assume without loss of generality that
f( y , z )= f ( y0 , z ) for arbitrary y ∈  V ,  z ∈  Y. This yields, in particular, the equality

τV ( y ) =  τV ( y0  ) for y ∈  V.

Applying Theorem 1, construct a stationary MC { X  n } (also an "expanded" one) on
a common probability space with { X  ( n ) } such that µ0 <  ∞  a.s., where, as above,

µ0 = min { n ≥  1  :  X  ( k ) =  X  k   for all  k ≥  n }. 

Here { X  n } is also a SRS of the form X  n+ 1 =  f ( X  n , ξn ). Let us consider, as in

the previous section, the sequences { Xk ( n ) =  U − k X  ( n +  k ) }, and introduce random

variables µk , µ0 =    sup
k≥ 0

   µk .

Denote τk =  τk ( x ) =  min { n ≥  −  k  :  Xk ( n ) ∈  V } and τ0 =  τ0 ( x ) =    sup
k≥ 0

   τk ( x ).

Note that the sequence { τk +  k ; k ≥  0 } consists of identically distributed random variables.

Thus

P ( τ0 ≥  N  ) ≤    ∑  
k

 P ( τk ≥  N  ) =    ∑  
k

 P ( τ0 ≥  N  −  k ) ≤  E ( τ0 ; τ0 ≥  N  ) , 

and the right-hand side goes to zero as N  → ∞ .
Introduce, for k ≥  0, the random variables t1, k =  τk  and, for l ≥  1, tl+ 1, k =

 min { n >  tl, k  :  Xk ( n ) ∈  V  }  ≡   tl, k  +  τl+ 1 , k , where the random variables τl,k  have for

l >  1 the distribution of τV ( y0 ); γk ( x ) ≡  γk =  min
l≥ 1

  { tl, k  :  tl, k ≥  0 } is the first non-negative

hitting time of V by { Xk ( n ) }; γ =    sup
k≥ 0

   γk  ≡   γ ( x ).

Then P ( γ >  2 N  ) ≤  P ( τ0 >  N  ) +  P ( τ0 ≤  N  , γ >  2 N  ). Let us perform a shift U − N  :

P ( τ0 ≤  N  ; γ >  2 N  ) ≤  P ( γ ( y0 ) >  N  ) =   

 =  P (    ∪
κ= 0

∞
   τk ( y0 ) >  N  ) ≤  E { τV ( y0 ) ; τV ( y0 ) ≥  N  } , 

and the right-hand side goes to zero as N  → ∞ . Thus

P ( µ0 >  M ) ≤  P ( γ >  N  ) +  P ( γ ≤  N  , µ0 >  M ) ≤   

 ≤  P ( γ >  N  ) +    ∑  
k= 0

N

 P ( µ~ >  M −  k ),

where µ~ =  min { n ≥  1  :  X  ( y0 , n ) =  X  n }. 

Since the second summand on the right-hand side of the latter inequality tends to

zero as M → ∞  for any fixed N  , the a.s. finiteness of µ0  is proved.

29 A.A.Borovkov and S.G.Foss



Let us now introduce the converse of the second part of Theorem 8 (its proof will
be published in another paper).

Theorem 9. Let a MC { X  ( n ) } of the form (7)  for some X  ( 0 ) =  x ∈  X and a

stationary MC { X  n } be defined on same probability space. Assume that { X  (n) } → sc { X  n }.

Then there exist a subspace X 1 ⊆  X , a set V ⊆  X 1 , numbers p , m, and a probability measure

ϕ on X 1 such that Conditions (I)-(III ) of Theorem 1 are satisfied on X 1.
Moreover, it is possible to define a "positive" stationary renovating sequence { An } ,

An ∈  Fn+ m
 ξ  , of the form An =  An

(1)  ∩  An
(2) , where An

(1) ∈  Fn− 1
 ξ  , An

(2) ∈  Fn,n+ m
 ξ  , and a

number M ≥  0 such that { X  ( n ) ∈  V } ⊇  An
(1) for any n ≥  M, and the sequence Gn  ≡  

 ≡   { X  ( n ) ∈  V } ∩ An
(2)  ⊇   An  is renovating for { X  ( n ) }.

 If µ1 =  min { n ≥  0  :  I ( Gn ) =  1 } ; µk+ 1 =  min { n >  µk + m   :  I ( Gn ) =  1 } ; k ≥  1

denote the successive times of the realization of the events Gn , then the random variables

νk =  µk+ 1 −  µk  , k ≥  1 are i.i.d. (and do not depend on µ1 ). Moreover, E νk <  ∞ , and the

greatest common divisor of the set{ i  :  P ( νk =  i ) >  0 } equals 1 .

Let us comment on some difference between the statements of Theorems 2 and 9:
in the conditions of Theorem 9 the convergence (sc-convergence) is required for some
x ∈  X at least, while in the conditions of Theorem 2 the convergence (in total variation
or coupling-convergence) is stipulated for all x ∈  X.

Theorems 8 and 9 establish the interrelations between Conditions (I)-(III) and existence
of "positive" stationary renovating events. However these interrelations may be observed
directly after a thorough consideration of the ergodicity conditions in Theorem 1.

As noted above, the proof of Theorem 1 (see [7], [8]) is based on the fact, that

Conditions (I)-(III) provide a possibility of expanding the phase space X to X ∗  and of

constructing on the latter space a new chain X  ∗ ( n ) =  ( X  ( n ) , δn ) in such a way that

X  ( n ) is its first coordinate and the new chain { X  ∗ ( n ) } obtains the regeneration property

which makes it easy to prove its ergodicity. Then the chain X  ∗ ( n ) (or its phase space)

can be further enlarged so that we obtain a chain Y ( n ), which is equivalent to X  ∗ ( n ),
and possesses a positive atom y0  with the property { Y ( n ) =  y0 } ⊆  { X  ( n ) ∈  V }.

Moreover, the time of recurrence to y0  has finite expectation, and the greatest common

divisor of the possible values of the recurrence time for non-periodic chains equals one
(this implies immediately the ergodicity of Y ( n ) ).

All this means that the event An =  { Y ( n ) =  y0  } is renovating for Y ( n ) and that

P ( An  ) >  q >  0 for all sufficiently large n . Therefore Conditions (I)-(III) mean that 

1) there exists a sequence An ∈  Fn
 ∗ with P ( An ) ≥  q >  0 for sufficiently large n ;

2) on the set An  

P ( X  ∗ ( n +  1 ) ∈  B |  Fn
 ∗ ) =  ϕ ( B ),

where the measure ϕ does not depend on Fn
 ∗ (here Fn

 ∗ =  σ ( X  ∗ ( 0 ) , … , X  ∗ ( n ) ) , and

for the sake of simplicity we assume m  =  0).
On the other hand, the conditions of Theorem 3 may be rewritten in the form (as

above, m  =  0 ):
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1a) there exists a stationary sequence An ∈  Fn , P ( An ) >  0 ;

2a) on the set An  

P ( X  ( n +  1 ) ∈  B |  Fn ) =  I ( g ( ξn ) ∈  B )  ≡   ϕ ( ξn , B ). (8)

In this form Conditions 1), 2) (viz., Conditions (I), (II)) and Conditions 1a), 2a) (viz.,
the conditions of Theorem 3 ) have a lot in common.

This similarity becomes even more definite, if we consider the generalizations of SRS
treated in the next chapter (the so-called recursive chains). For them the technique of the
phase space expansion, mentioned above, also proves to be most useful.

R e m a r k  2 . Let us note, that there exists an essential difference between MC and
SRS from the point of their behaviour with respect to Conditions (I)-(II). As follows from
Theorem 8, MC X  can be represented in the form of SRS X  (n +  1) =  f ( X  ( n ) , ξn ),
X  ( 0 ) =  const, where { ξn } is a sequence of i.i.d. random variables. If we suppose that

the MC X  satisfies Condition (II) for V =  X , m  =  0, i.e.,

P ( X  ( n +  1 ) ∈  B |  X  ( n ) ) ≥  p ⋅  ϕ ( B ) a.s., (9)

then this chain satisfies Conditions (I)-(III) and, by Theorem 1, MC X  is ergodic. Condition
(9) coincides with following one:

P ( X  ( n +  1 ) ∈  B |  X  ( n ) , ξn− 1 , ξn− 2 , … ) ≥  p ⋅  ϕ ( B ) a.s. (10)

Let now X  be a SRS defined by the relations X  ( n +  1 ) =  f ( X  ( n ) , ξn ),
X  ( 0 ) =  const, where the driver { ξn } is stationary and metrically transitive. Does (10)

imply ergodicity of X  in this case? The answer to this question is, in general, in the
negative, as demonstrated by the following example.

E xa m p l e  5 .  Let { ηn  } be a sequence of i.i.d. random variables with uniform

distribution on [ −  1 , 1 ], and ξn =  ( ηn , ηn+ 1 ), so that the sequence ξn is metrically

transitive. Introduce the function

g ( x ) =  max ( 0 , min ( 1 , 1 −  x ) ) =  







 0        for  x ≥  1 ,
1 −  x  for  0 ≤  x≤  1 ,
1         for  x <  0 .

 

Define a real-valued SRS X  =  { X  ( n ) ; n ≥  0 } in the following way:

X  ( 0 ) =  const , X  ( n +  1 ) =  g ( X  ( n ) −  ηn ) +  ηn+ 1  ≡   f ( X  ( n ) , ξn ).

Since X  ( n ) and   ηn  are measurable with respect to the σ - algebra generated by the

random variables X  ( n ) , ξn− 1 , ξn− 2 , … , ξ0 , Condition (10) is satisfied for X , if one assumes

p =  1⁄2 and defines ϕ as the Lebesgue measure on [ 0 , 1 ]. On the other hand, note that
for n ≥  1 

g(2n− 1) ( x ) =  







1        for  x ≤  0 ,
0         for  x≥  1 ,
1 −  x  for  0 <  x <  1 ,

    g(2n) ( x )=  







 0  for  x ≤  0 ,
 1  for  x≥  1 ,
 x  for  0 <  x <  1 

 

(here g(i)  is the i -th iteration of g ). Set Y ( n ) =  X  ( n ) −  ηn , then 

Y ( n ) =  g ( Y ( n −  1 ) ) =  







g ( Y ( 1 ) )         for  even n ,

1 −  g ( Y ( 1 ) )  for  odd  n .
 

31 A.A.Borovkov and S.G.Foss



But for X  ( 0 ) ≠  1⁄2 the distributions of Y ∗ =  g ( Y ( 1 ) ) =  g(2) ( X  ( 0 ) −  η0 ) and

1 −  g ( Y ( 1 ) ) =  1 −  Y ∗  are different. Also different (and otherwise independent of n) are

the distributions of X  ( 2 n +  1 ) =   1 −  Y ∗ +  η2n+ 1  and X  ( 2 n ) =  Y ∗ +  η2n . This means

that although Condition (10) is satisfied, the distribution of SRS { X  ( n ) } is periodical
(one may set V =  X =  [ −  2 , 2 ] ). In other words, the transfer of Conditions (II) from
MC to SRS in form (10) does not lead, in general, to the ergodicity of SRS. Thus to
formulate an analog of Conditions (I)-(III) for SRS (and for recursive chains introduced
in the next chapter), one faces the necessity to expand the σ - algebra, with respect to
which the conditional expectation is taken, i.e., to consider a condition of type (8).

5. Estimates of the convergence rate

Let us now present some simple results concerning the estimates of the convergence
rate. For a MC the rate of convergence to the stationary distribution can be estimated in
terms of the distribution P ( τV ( x ) >  n ),  x ∈  V, where τV (x) = min{n ≥  1 : X  (x , n) ∈  V }
(see [6], [12]). In other words, the estimation is carried out using the distribution of lapses
between successful hitting times of V for the sequence X .

For a SRS the estimates of the convergence rate are obtained similarly, using the

hitting times of the sets A  . More accurately, let { An  }, An ∈  Fn+ m
 ξ  , be a stationary

sequence of renovating events for the SRS { X  ( n ) } and τ the lapse between two successive
realizations of An :

P ( τ =  k ) =  P ( Ak  ∩ A
__

k− 1  ∩ …  ∩ A
__

1  |   A0  ). 

Then we can estimate the rate of convergence in terms of the distribution of τ (see
[17]).

Theorem 10. The following inequality is valid:

P ( µ0 >  n ) ≤  P ( A0 ) E ( τ −  n +  m  ) +  . 

Proof. Indeed,

P ( µ0 >  n ) ≤  P ( A
__

0  ∩ …  ∩ A
__

n− m− 1 ) =  P ( A
__

1  ∩ …  ∩ A
__

n− m ) =   

 =  P ( A0  ∩ A
__

1  ∩ …  ∩ A
__

n− m ) +  P ( A
__

0  ∩ A
__

1  ∩ …  ∩ A
__

n− m ) =  … =   

 =      ∑  
i= n− m

∞
  P ( A0 ) P ( A

__
1  ∩ …  ∩ A

__
i  |   A0 ) =  P ( A0 )E ( τ −  n +  m  ) +  , 

Q.E.D.
The estimates for a SRS with a non-stationary driver can be obtained similarly. For

instance, let the conditions of Theorem 7 be satisfied. Denote, as above, by

µ0 =  min { n ≥  0  :  U− l X  ( i +  l ) =  X  i   for all  l ≥  0 ; i ≥  n } 

the "sc-time" of the sequences { X  ( k ) } and { X  k  }, and by γ0  the "sc-time" of the

sequences { Z  ( n ) } and { Z  n  }. Then
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P ( γ0 >  2 n +  M ) ≤     ∑  
i= 0

2n

 P ( µ0 =  i ; D
__

i+ 1  ∩ …  ∩ D
__

2n ) +    

 +  P ( µ0 >  2 n ) ≤  P ( D
__

1  ∩ …  ∩ D
__

n ) +  P ( µ0 >  n ) =   

 =  P ( µ0 >  n ) +  P ( D0 ) ⋅  E ( T −  n ) +  ,

where P ( T =  k ) =  P ( Dk  ∩  D
__

k− 1  ∩ …  ∩  D
__

1  |   D0  ) .

CHAPTER 3. RECURSIVE CHAINS (MARKOV CHAINS
IN RANDOM ENVIRONMENT)

1. Main definitions and properties

Assume as before that { X  ( n ) }n= 0
∞  , { ξn }n= 0

∞  are two random sequences with

components X  ( n ) and  ξn taking values in arbitrary measurable phase spaces ( X , BX ) and

( Y , BY ) respectively. As before, we shall assume, if necessary that the σ - algebras B X and

B Y are countably generated.

The sequence { ξn } will be considered as specified in advance. The sequences

{ ξn } and { X  ( n ) } are assumed to be defined on the same probability space. Denote by

Fn  the σ - algebra Fn =  σ ( ξ0 , … , ξn ; X  ( 0 ) , … , X  ( n ) ), generated by the "history" of the

sequence { ξk , X  ( k ) } up to the time n .

Definition 1. We shall say that a sequence { X  ( n ) } is a recursive chain (RC) with
driver { ξn } if the equality 

P ( X  ( n +  1 ) ∈  B  |   F n ) =  P ( X  ( n +  1 ) ∈  B  |   X  ( n ) , ξn ) a.s. (1)

holds for all n ≥  0 , B ∈  B X .

It follows from the fact that the σ - algebras are countably generated that there exist
regular conditional probabilities in (1), viz., such functions P(n)  :  X ×  Y ×  B X  →  [ 0 , 1 ] 

that
1) P(n) ( x , y , ⋅   ) is a probability measure on ( X , BX ) for all fixed x , y ;

2) the function P(n) ( x , y , B ) is measurable with respect to the pair of variables

 ( x , y ) for each B ∈  B X ;

3) the conditional probabilities satisfy the relations

P ( X  ( n +  1 ) ∈  B  |   F n ) =  P(n) ( X  ( n ) , ξn , B ) a.s. (2)

or, equivalently,

P ( X  ( n +  1 ) ∈  B  |   X  ( n ) , ξn ) =  P(n) ( X  ( n ) , ξn , B ) a.s.

E xa m p l e  1 . To illustrate the intrinsic character of the introduced notion, let us
consider as an example one of the many applied problems in which the random process
characterizing the behaviour of the system parameters of interest is a recursive chain.

Consider a communication network which is a "random multiple access broadcast
channel" [19]; such systems are treated in a fairly extensive collection of works (see, e.g.,
[20] for more detailed references). Let there be given a transmission channel of the messages
(packages) connecting many users. The arrival times are discrete (integer-valued), the
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transmission time is equal to one. Each message is transmitted from one of the users to
all the others. If two or more users transmit simultaneously, then the channel is blocked.
The fact of blocking becomes known to the user, and the untransmitted message is subject
to transmission. All the users apply the same protocol for the repeated transmission
(retranslation) of the messages. It is chosen whenever possible to be autonomous, using
no information about the number of other users’ untransmitted messages. The protocol
ALOHA prescribes to each untranslated message at any time n =  1 , 2 , … to claim repeated
retranslation with probability p and "stand still" with probability 1 −  p.

Let us proceed to a more formal description of the system. Let ξn be the number

of "new messages", which are presented for translation at time n, X  ( n ) the number of
untranslated messages up to time n, and ηn  the number of claims in the channel at time

n generated by untransmitted messages.
We shall assume that the probabilities 

P ( ηn =  j |  ξ0 , … , ξn ; X  ( 0 ) , … , X  ( n ) ) =  P ( ηn =  j |  X  ( n ) ) =  q j , X  ( n )  , 

where ∑  
j= 0

N

 qj , N =  1 for any N  =  0 , 1 , … , are specified. In particular, for the ALOHA

protocol qj , N   =  CN
 j  p j ( 1 −  p ) N  −  j .

It follows from the above argument that

X  ( n +  1 ) =  







X  ( n ) +  ξn  on the set  { ξn +  ηn ≠  1 } ,
X  ( n )           on the set  { ξn =  1 ; ηn =  0 } ,
X  ( n ) −  1    on the set  { ξn =  0 ; ηn =  1 } .

 

This enables us to write down the distribution of X  ( n +  1 ) for known X  ( n ) and
ξn , which means that the sequence X  ( n ) is a RC with driver { ξn }.

Similarly to the function P ( x , B ) for MC, the functions P(n) ( x , y , B ) could be

named transition probabilities (or functions): they define the probability for the RC
{ X  ( n ) } to hit the set B at the  ( n +  1 )-th step starting from x, when the driver takes
on the value y . If we fix all the trajectory of { ξn }, then the RC { X  ( n ) } may be treated

as a non-homogeneous Markov chain with the transition function P(n) ( x , B ) =
=  P(n) ( x , ξn , B ) (evidently, this chain would be generally non-homogeneous, even in the

case when P(n) ( x , y , B ) do not depend on n, and the sequence { ξn } is stationary,

ξn  ≡/   const ; see Chapter 4. All this means that the a RC { X  ( n ) } may be treated also

as a MC in "random environment", when the transition probabilities P(n)  ( x , B ) are chosen

at random (from a certain family).
As mentioned above, for a MC the knowledge of the transition probabilities

P ( x , B ) enables one to construct for a given initial value the unique Markov chain
according to the measure extension theorem . We have a similar situation with RC: it is
possible to construct the distribution of the sequence { X  ( n ) , ξn } from the distribution

of the sequence { ξn } and from the collection of functions { P(n)  }.

Indeed, let us assume for the sake of simplicity that the initial value X  ( 0 ) =  x0  is

constant (this does not lead to any loss of generality). The distribution of the pair
Z 0 =  ( ξ0 , X  ( 1 ) ) will be defined by relation
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P ( ξ0 ∈  A0 ; X  ( 1 ) ∈  B1 ) =    ∫   P ( ξ0 ∈  d y0 ) ⋅  P(0) ( x0 , y0 , B1 ). (3)

Using the distribution of Z n− 1 , that of Z n =  ( ξ0 , … , ξn ; X  ( 0 ) , … ; X  ( n +  1 ) ) for

n >  0 will be defined by the relation

P (    ∩
k= 0

n
   { ξk ∈  Ak ; X  ( k +  1 ) ∈  Bk +  1  } ) =  

 =    ∫  … ∫
En− 1 

  P (     ∩
k= 0

n− 1
    { ξk ∈  d yk ; X  ( k +  1 ) ∈  d xk+ 1  } ) ×   

P ( ξn ∈  d yn  |     ∩
k= 0

n− 1
   { ξk ∈  d yk  } ) ⋅  P(n) ( xn , yn , Bn+ 1  ) ,

where En− 1  is the set { y0 ∈  A0 , … , yn− 1 ∈  An− 1 ; x1 ∈  B1 , … , xn ∈  Bn  }.

These relations can also be rewritten in the form

P ( ξn ∈  An , X  ( n +  1 ) ∈  Bn+ 1  |   σ ( Z n− 1  ) ) =   

 =    ∫   P ( ξn ∈  d yn  |   ξ0 , … , ξn− 1 ) ⋅  P(n) ( X  ( n ) , yn , Bn+ 1  ). (4)

Assuming Bn+ 1 =  X , we obtain

P ( ξn ∈  An  |   σ ( Z n− 1 ) ) =  P ( ξn ∈  An  |  ξ0 , … , ξn− 1  ) (5)

(this is the property of conditional independence of ξn from X  ( n ) , … , X  ( 0 ) for given

Fn− 1
 ξ  ).

Let us demonstrate that the distributions of Z n  so constructed or, equivalently, the

finite-dimensional distributions of { ξk , X  ( k ) }, possess the recursive property of (2).

Indeed, by (5) relation (4) can be rewritten in the form

P ( ξn ∈  An ; X  ( n +  1 ) ∈  Bn+ 1  |   σ ( Z n− 1 ) ) =   

 =    ∫   P ( ξn ∈  d yn  |   σ ( Z n− 1 ) ) ⋅  P(n) ( X  ( n ) , yn , Bn+ 1  ) =   

 =  E ( P(n) ( X  ( n ) , ξn , Bn+ 1  ) ; ξn ∈  An  |   σ ( Z n− 1 ) ), 

which is, evidently, equivalent to 

P ( X  ( n +  1 ) ∈  Bn+ 1  |   σ ( Z n− 1 , ξn ) )  ≡   P ( X  ( n +  1 ) ∈  Bn+ 1  |   Fn ) =   

 =  P(n) ( X  ( n ) , ξn , Bn+ 1 ) 

(recall that σ ( Z n− 1 , ξn ) =  F n  ). This proves (2).

Thus, the knowledge of the distribution of { ξn } and the functions P(n) ( x , y , B )
enables one to determine the finite-dimensional distributions of the sequence Z=
=  {( X  (n), ξn )} so that they satisfy (2). Hence, according to the measure extension theorem,

there exists, in the space  ( Z , B Z ) =  ( ( X ×  Y ) ∞ ,  ( B X ×  B Y ) ∞  ) , the distribution of

this sequence such that (2) holds.
The question, whether the distribution of Z  in  ( Z , B Z ) satisfying (2) for given

functions P(n)  is unique, is still open in general. However, if we require in addition that
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the distribution of Z  satisfying (2) possess also the property (5) (viz., that of ξn being

conditionally independent of X  ( n ) , … , X  ( 0 )), then such a distribution in  ( Z , B Z ) will

be unique. In other words, the finite-dimensional distributions of the sequence Z  will be
uniquely defined by formulae (4). Indeed, the necessity of defining the distribution of
Z 0 =  ( ξ0 , X  ( 1 ) ) by relation (3) is evident, since due to the conditions above

P ( X  ( 1 ) ∈  B1  |   ξ0 , X  ( 0 )) =  P(0) ( x0 , ξ0 , B1  ), 

and thus

P ( ξ0 ∈  A0 , X  ( 1 ) ∈  B1 ) =  E { P ( X  ( 1 ) ∈  B1  |   ξ0 , X  ( 0 )) ; ξ0 ∈  A0  } =   

 =  E { P(0) ( x0 , ξ0 , B1 ) ; ξ0 ∈  A0  } =     ∫  
A0 

  P ( ξ0 ∈  d y0 ) P(0) ( x0 , y0 , B1  ). 

For the sake of brevity let us denote by Cn  the direct product ∏ 
k= 0

n

  ( Ak ×  Bk+ 1 ) .

This is a cylindrical set in the phase space of random variables Z n . Then

P ( Z n ∈  Cn ) =  E [ P ( ξn ∈  An ; X  ( n +  1 ) ∈  Bn+ 1  |   σ ( Z n− 1 ) ) ; Z n− 1 ∈  Cn− 1 ] =   

=  E [ E { I ( ξn ∈  An ) ⋅  P ( X  ( n +  1 ) ∈  Bn+ 1  |   F n )  |   σ ( Z n− 1 ) } ; Z n− 1 ∈  Cn− 1 ] =   

=  E [ E { I ( ξn ∈  An ) ⋅  P(n) ( X  ( n ) , ξn , Bn+ 1  )  |   σ ( Z n− 1 ) } ; Z n− 1 ∈  Cn− 1 ]. (6)

But by virtue of (5) (recall that X  ( n ) is measurable with respect to σ ( Z n− 1 ) )

E { I ( ξn ∈  An ) ⋅  P(n) ( X  ( n ) , ξn , Bn+ 1  )  |   σ ( Z n− 1 ) } =   

 =     ∫  
An 

  P ( ξn ∈  d yn  |   ξ0 , … , ξn− 1 ) ⋅  P(n) ( X  ( n ) , yn , Bn+ 1  ). 

If we substitute the latter into equalities (6) and compare the beginning and the end
of those, we obtain (4), Q.E.D.

Let us make a general remark. In applications (see, for instance, Example 1) the
sequence { ξn } is always specified in advance. It is defined by some external factors, and

relation (1) appears usually as one characterizing the sequence { X  ( n ) }, i.e., enabling the
sequential construction of the latter from the elements ξn (for instance, by means of the

most natural procedure introduced above). These circumstances enable us to postulate
along with (1) another property: 

The distribution of ξn for given ξ0 , … , ξn− 1 does not depend on X  ( 0 ) , … , X  ( n ). 
But this is Condition (5).

So here and in the sequel we shall consider (5)  to be justified and therefore assume
that the distribution of Z  in ( Z , BZ ), satisfying (2) , is unique. It means that formulae (4),

which specify the finite-dimensional distributions of Z , are valid.
It is clear that a RC is a more general object than a MC: any MC is by definition

a RC for the trivial driver ξn  ≡   const.

If random variables ξn are independent, then a RC also forms a MC. Indeed,

P ( X  ( n +  1 ) ∈  Bn+ 1  |   X  ( 0 ) , … , X  ( n ) ) =   
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=  E [ P ( X  ( n +  1 ) ∈  Bn+ 1  |   F n  )  |   X  ( 0 ) , … , X  ( n ) ] =   

 =  E [ P(n) ( X  ( n ) , ξn , Bn+ 1  )  |   X  ( 0 ) , … , X  ( n ) ] =   

 =  E { E [ P(n) ( X  ( n ) , ξn , Bn+ 1  )  |   σ ( Z n− 1 ) ]  |   X  ( 0 ) , … , X  ( n )  }. 

Since (5) is valid and X  ( n ) is measurable with respect to σ ( Z n− 1 ), the relations

E [ P(n) ( X  ( n ) , ξn , Bn+ 1  )  |   σ ( Z n− 1 ) ] =    ∫   P ( ξn ∈  d yn ) ⋅  P(n) ( X  ( n ) , yn , Bn+ 1  ) 

become valid. Thus

P ( X  ( n +  1 ) ∈  Bn+ 1  |   X  ( 0 ) , … , X  ( n ) ) =    ∫   P ( ξn ∈  d yn ) ⋅  P(n) ( X  ( n ) , yn , Bn+ 1  ) 

and the left-hand side depends on X  ( n ) only. It stipulates the Markov property of
{ X  ( n ) }.

Theorem 1. Conditions  (2) and (5) are jointly equivalent to the following one:

P ( X  ( n +  1 ) ∈  B |  X  ( 0 ) , … , X  ( n ) ; { ξk }k= 0
∞ )=  P ( X  ( n +  1 ) ∈  B |  X  ( n ) , ξn ) (7)

a.s. for any n ≥  0 and B ∈  B X .

Proof. Let (2) and (5) be satisfied. For arbitrary n ≥  0 we shall use abbreviation

Dn  ≡   Dn ( x1 , … , xn ; y0 , … , yn ) =   

 =  { X  ( k ) ∈  d xk ; ξk ∈  d yk ;k =  1 , … , n ; ξ0 ∈  d y0  }. 

For any B ∈  B X ; H1 , … , Hk ∈  B Y the equalities 

P ( X  ( n +  1 ) ∈  B ; ξn+ 1 ∈  H1 , … , ξn+ k ∈  Hk  |   Dn  ) =   

 =     ∫  
B

  P ( X  ( n +  1 ) ∈  d xn+ 1  |   Dn ) ⋅       ∫  
H1 

  P ( ξn+ 1 ∈  d yn+ 1  |   Dn ; X  ( n +  1 ) ∈  d xn+ 1 ) ⋅  

⋅  … ⋅  ∫  
Hk 

P ( ξn+ k ∈  d yn+ k |  Dn ; X  ( n +  1 ) ∈  d xn+ 1 ; ξn+ 1 ∈  d yn+ 1 ; … ; ξn+ k− 1 ∈  d yn+ k− 1 )

hold a.e. in yi  with respect to the distribution of ξi  ; i =  0 , … , n, and a.e. in xi  with

respect to the distribution of X  ( i ) ; i =  1 , … , n. 
By Condition (5) one obtains the relation

P ( ξn+ j ∈  d yn+ j  |   Dn ; X  ( n +  1 ) ∈  d xn+ 1 ; ξn+ 1 ∈  d yn+ 1 ; … ; ξn+ j− 1 ∈  d yn+ j− 1  ) =   

 =  P ( ξn+ j ∈  d yn+ j  |   ξ0 ∈  d y0 ; … ; ξn+ j− 1 ∈  d yn+ j− 1  ) 

a.e. in yi  with respect to the distribution of ξi  ; i =  0 , 1 , … , n +  j −  1, and a.e. in xi  with

respect to the distribution of X  ( i ) ; i =  1 , … , n +  1. Due to (2)

P ( X  ( n +  1 ) ∈  d xn+ 1  |   Dn ) =   P ( X  ( n +  1 ) ∈  d xn+ 1  |   X  ( n ) ∈  d xn ; ξn ∈  d yn ) 

a.e. in yi  with respect to the distribution of ξi  ; i =  0 , … , n and a.e. in xi  with respect

to the distribution of X  ( i ) , i =  1 , … , n. Then the equality

P ( X  ( n +  1 ) ∈  B ; ξn+ 1 ∈  H1 ; … ; ξn+ k ∈  Hk  |   Dn  ) =   
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 =  P(n) ( xn , yn , B ) ⋅  P ( ξn+ 1 ∈  Hn+ 1 ; … ; ξn+ k ∈  Hn+ k  |   ξ0 ∈  d y0 , … , ξn ∈  d yn  ) 

holds for these  ( xi , yi ). Hence,

P ( X  ( n +  1 ) ∈  B  |   X  ( 0 ) , … , X  ( n ) ; ξ0 , … , ξn+ k ) =  P(n) ( X  ( n ) , ξn ) a.s.

The choice of k ≥  0 being arbitrary, we obtain (7).
Conversely, let (7) be satisfied. Let us demonstrate the validity of (5). Indeed, the

following equalities 

P ( X  ( 1 ) ∈  B1 , … , X  ( n +  1 ) ∈  Bn+ 1 ; ξn+ 1 ∈  A   |   ξ0 ∈  d y0 , … , ξn ∈  d yn ) =   

 =      ∫  
A

  P ( ξn+ 1 ∈  d yn+ 1  |   ξ0 ∈  d y0 , … , ξn ∈  d yn ) ⋅      ∫  
B1 

  P ( X  ( 1 ) ∈  d x1  |  

  ξ0 ∈  d y0 , … , ξn+ 1 ∈  d yn+ 1 ) ⋅  … ⋅     ∫  
Bn+ 1 

  P ( X  ( n +  1 ) ∈  d xn+ 1  |   ξ0 ∈  d y0 , 

 … , ξn+ 1 ∈  d yn+ 1 ; X  ( 1 ) ∈  d x1 , … , X  ( n ) ∈  d xn ) =   

 =     ∫  
A

  P ( ξn+ 1 ∈  d yn+ 1  |   ξ0 ∈  d y0 , … , ξn ∈  d yn ) ⋅     ∫  
B1 

  P ( X  ( 1 ) ∈  d x1  |   ξ0 ∈  d y0 ) ⋅   

 ⋅  … ⋅      ∫  
Bn+ 1 

   P ( X  ( n +  1 ) ∈  d xn+ 1  |   ξn ∈  d yn ; X  ( n ) ∈  d xn ) =   

 =  P ( ξn+ 1 ∈  A   |   ξ0 ∈  d y0 , … , ξn ∈  d yn ) ⋅  P ( X  ( 1 ) ∈  B1 , … , 

X  ( n +  1 ) ∈  Bn+ 1  |   ξ0 ∈  d y0 , … , ξn ∈  d yn ) 

take place for any n ≥  0, all sets A  ∈  B Y , Bi ∈  B X , i =  1 , … , n +  1, and a.e. in yi  with

respect to the distribution of ξi  ; i =  0 , … , n. This leads us to (5). Theorem 1 is proved.

Let now { ξn }, { ηn  } be two random sequences with elements ξn , ηn  assuming values

in arbitrary measurable phase spaces ( Y , BY ) and ( Z , BZ ) respectively. Suppose that

{ X  ( n ) } is a RC with values in ( X , BX ) and driver { ( ξn , ηn ) } : for B ∈  B X 

P ( X  ( n +  1 ) ∈  B  |   X  ( 0 ) , … , X  ( n ) ; { ξi , ηj } ) =  P~ (n) ( X  ( n ) , ξn , ηn , B ) a.s. (8)

As before, we shall assume the σ - algebras B X , B Y , B Z to be countably generated.

Denote for n ≥  0 ,  x ∈  X ,  y ∈  Y ,  B ∈  B X 

P(n) ( x , y , B ) =  E P~ (n) ( x , y , ηn , B ). (9)

We shall utilize the following theorem.
Theorem 2. Consider a RC { X  ( n ) } with driver { ( ξn , ηn ) } and transition functions

P~ (n) ( x , y , z , B ) such that { X  ( n ) } satisfies (8). Suppose that the elements of the sequence

{ ηn } are i.i.d., and { ηn } does not depend on { ξn }. Then { X  ( n ) } is a RC with driver

{ ξn } and transition functions P(n) ( x , y , B ) of the form (9) and { X  ( n ) } satisfies (5) (or,

equivalently, (7)).

Stochastically Recursive Sequences 38



Proof. The conditions of the theorem imply necessarily that for each n the value
ηn does not depend on the totality of random variables { X  ( i ), i ≤  n ; ξj , −  ∞  <  j <  ∞  }.

Thus the equality 

P ( X  ( n +  1 ) ∈  B  |   F n
(1) ) =  E { E { I ( X  ( n +  1 ) ∈  B )  |   F n

(2) }  |   F n
(1) } =   

 =  E { P~ (n) ( X  ( n ) , ξn , ηn , B )  |   F n
(1) } =  P(n) ( X  ( n ) , ξn , B ) a.s.

holds for each set B ∈  B X and n ≥  0, where F n
(1)  =  σ { X  ( i ) ; i ≤  n ; { ξj  } } and F n

(2) =
=  σ { X  (i); i ≤  n;  { ξj , ηj } }. Hence, Condition (7) is satisfied. Theorem 2 is proved.

2. Reduction of RC to SRS

Let, as before, ( X , BX ) and ( Y , BY ) be arbitrary phase spaces, { ξn } a given random

sequence assuming values in ( Y , BY ). In this section we shall assume that B X and B Y
are countably generated.

Along with SRS introduced in Chapter 2, one may consider the more general concept
of a "non-homogeneous" stochastically recursive sequence, with the stationarity of { ξn }

not assumed and the functions f dependent on n .
So let a collection f(n)  :  X ×  Y  → X , n ≥  0 of measurable functions be given.

Definition 2. We shall say that { X  ( n ) } is a SRS with driver  ( { ξn } , { f(n) } ) if

X  ( n +  1 ) =  f(n) ( X  ( n ) , ξn ) n ≥  0 a.s.

If all the functions f(n) ≡  f coincide and the sequence { ξn } is stationary, it is natural

to call such SRS a homogeneous  one; thus in Chapter 2 we have studied homogeneous
SRS.

It is clear that the values of an arbitrary SRS { X  ( n ) } are connected into a recursive
chain. Indeed,

P ( X  ( n +  1 ) ∈  Bn+ 1  |   F n  ) =  P ( f(n) ( X  ( n ) , ξn ) ∈  Bn+ 1  |   F n  )  ≡    

 ≡   P ( f(n) ( X  ( n ) , ξn ) ∈  Bn+ 1  |   X  ( n ) , ξn ) =  I ( f(n) ( X  ( n ) , ξn ) ∈  Bn+ 1 ). 

The converse is also true in a certain sense: any RC may be represented in the form
of SRS (generally, with another driver). This fact facilitates and simplifies the study of RC.

Theorem 3. Let the sequence { X  ( n ) } form a RC with driver { ξn } and Conditions

(2), (5) be satisfied. Then it is possible to define a collection of measurable functions

f(n)  :  X ×  Y ×  [ 0 , 1 ] → X  , a sequence Z  =  { ( X  ( n ) , ξn ) }n= 0
∞  , and a sequence { αn }n= 0

∞

of independent r.v.’s, uniformly distributed on the segment [ 0 , 1 ] , on a common probability
space so that

1) the sequences { αn  } and { ξn } are independent;

2) { X  ( n ) } forms a SRS with driver  ( { ξn , αn } , { fn } ).
Proof. Let us start from the case when X = Y=  [0 , 1] and the σ - algebras B X ,  B Y

consist of Borel sets. Denote

F(n) ( t  |   X  ( n ) , ξn ) =  P ( X  ( n +  1 ) <  t  |   X  ( n ) , ξn )  ≡   P(n) ( X  ( n ) , ξn , ( −  ∞  , t ) ). 

Let us define the functions f(n)  by equalities f(n) ( x , y , t ) =  F(n)
−  1 ( t  |   x , y ).
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As elucidated above, without loss of generality we can consider RC { X  ( n ) } to be
constructed by means of the procedure introduced in section 1 of this chapter, where the
sequence { ξn } is the initial material of the construction and is specified in advance. We

shall reproduce the same procedure in a slightly different form.
Take a random variable α0 , uniformly distributed on [ 0 , 1 ] and independent of

X  ( 0 ) and  { ξn }, and set X  ( 1 ) =  f(0) ( X  ( 0 ) , ξ0 , α0  ).
Let us then apply an induction argument. Suppose that the random variables

X  ( 0 ) , … , X  ( n ) ; α0 , … , αn− 1  are constructed for some n ≥  1. Define αn  as a random

variable, uniformly distributed on [ 0 , 1 ] and independent of all the random variables

X  ( 0 ) , … , X  ( n ), α0 , … , αn− 1 , { ξk }k= 0
∞  ; and set X  ( n +  1 ) =  f(n) ( X  ( n ) , ξn , αn ).

It is easily seen that the sequence { X  ( n ) } thus constructed satisfies (2), (5). Indeed,

P ( X  ( n +  1 ) ∈  B  |   X  ( n ) , … , X  ( 0 ) ; ξn , … , ξ0 ) =   

 =  P ( f(n) ( X  ( n ) , ξn , αn ) ∈  B  |   X  ( n ) , ξn ) =   

 =  P ( F(n)
−  1  ( αn  |   ξn ; X  ( n ) ) ∈  B  |   ξn , X  ( n ) ) =  P(n) ( X  ( n ) , ξn , B ). 

Let us proceed to the general case. Let B1 , B2 , … be the basis sets of the σ -  algebra

B X , i.e., assume that B X =  σ { Bk ; k ≥  1 } . We introduce an equivalence relation for the

points x of the space X : x1 ~  x2  if for any k ≥  1 either x1 ∈  Bk  and x2 ∈  Bk simulta-

neously, or x1 ∉  Bk  and x2 ∉  Bk  . Let us denote by x~ (with or without subscripts) the

equivalence classes, and by X~  =  { x~ } the set of the equivalence classes. Each point x~ ∈  X~

can be uniquely associated with a {0 , 1}-valued sequence s ( x~ )= (s1( x~ ), … ,  sk ( x~ ) , … ),
where sn ( x~ ) =  1 , if x ∈  Bn  for x ∈  x~ and sn ( x~ ) =  0 otherwise. Thus it is reasonable to

identify x~ with s ( x~ ) and to write down x~n  instead of sn ( x~ ) . Then the set X~  will be a

subspace of the space of {0 , 1} -valued sequences S =   s =  ( s1 , s2 ,  … ) . If we introduce

in S the cylindrical σ - algebra BS  , then X~  will be one of its elements, since

X~  =    ∩
n= 1

∞
   X~  n  , where X~  n =  {  s =  ( s1 , s2 , … ) : there exists a x~ ∈  X~  such that s1 =  x~1 ,

 … , sn =  x~n }  is an element of BS  .

Consider the space ( X~  , BX~  ) , where B X~   =  B S  ∩  X~  . There is an intrinsic one-to-one

correspondence Q  :  B X ↔ B X~  between the σ - algebras B X and B X~  . Here each random

variable η  :  <   Ω , F , P  >   → ( X , BX ) can be associated with a random variable η~ :

<   Ω , F , P  >   → ( X~  , BX~  ) according to the rule

 η ∈  B  =   η
~ ∈  Q B . (10)

Two random variables η1 , η2  with values in ( X , BX ) will be said to be equivalent,

η1 ~  η2  , if P ( η1 ∈  B , η2 ∈  B ) =  P ( η1 ∈  B ) for any set B ∈  B X .

Two random variables η~1 , η~2 with values in ( X~  , BX~  ) will be said to be equivalent,

if P ( η~1 ≠  η~2 ) =  0 .

It is easy to see that η1  and η2  are equivalent if and only if η~1 and η~2 are equivalent.

Thus relation (10) defines a one-to-one correspondence to within the equivalence. The
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mapping η → η~ will also be denoted by the symbol Q . Moreover, if η1 ~  η2 , then the

equality 

P ( η1 ∈  B , η3 ∈  C ) =  P ( η2 ∈  B , η3 ∈  C )

holds for any random variable η3  :  <   Ω , F , P  >   → ( X , BX ) and for any B , C ∈  B X . 

In its turn, the space ( X~  , BX~  ) could be mapped into the segment [ 0 , 1 ] according

to the rule: H ( x~ ) =    ∑  
i= 1

∞
  x~i ⋅  3−  i . Denote the range of values of H ( x~ ) by x~~ . The set

X~
~

 is a Borel one. Moreover, if we denote by B  X~
~  the σ - algebra of Borel sets on X~

~
 , then

the mapping H  :  ( X~  , BX~  ) → ( X~
~

 , BX~
~  ) is measurable and one-to-one (as well as H − 1 ).

Hence, if we introduce similarly Y~ , Y~
~

 and define the mappings Q′  , H′  , we can pass
from the random variables  { X  ( n )  } and  { ξn  } to the variables  { H (  ( X  ( n ) ) )  } and

 { H′  ( Q′  ( ξn ) )  } with values on [ 0 , 1 ] ; define for these the random variables { αn  };

and return to the initial characteristics by inverse transformations. The theorem is proved.
The proof of the theorem implies
Corollary 1. If the functions P(n)  ≡   P coincide for different n , then the functions

f(n)  ≡   f also coincide.

Moreover, it is evident that if  ξn  is a stationary metrically transitive sequence, the

sequence  ( ξn , αn )  also possesses these properties.

As it was already mentioned in Chapter 1, it follows from Theorem 3 that both SRS
and RC are objects more general than MC: if  X  ( n )  is a MC, than  X  ( n )  is a RC,
i.e., Condition (1) is satisfied for ξn  ≡   const and thus, by virtue of Theorem 3,
 X  ( n )  is a SRS with driver  αn  . Note that this yields us one more useful characterization

of MC.
On the other hand, it is evident that if  ξn  are arbitrary independent random

variables, the SRS  X  ( n )  forms a MC.
Definition 3. Let us call a RC  X  ( n )  homogeneous if
1) the sequence  ξn  is stationary;

2) the functions P(n)  do not depend on n :

P(n) ( x , y , B )  ≡   P ( x , y , B ) for all n , y , x , B.

Corollary 1 and the above remarks imply
Corollary 2. If  X  ( n )  is a homogeneous RC with driver  ξn  , then it is a homogeneous

SRS with driver  ( ξn , αn )  .

Note that for the case when  X  ( n )  assume values on the real line (i.e., X =  R ),
RC were introduced and constructively reduced to SRS in [21].

In the sequel we shall consider only homogeneous RC and SRS. Therefore we omit
the word "homogeneous".
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CHAPTER 4. ERGODICITY OF RECURSIVE CHAINS

1. General criteria of ergodicity for recursive chains

As it was noticed in Chapter 2, the ergodicity conditions for SRS and MC are close
both formally and in essence. This relationship is exposed even more explicitly while
comparing RC and MC.

Let  X  ( n )  , X  ( 0 ) =  const be a RC with driver  ξn  . Let us fix a number

m  ≥  0 and denote by F n , m  the σ − algebra generated by the random variables

 X  ( 1 ) , … , X  ( n ) ;  ξk ; k ≤  n +  m   
. As before, denote by Fn

 ξ the σ − algebra generated

by the variables  ξk ; k ≤  n  so that F n , m  =  σ ( F n , Fn+ m
 ξ  ) , F n , 0  = F n  . 

Theorem 1. Assume that  X  ( n )  is a RC with driver  ξn  and that it satisfies (3.5);

the sequence  ξn  is stationary and metrically transitive. Let there exists for some m  ≥  0 a

stationary sequence of events  An  , An ∈  Fn+ m
 ξ  , such that

(I R) P ( A0 ) >  0; 

(II R) for ω ∈  An  and B ∈  B X holds

P ( X  ( n +  m  +  1 ) ∈  B  |   F n+ m ) =  ϕ ( ξn , … , ξn+ m ; B )  a.s.,

where ϕ  :  Y m+ 1 ×  B X → [ 0 , 1 ] is a measurable function; ϕ ( y0 , … , ym ; B ) is a probability

measure a.e. in  ( y0 , … , ym ) ∈  Y m+ 1  with respect to the distribution of  ( ξ0 , … , ξm ) .

Then one can define on the same probability space with  X  ( n ) , ξn  a stationary

sequence  X
 n  such that X  ( n )  → sc  X  n . In addition, the sequence  X

 n  forms a RC,
 X  ( n )  and  X

 n  have the same driver  ξn  and the same transition function

P ( x , y , B ) .
The assertion of Theorem 1 implies necessarily that the joint distribution of the pair

 ( X0 , ξ0 ) 

π ( A  , B ) =  P ( X0 ∈  A  , ξ0 ∈  B ) , A  ∈  B X , B ∈  B Y 

satisfies relations

π ( A  , Y ) =    ∫  
X

  ∫  
Y

  π ( d x , d y ) ⋅  P ( x , y , A  ) , A  ∈  B X . (1)

Analogous relations take place for the joint distributions of the vectors  ( X0 , ξ0 ,

 ξ1 , … , ξk ) for any k ≥  0 . For instance, for k =  1 the joint distribution of the variables

( X0 , ξ0 , ξ1 ) 

π ( A  , B0 , B1 ) =  P ( X0 ∈  A  , ξ0 ∈  B0 , ξ1 ∈  B1 ) , A  ∈  B X , B0 , B1 ∈  B Y 

satisfies relations

π ( A  , Y , Y ) =     ∫  
X

  ∫  
Y

  ∫  
Y

  π ( d x , d y0 , d y1 ) P2 ( x , y0 , y1 , A  ) ,
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where P2 ( x , y0 , y1 , A  ) =     ∫  
X

  P ( x , y0 , d z ) P ( z , y1 , A  ) .

It is evident that if the sequence  ξn  consists of independent identically distributed

random variables, then the RC  X  ( n )  forms a MC and satisfies equalities

π ( A  , B ) =  π ( A  ) ⋅  P ( ξ0 ∈  B ) , where π ( A  ) =  P ( X0 ∈  A  ) ,

and equation (1) can be rewritten in the form

π ( A  ) =    ∫  
X

  π ( d x ) ⋅    ∫  
Y

  P ( ξ0 ∈  d y ) ⋅  P ( x , y , A  )  ≡    ∫  
X

  π ( d x ) ⋅  P ( x , A  ) ,

where 

P ( x , A  ) =    ∫  
Y

  P ( ξ0 ∈  d y ) ⋅  P ( x , y , A  ) .

R e m a r k  1 .  In addition to Theorem 1 one can formulate the following assertions:
If Conditions (I R), (II R) are satisfied with the same events  An   and the function

ϕ for any initial value X  ( 0 ) =  x ∈  V0  from a certain set, V0 ∈  B X , then the distribution

of the limiting sequence  X
 n  does not depend on X  ( 0 ) =  x ∈  V0 also.

If there exists an increasing sequence of sets  Vk   ,  ∪ Vk  =  X , such that, for any

k =  1 , 2 , …, there exist a stationary positive sequence  An, k   and a function ϕk  satisfying

Conditions  (I R), (II R) for the RC  X  ( n )  with an arbitrary initial value X  ( 0 ) =
=  x ∈  Vk , then the distribution of the limiting sequence  X

 n  does not depend on

X  ( 0 ) =  x ∈  X .
Theorem 1 admits the following converse statement.

Theorem 2. Let the stationary sequence  X
 n  be defined on the same probability space

with the SRS  X  ( n ) , and let X  ( n )  → sc  X  n . Then there exist an integer m  ≥  0 , a measurable

function g  :  Y m+ 1 → X, and a stationary sequence of events  An   , An ∈  F n+ m  , where

An  are renovating events for  X  ( n ) , such that Conditions (I R), (II R) are satisfied for
 X  ( n )  with

ϕ ( ξn , … , ξn+ m ; B )  ≡   I ( g ( ξn , … , ξn+ m ) ∈  B ) .

Theorem 2 is a reformulation of that part of Theorem 2.4, which deals with the
necessity of existence of renovating events. In order to prove Theorem 1, it suffices to
represent  X  ( n )  in the form of a SRS with driver  ξn ~  =  ( ξn , αn ) , where αn  are

introduced in Theorem 3.3, and to notice that on the set An  the random variable

X  ( n +  m  +  1 ) is defined uniquely by the values of ξn
~  , … , ξ~n+ m . The sequence  ξn

~   is

stationary and metrically transitive. Thus An  form a stationary sequence of renovating

events for the SRS  X  ( n )  with the driver  ξn
~   . Hence the first part of Theorem 2.4

implies Theorem 1 and the assertions contained in Remark 1 follow from the reasoning
introduced just below the statement of Theorem 2.3.

Theorem 1 can be extended in the following direction.
Theorem 3. Let  X  ( n )  be a RC with driver  ξn  satisfying (3.5);  the sequence

 ξn  being stationary and metrically transitive. Assume that there exist an integer m  ≥  0, a
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stationary sequence of events  An , An ∈  Fn+ m
 ξ  , and measurable functions p  :  Y m+ 1 → 

→ [ 0 , 1 ] , ϕ  :  Y m+ 1 ×  B X  → [ 0 , 1 ] (where ϕ ( y0 , … , ym ; ⋅  ) is a probability measure on

X for a.e.  ( y0 , … , ym ) ∈  Y m+ 1  with respect to the distribution of  ( ξ0 , … , ξm ) ) such that

(I RC) E  I ( A0 ) ⋅  p ( ξ0 , … , ξm )  >  0 ; (2)

(II RC) the inequality 

P ( X  ( n +  m  +  1 ) ∈  B  |   F n,m ) ≥  p ( ξn , … , ξn+ m ) ⋅  ϕ ( ξn , … , ξn+ m ; B ) (3)

holds for ω ∈  An , B ∈  B X .

Then one can define on the same probability space with  X  ( n ) , ξn  a stationary

sequence  X
 n  such that X  ( n )  → sc  X  n . The sequence  X

 n  is a RC with the same driver
and the same transition function as  X  ( n ) .

It is clear that Theorem 1 is a particular case of Theorem 3 for p (y0 , … , ym) ≡  1

and satisfied (3) as equality. Thus Theorem 2 may be considered to be, in a certain sense,
an extension of Theorem 3.

Let us also note that Condition (II) for MC is a particular case of Condition (II RC)
for ξn  ≡   const .

R e m a r k  2 . In the particular case when m  =  0, p ≡  c o n s t  , and the measure ϕ
does not depend on the variables  ( y0 , … , ym ), Conditions (I RC) and (II RC) have the

form

P ( A0 ) >  0 ; P ( X  ( n +  1 ) ∈  B  |   F n ) ≥  p ⋅  ϕ ( B ) , (4)

for ω ∈  An ∈  Fn
 ξ . By virtue of Theorem 3 these conditions provide for the ergodicity of

the RC  X  ( n )  . Will this assertion remain valid if we assume that An ∈  Fn− 1
 ξ  and replace

the σ − algebra F n  in Condition (4) by a "poorer" σ − algebra σ ( X  ( n ) , ξn− 1 , … , ξ0 ) ?

The answer to this question is negative in the general case , which is illustrated by Example
2.5. Example 2.5 gives the negative answer also to another closely related question. From
the view point of many applications, it would seem highly desirable (and rather natural,
by analogy with MC) to try to obtain the ergodicity conditions of types (I RC) and (II RC),
but for SRS and for a "poorer" σ − algebra in (3) (otherwise the left hand side in (3) is
the indicator function). In the simplest case, m  =  0, these conditions could have the form

P ( A0 >  0 ) ; P ( X  ( n +  1 ) ∈  B  |   X  ( n ) , ξn− 1 , ξn− 2 , … , ξ0 ) ≥  p ⋅  ϕ ( B ) 

for ω ∈  An ∈  Fn− 1
 ξ  . However, as stated above, these conditions do not ensure ergodicity

(see Example 2.5).
R e m a r k  3 . Theorem 3 lacks an analog of Condition (III) of Chapter 2

(non-periodicity). This fact is evidently connected with the stationarity of the sequence
An , n ≥  0 .

Proof of Theorem 3. Let us note first of all that in the conditions of Theorem 3 one
can assume that p ( y0 , … , ym )  ≡   const >  0 without loss of generality. Indeed, it follows

from (2) that there exist a set An
1  ⊆   An and a number p >  0 such that P ( An

1 ) >  0 and
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p ( ξn , … , ξn+ m ) ≥  p a.s. on An
1 . Thus Condition (3) remains valid after An is replaced

with An
1  and p ( ξn , … , ξn+ m ) with p.

So let us assume that p=  const> 0. One may assume also that p< 1. Let us apply now
a method introduced in [7], [8]; as in this publications, we reproduce our reasoning for
m= 0 only for the sake of simplicity. Denote P( X  (n), ξn , B)= P( X  (n +  1) ∈  B |  F n,0 ).

We construct a sequence  X
~  ( n ) on the same probability space with  ξn  and a

sequence  δn   of independent identically distributed variables, not depending on  ξn  and

having the distribution function P ( δn =  1 ) =  1 −  P ( δn =  0 ) =  p . The construction is as

follows.
Assume that X

~  ( 0 ) =  X  ( 0 ) =  const. Let us specify some random variable δ0 , which

is independent of  ξn  .

Let  X
~  ( k ) , δk   be already constructed for k ≤  n . Denote ξk

∗ =  ( ξk , δk ),

X  ∗ ( k ) =  ( X  ( k ) , δk ). Define σ − algebras

Fk
∗ =  σ  X

 ∗ ( 0 ) , … , X  ∗ ( k ) ; ξ0
 ∗ , … , ξk

 ∗ ; 

Fk
∗∗ =  σ  X

 ∗ ( 0 ) , … , X  ∗ ( k ) ; ξ0
 ∗ , … , ξk

 ∗ ; ξk+ 1 , ξk+ 2 , …  .

We specify the pair  ( X~  ( n +  1 ) , δn+ 1 ) with the help of the conditional distribution

P ( X~  ( n +  1 ) ∈  B , δn+ 1 =  1  |   Fn
∗∗  ) =   

 =  P ( X~  ( n +  1 ) ∈  B  |   Fn
∗∗  ) ⋅  P ( δn+ 1 =  1 ) =  p ⋅  P ( X~  ( n +  1 ) ∈  B  |   Fn

∗∗  ) .

In other words, we consider X
~  ( n +  1 ) and δn+ 1  to be conditionally independent

with respect to Fn
∗∗ ; δn+ 1  does not depend on Fn

∗∗ .

Then with regard to (3.5) (or, similarly, (3.7)), we define P ( X~  ( n +  1 ) ∈  B  |   Fn
∗∗  )

from the equalities

P ( X~  ( n +  1 ) ∈  B  |   Fn
∗∗  ) =  P ( X~  ( n +  1 ) ∈  B  |   Fn

∗  ) =   

 =  














 ϕ ( ξn , B )                                                          for  ω ∈  An , δn ( ω ) =  1 ;

1
1 −  p  P ( X~  ( n ) , ξn , B ) −  p ⋅  ϕ ( ξn , B )   for  ω ∈  An , δn ( ω ) =  0 ;

P ( X~  ( n ) , ξn , B )                                             for  ω ∉  An .

 

Note that (3.2) holds in this case and  X
~  ( n )  forms a RC. Indeed, for ω ∉  An this

equality is valid by the definition, and for ω ∈  An 

P ( X~  ( n +  1 ) ∈  B  |   X~  ( 0 ) , … , X~  ( n ) ; ξ0
 ∗ , … , ξn

 ∗ ) =  p ⋅  ϕ ( ξn , B ) +    

  +  ( 1 −  p ) 
P ( X~  ( n ) , ξn , B ) −  p ⋅  ϕ ( ξn , B )

1 −  p  =  P ( X~  ( n ) , ξn , B ) .
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Hence the distribution of the constructed sequence  X
~  ( n ) , ξn  coincides with the

initial distribution of  X  ( n ) , ξn  .

On the other hand, the RC  X
 ∗ ( n )  with driver  ξn

 ∗  and a stationary sequence

of events An
 ∗ =  An  ∩   δn =  1  satisfy the conditions of Theorem 1. Indeed, P ( An

∗ ) =
=  P ( An ) ⋅  p >  0 and for

X ∗ =  X ×   0 , 1 , B ∗ =  B X ∗
   , B ∗ =  ( B1 , 1 ) ∪ ( B2 , 0 ) ,

while ω ∈  An
 ∗  , holds the identity

P ( X  ∗ ( n +  1 ) ∈  B ∗  |   Fn,0
∗   ) =  ϕ ( ξn , B1 ) ⋅  p +  ϕ ( ξn , B2 ) ( 1 −  p )  ≡    

≡   ϕ ( ξn , B ∗ ) .

The theorem is proved.
R e m a r k  4 . We shall make use also of an assertion closely related to Theorem 3.

Let  X  ( n )  be a RC with driver  ( ξn , ηn )  taking values in arbitrary measurable spaces.

Denote for a fixed m  ≥  0 and arbitrary n ≥  0 by Fn, m′   the σ − algebra generated by the

random variables  X  ( 1 ) , … , X  ( n ) ;  ηk , k <  n  ; 
 ξk , k ≤  n +  m   

, and by Fn, m′′   the

σ − algebra generated by the variables 
 ηk , k <  n  ; 

 ξk , k ≤  n +  m   
 . 

Corollary 1. Let the stationary and metrically transitive sequence  ξn  and the i.i.d.

sequence ηn  be independent. Assume that there exists (for some integer m  ≥  0 ) a stationary

sequence of events  An  , An ∈  Fn, m′′   such that Conditions (I RC) and (II RC) are satisfied

with the σ − algebra Fn, m  replaced by the σ − algebra Fn, m′  . Then the statement of Theorem

3 is also valid.
Proof. Theorem 3.2 implies that  X  ( n )  is also a RC with the driver  ξn  . Since

the σ − algebras Fn+ m
 ξ  and F n− 1

 η   ≡   σ ( ηk , k <  n ) are independent and generate Fn, m′′  =

= σ ( Fn+ m
 ξ  , Fn− 1

 η  ), the conditions of the corollary imply that there exist some sets

An′ ∈  Fn+ m
 ξ  , An′′ ∈  Fn− 1

 η  such that An′  ∩  An′′  ⊆   An and P ( An′ ∩ An′′ )=  P (An′ )⋅ P (An′′ )> 0.

This means that the following relations, 

P ( X  ( n +  m  +  1 ) ∈  B  |   F n,m ) =    

 =  E  E  I ( X  ( n +  m  +  1 ) ∈  B  |   Fn,m′     |   F n,m   ≥   

 ≥  E  E  I ( X  ( n +  m  +  1 ) ∈  B ) ⋅  I ( An′′ )  |   Fn,m′     |   Fn,m   ≥   

 ≥  P ( An′′ ) p ( ξn , … , ξn+ m ) ϕ( ξn , … , ξn+ m ; B ) ,

hold a.s. on the set An′. Thus Theorem 3 can be applied. Corollary 1 is proved.

2. Ergodicity of RC with non-stationary drivers

One can formulate ergodicity theorems which are analogous to Theorems 2.5-2.7 for
SRS also for the case of non-stationary drivers. For instance, Theorem 2.5 has the following
analog.
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Let  ξn  and  ζn   be two drivers assuming values in the space Y. Let us define

two recursive chains:  X  ( n ) , X  ( 0 ) =  const, with the driver  ξn  and the transition

function P ( x , y , B ), and  Y ( n ) , Y ( 0 ) =  const, with the driver  ζn   and the same

transition function P ( x , y , B ).
Theorem 4. Let a stationary metrically transitive sequence  ξn  , a sequence  ζn   , a

transition function P ( x , y , B ), and a set V0 ∈  B X be such that:

1) Conditions  (I RC), (II RC) are satisfied for RC  X  ( n )  for a certain integer

m  ≥  0 , a stationary "positive" renovating sequence An ∈  Fn+ m
 ξ  , functions p , ϕ, and for any

initial condition X  ( 0 ) ∈  V0 ; 

2) the sequence  ζn   c-converges to  ξn  ;

3) the sequence  Y ( n )  satisfies the relations

P (    ∪
k≥ n

    Y ( k ) ∈  V0  ) =  1 for each n .

Then one can define on the same probability space with  Y ( n ) a stationary sequence

 X
 n  such that Y ( n )  → c  X  n . Moreover,  X

 n  is a RC with the driver  ξn  and the

transition function P ( x , y , B ) .
The proof of Theorem 4 practically duplicates the proof of Theorem 2.5 and we shall

not present it here.

3. On certain conditions sufficient for ergodicity

Let  X  ( n )  be, as above, a RC with driver  ξn  satisfying (3.5). Let us consider

the case when the driver itself satisfies a mixing condition of the form:

P ( ξn+ 1 ∈  B  |   ξn , ξn− 1 , … ) ≥  q ⋅  Ψ ( B )  a.s., (5)

for some q >  0 and a probability measure Ψ on ( Y , BB Y
 ) .

Let us consider a sequence of independent identically distributed random variables
 ξn

^   with the distribution Ψ, which may be defined, generally speaking, on another

probability space. For any initial condition X̂  ( 0 ) =  x ∈  X introduce a RC  X̂  ( x , n ) 
with driver  ξn

^   and the transition function P ( x , y , B ) of the initial RC. In accordance

with the argument above, the RC X̂  is a MC. 
Theorem 5. Let (4)  be satisfied. Assume that there exist a set V ⊆  X , a stationary

sequence of events An ∈  Fn− 1
 ξ  , P ( An ) >  0 , a number m  ≥  0 , and measurable functions

p : Y m+ 1 → [0, 1] , ϕ : Y m+ 1 ×  B X → [0, 1] such that E p( ξ̂0 , … , ξ̂m)> 0 , ϕ ( y0 , … , ym ; ⋅  )

is a probability measure on ( X , BX ) for any  ( y0 , … , ym ) ∈  Y m+ 1 , and the following

conditions are valid:

1) P ( X  ( n ) ∈  V  |   Fn− 1
 ξ   ) =  1 on the set An for all n ≥  0 ;

2) P ( X̂  ( x , m  +  1 ) ∈  B  |   ξ0^  , … , ξm^  ) ≥  p ( ξ0^  , … , ξm^  ) ⋅  ϕ ( ξ0^  , … , ξm^  ; B ) 

a.s. with respect to the distribution of  ( ξ0
^  , … , ξm

^  ) for all B ∈  B X , x ∈  V .

 Then the statement of Theorem 1 is valid for the RC X  ( n ) .
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Proof. Applying mathematical induction, we construct a supplementary sequence
 ξn

~   ≡   ( ξn
∗ , ξ̂n , βn ) , n ≥  0  on some probability space in the following way. For n =  0

assume the random variables ξ0
^  and β0  to be independent, ξ0

^  assuming values in the space

( Y , BB Y
 ) and having the distribution Ψ, while β0  admits values 0 and 1, P ( β0 =  1 ) =

=  1 −  P ( β0 =  0 ) =  q  . The random variable ξ0
∗  assumes values from the space ( Y , BY )

and is defined by the relations: ξ0
∗ =  ξ̂0 on the set  β0 =  1 and 

P ( ξ0
∗ ∈  B  |   ξ0

^  , β0 ) =  P ( ξ0
∗ ∈  B  |   β0 ) =   

P ( ξ0 ∈  B ) −  q ⋅  Ψ ( B )
1 −  q  

on the set  β0 =  0  for all B ∈  B Y .

Let the random variables ξk
∗ , ξk

^  , βk  be already defined for all 0 ≤  k ≤  n . We proceed

to define the variables ξn+ 1
∗  , ξ̂n+ 1 , βn . We shall assume ξ̂n+ 1 and βn+ 1  to be mutually

independent and independent of  ξk
~  , k ≤  n . Besides, ξ̂n+ 1 has the distribution Ψ on

( Y , BY ) and P ( βn+ 1 =  1 ) =  1 −  P ( βn+ 1 =  0 ) =  q . The random variable ξn+ 1
∗  is defined

with the help of the random variables already defined by the relations: ξn+ 1
∗   =  ξ̂n+ 1 on

the set  βn+ 1 =  1  . On the set  βn+ 1 =  0  we put

P ( ξn+ 1
∗   ∈  B  |   ξ0

~  ∈  d y~0 , … , ξn
~  ∈  d yn

~  ; ξ̂n+ 1 ∈  d ŷn+ 1 ; βn+ 1 =  0 ) =   

 =  P ( ξn+ 1
∗   ∈  B  |   ξ0

∗ ∈  d y0 , … , ξn
∗  ∈  d yn ; βn+ 1 =  0 ) =   

  =  
1

1 −  q [ P ( ξn+ 1 ∈  B  |   ξ0 ∈  d y0 , … , ξn ∈  d yn ) −  q ⋅  Ψ ( B ) ] 

for B ∈  B Y, y~i =  ( yi , ŷi , ci ) ∈  Y ×  Y ×   0 , 1 , ŷn+ 1 ∈  Y. 

According to the theorem of measure extension, we can define a sequence
 ξn

~  , n ≥  0  with the state space ( Y~∞   , BY~
∞  ) , Y~  =  Y ×  Y ×   0 , 1 , such that the joint

distributions of its elements satisfy the above relations. It is easy to check that the sequence
 ξn

~  , n ≥  0  is stationary and metrically transitive. Thus by virtue of the Kolmogorov

theorem one can extend this sequence to a stationary one defined on the entire integer
lattice of the real axis. In other words, one can assume that a stationary metrically transitive

sequence  ξn
~  =  ( ξn

∗  , ξn
^   , βn ; −  ∞  <  n <  ∞   is defined, which satisfies the following

conditions: for each n 
a) the random variables ξ̂n+ 1 and βn+ 1 are mutually independent, the σ − algebras

σ ( ξ̂n+ 1  ,  βn+ 1  ) and Fn
~   ≡   σ  ξk

~  , k ≤  n  are also independent;

b) ξn+ 1
∗  =  ξ̂n+ 1 a.s. on the set  βn+ 1 =  1  and the equality

P ( ξn+ 1
∗   ∈  B  |   ξk

~  ∈  d yk
~  , … , ξn

~  ∈  d yn
~  ; ξ̂n+ 1 ∈  d ŷn+ 1 ; βn+ 1 =  0 ) =   

 =  P ( ξn+ 1
∗   ∈  B  |   ξk

∗ ∈  d yk , … , ξn
∗  ∈  d yn ; βn+ 1 =  0 ) =   

 =  1
1 −  q [ P ( ξn+ 1 ∈  B  |   ξk ∈  d yk , … , ξn ∈  d yn ) −  q ⋅  Ψ ( B )]  
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holds  for B ∈  B Y ,  ξn  , k ≤  l ≤  n , ŷn+ 1  ∈  Y and a.e. in  ( yk
~  , … , yn

~   ; ŷn+ 1 ) with respect

to the distribution of  ( ξk
~  , … , ξn

~   ; ξ̂n+ 1 ) for any k <  n .

It is easy to see that the sequences  ξn
∗  and  ξn  have the same finite-dimensional

distributions. Indeed, the equalities 

 P ( ξn+ 1
∗   ∈  B  |   ξ0

∗ ∈  d y0 , … , ξn
∗  ∈  d yn ) =   

 =  q ⋅  P ( ξn+ 1
∗   ∈  B  |   ξ0

∗ ∈  d y0 , … , ξn
∗  ∈  d yn ; βn+ 1 =  1 ) +   

 +  ( 1 −  q ) ⋅  P ( ξn+ 1
∗   ∈  B  |   ξ0

∗ ∈  d y0 , … , ξn
∗  ∈  d yn ; βn+ 1 =  0 ) =   

 =  q ⋅  Ψ ( B ) +  ( 1 −  q ) 
P ( ξn+ 1 ∈  B  |   ξ0 ∈  d y0 , … , ξn ∈  d yn ) −  q ⋅  Ψ ( B ) 

1 −  q  =   

 =  P ( ξn+ 1 ∈  B  |   ξ0 ∈  d y0 , … , ξn ∈  d yn ) 

hold for any n ≥  0 a.s. with respect to the distribution of  ( ξ0
∗  , … , ξn

∗ ).

Let us now construct a RC  X  ∗( n ) with the driver  ξn
~   which satisfies (3.5) and

the following relation:

P ( X  ∗ ( n +  1 ) ∈  B  |   X  ∗ ( n ) , ξn
~  ) =  P ( X  ∗ ( n +  1 ) ∈  B  |   X  ∗ ( n ) , ξn

∗  ) =   

 =  P ( X  ∗ ( n ) , ξn
∗ , B ) a.s.,

where the transition function P ( x , y , B ) is that of the RC X  ( n ) with the driver  ξn  .

The sequence X  ∗ ( n ) defined in this way is a RC with the driver  ξn
~   ; simultaneously

it is a RC with the driver  ξn
∗  . Besides, the finite-dimensional distributions of the

sequences  ( X  ∗ ( n ), ξn
∗ ) and ( X  ( n ), ξn ) coincide. Thus we can consider ( X∗( n ) , ξn

∗ ) as

a realization of  ( X  ( n ) , ξn ) on some probability space and, hence, we can omit the

superscript asterisk.
Consider a stationary sequence of events

An
~   =   An   ∩    βn+ i =  1 ; 0 ≤  i ≤  m   ∈  F~n+ m ; P ( An

~  ) =  P ( An ) ⋅  qm+ 1 >  0 .

For any n the sequence X  ( n +  k ) , 0 ≤  k ≤  m  has the same conditional distribution

on the event An
~  as the Markov chain X̂  ( n +  k ) , 0 ≤  k ≤  m , with the "initial" condition

at time n : X̂  ( n ) =  X  ( n ) ∈  V . Condition 2) of the theorem yields for B ∈  B Y the

relations

P ( X  ( n +  m  +  1 ) ∈  B  |   X  ( n ) ∈  d x ; ξ̂n+ i ∈  d yi , βn+ i =  1 ; 0 ≤  i ≤  m  ) =   

 =  P ( X̂  ( x , m  +  1 ) ∈  B  |   ξi ∈  d yi ; 0 ≤  i ≤  m  ) ≥  p ( y0 , … , ym ) ⋅  ϕ ( y0 , … , ym ; B ) 

a.e. in x ∈  V with respect to the distribution of X  ( n ) and a.e. in  ( y0 , … , ym ) with respect

to the distribution of  ( ξ0
^  , … , ξm

^  ). Hence a.e. in ω ∈  An
~  hold the relations,

P ( X  ( n +  m  +  1 ) ∈  B  |   F~ n , m ) =  P ( X  ( n +  m  +  1 ) ∈  B  |   X  ( n ) ; ξn , … , ξn+ m ) =  
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=  P ( X  ( n +  m  +  1 ) ∈  B  |   X  ( n ) ; ξ̂n , … , ξ̂n+ m ) ≥  

 ≥  p ( ξn
^  , … , ξ̂n+ m ) ⋅  ϕ ( ξn

^  , … , ξ̂n+ m ; B ) ,

where F~ n , m is the σ − algebra generated by the random variables X  ( 1 ) , … ,  X  ( n ) 
and   ξk

~   , k ≤  n  .

Let us introduce the functions p~  :  Y~ m+ 1  → [ 0 , 1 ] and ϕ~  :  Y~ m+ 1 ×  B X  → [ 0 , 1 ]

according to the rule: for yl
~ =  ( yl , yl

^  , cl ) ∈  Y~ , 0 ≤  l ≤  m  , B ∈  B X 

p~ ( y0
~  , … , ym

~  ) =  p ( y0
^  , … , ym

^  )

and

ϕ~ ( y0
~  , … , ym

~  ; B ) =  ϕ ( y0
^  , … , ym

^  ; B ).

It follows from the conditions of the theorem and the relations introduced above that
for the RC X  ( n ) with the driver  ξn

~   

E [ I( An
~ )⋅ p~( ξn

~  , … , ξ~n+ m) ]= E [ I( An
~ )⋅ p( ξn

^  , … , ξ̂n+ m) ]= P( An
~ )⋅ E p( ξn

^  , … , ξ̂n+ m) >  0,

and for B ∈  B X 

P ( X  ( n +  m  +  1 ) ∈  B  |   F~ n , m ) ≥  p~ ( ξn
~  , … , ξ~n+ m ) ⋅  ϕ ( ξn

~  , … , ξ~n+ m ; B ) 

a.s. on the set An
~  . Hence, the conditions of Theorem 3 are satisfied. Theorem 5 is proved.

E x a m p l e  1 . Let { w ( n ) } , w ( 0 ) =  0 be the sequence of workload vectors in a
multiserver queueing system G  ⁄ G  ⁄ l :

w ( n +  1 ) =  R ( w ( n ) +  e1 sn −  i τn ) +  , (6)

where sn  are service times, τn  are inter-arrival times, the sequence ξn  ≡   ( sn , τn ) is

stationary and metrically transitive; e1 =  ( 1 , 0 , … , 0 ), i =  ( 1 , 1 , … , 1 ), and R is the

permutation of coordinates of l-dimensional vectors to non-decreasing order. As
demonstrated in [2], if

l ⋅  E τn >  E sn  , (7)

one can construct a stationary sequence { Y n  } of l-dimensional vectors such that

w ( n ) ≤  Y n  a.s. for all n. Moreover, it is demonstrated in [2, p.360] that, if

P ( τn+ 1 >  x  |   Fn
 ξ ) >  0 a.s. for all x, where Fn

 ξ =  σ { sk , τk ; k ≤  n }, then the sequence

{ w ( n ) } sc-converges to some non-singular stationary sequence { wn  } under some
additional assumptions.

SRS being a particular case of RC, Theorems 1-5 are applicable to SRS as well
(though "singularly", since the event indicators should be placed both on the left-hand and
the right-hand sides of inequality (II RC)). In particular, Theorem 5 provides another
version of ergodicity conditions for the SRS { w ( n ) }.

Corollary 2. Assume that (7) is satisfied for the sequence w ( n ) of the form (6) . If,
moreover, there exist a number q >  0 and a probability measure Ψ on [ 0 , ∞  ) ×  [ 0 , ∞  ) such
that
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1) P (  ( τn+ 1 , sn+ 1 ) ∈  B  |   Fn
 ξ ) >  q ⋅  Ψ ( B ) a.s. for all Borel B ⊆  [ 0 , ∞  ) ×  [ 0 , ∞  ),

and

2) inf { z  :  Ψ ( Cz ) >  0 } <  0 , where Cz =  { (x , y )  :  y −  l x ≤  z }, 

then the statement of Theorem 1 holds for the RC { w ( n ) }.
Proof. Let us find such z0 <  0 that Ψ ( Cz0

 ) >  0 , and such numbers y0 ≥  0 and

x0 >  0 that y0 −  l x0 <  z0  and Ψ (D) >  0 , where D =  [ 0 , y0 ] ×  [ x0 , ∞  ). Define a number

q̂ =  q ⋅  Ψ ( D ) >  0 and a measure Ψ̂ ( B ) =  Ψ ( B ∩ D )  ⁄  Ψ ( D ). Note that Condition (3)

remains valid after replacement of q and Ψ by q̂ and Ψ̂ respectively.
Let us choose a number M large enough for the event An =  { Yn ≤  ( M , … , M ) } to

have positive probability. Let  ( τ̂n , ŝn ) be a sequence of i.i.d. two-dimensional random

vectors with the distribution Ψ̂ (here l ⋅  τ̂n >  ŝn  a.s. and, in particular, l ⋅  E τ̂n >  E ŝn  ).

Consider two l − server queueing systems with the same driver ξ̂n =  ( τ̂n , ŝn ) and different

initial conditions, ŵ0 ( 0 ) =  ( 0 , … , 0 ) and ŵM ( 0 ) =  ( M , … , M ). As demonstrated in

[18], for any fixed M <  ∞  the sequences { ŵ0 ( n ) } and { ŵM ( n ) } sc-converge to the same

stationary  sequence { ŵn }. Denote by γ =  γ ( M ) the "coupling" time of the sequences
{ ŵ0 ( n ) } and { ŵM ( n ) } : γ =  min { n ≥  0  :  ŵ0 ( n ) =  ŵM ( n ) } , and find such m  that

P ( γ ≤  m  ) >  0 .
Let x =   ( x1 , … , xl ) ≤  ( M , … , M ) be any vector with non-negative coordinates and

ŵx ( n ) , n ≥  0, be the sequence of workload vectors in a l − server queueing system with

the driver ξ̂n =  ( τ̂n , ŝn ) and the initial condition ŵx ( 0 ) =  x. Inequalities ŵ0 ( n ) ≤
≤  ŵx ( n ) ≤   ŵM ( n ) are known to be preserved a.s. for any n ≥  0 (see, e.g., [18]). Thus

equalities ŵx ( m  +  1 ) =  ŵ0 ( m  +  1 ) hold for any x ≤  ( M , … , M ) on the set { γ ≤  m  }.

Hence the conditions of Theorem 5 are satisfied for p ( ξ̂0 , … , ξ̂m ) =  I ( γ ≤  m  ) and

ϕ ( ξ̂0 , … , ξ̂m ; B ) =  I ( ŵ0 ( m  +  1 ) ∈  B ). Corollary 2 is proved.

Let us go back to an arbitrary RC { X  ( n ) } with driver { ξn } and assume the driver

{ ξn } to satisfy a mixing condition which is stronger than (4):

P ( ξn+ 1 ∈  B ;  ( ξn+ 2 , ξn+ 3 , … ) ∈  C  |   ξn , ξn− 1 , … ) ≥  

≥  q ⋅  Ψ( B ) ⋅  P ( ( ξn+ 2 , ξn+ 3 , … ) ∈  C |  ξn , ξn− 1 , … ) a.s. (8)

for some number q >  0, probability measure Ψ on ( Y , B Y ), each B ∈  B X and each

cylindrical set C ∈  Y ∞  . Then the following theorem is valid.
Theorem 6. Let (8)  be satisfied. Assume that there exist a set V ⊆  X , a stationary

sequence of events An ∈  Fn− 1
 ξ  , P ( An ) >  0 , numbers m  ≥  0 , p >  0 and a probability measure

ϕ on ( X , BX ) such that

1) P ( X  ( n ) ∈  V  |   Fn− 1
 ξ  ) =  1 on the set An for all n ≥  0 ,

2) P ( X̂  ( x , m  +  1 ) ∈  B ) ≥  p ⋅  ϕ ( B ) for all B ∈  B X , x ∈  V.

Then the statement of Theorem 1 holds for the RC X  ( n ) .
Note that Condition (7) is equivalent to the following one:

P ( ξn ∈  B  |   { ξk ; k ≠  n } ) ≥  q ⋅  Ψ ( B ) a.s. (9)
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for all B ∈  B X . Moreover, it is sufficient for (8) or (9) that the mixing coefficient of the

form

h  ≡   inf ( P ( A  ∩ B )  |   P ( A  ) ⋅  P ( B ) ) 

be positive (where the infimum is taken over all the sets A  ∈  F− ∞ ,0
 ξ  and B ∈  F1,∞

 ξ  of

positive probability).
Proof of Theorem 6. Let { ξn } be a stationary metrically transitive sequence satisfying

(8). By means of a mathematical induction argument we construct a supplementary sequence

ξ~n =  ( ξn
 ∗ , ξn

(1) , ξn
(0) , βn ) on the same probability space with { ξn } in the following way.

For n =  0 we assume that the random variables ξ0
(1) and β0  are mutually independent and

do not depend on { ξi  }, the variable ξ0
(1) has the distribution Ψ on space ( Y , BY ) and

P ( β0 =  1 ) =  1 −  P ( β0 =  0 ) =  q . The random variable ξ0
(0) does not depend on ξ0

(1) and

β0 ; it is determined according to the conditional distribution

P ( ξ0
(0) ∈  B  |   { ξi , i ≠  0 } ) =   

1
1 −  q  [ P ( ξ0 ∈  B  |   { ξi ; i ≠  0 } ) −  q ⋅  Ψ ( B )]. 

The joint distribution of the variables ξ0  and ξ0
(0) may be arbitrary. For the sake of

definiteness one may consider the variables ξ0  and ξ0
(0) to be conditionally independent

with respect to { ξi , i ≠  0 }. The random variable ξ0
 ∗ is defined by the equality

ξ0
 ∗ =  ξ0

(1) ⋅  I ( β0  =  1 ) +  ξ0
(0) ⋅  I ( β0 =  0 ) .

Let us introduce the sequence { ξn ( 0 ) ; −  ∞  <  n <  ∞  } assuming ξ0 ( 0 ) =  ξ0
 ∗ and

ξn ( 0 ) =  ξn for n ≠  0. It is easily seen that the finite-dimensional distributions of the

sequences { ξn ( 0 ) } and { ξn } coincide.

Suppose the random variables ξ~l =  ( ξl
 ∗ , ξl

(1) , ξl
(0) , β0 ) and the sequences { ξn ( l ) ,

 −  ∞  <  n <  ∞  } to be constructed for all 0 ≤  l ≤  k, where

ξn ( l ) =  






 ξn

 ∗  for  o ≤  n ≤  l ,
  ξn  for  n>  l  or  n <  0 .

 

The sequences { ξn ( l ) , −  ∞  <  n <  ∞  } have the same finite-dimensional distributions

as the initial sequence { ξn }. Select the random variables ξ~k+ 1 = ( ξk+ 1
 ∗  , ξk+ 1

(1)  , ξk+ 1
(0)  ,

 βk+ 1 ) according to the following conditions: the variables ξk+ 1
(1)  and βk+ 1  are mutually

independent and do not depend of the random variables defined previously, moreover,

ξk+ 1
(1)  has the distribution Ψ on ( Y , BY ), and P ( βk+ 1 =  1 ) =  1 −  P ( βk+ 1 =  0 ) =  q; the

random variable ξk+ 1
(0)  does not depend on ξk+ 1

(1)  , βk+ 1  and has the conditional distribution

P ( ξk+ 1
(0)  ∈  B  |   { ξi

(k) , i =  k +  1 } , { ξj
(0) , ξj

(1) , βj ; j ≤  k } ) =  

=   
1

1 −  q [ P ( ξk+ 1 ∈  B  |   { ξi ( k ) ; i ≠  k +  1 } ) −  q ⋅  Ψ ( B )] a.s. 
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The random variable ξk+ 1
 ∗  is defined by the equality:

ξk+ 1
 ∗  =  ξk+ 1

(1)  ⋅  I ( βk+ 1  =  1 ) +  ξk+ 1
(0)  ⋅  I ( βk+ 1 =  0 ) .

Define the sequence { ξn ( k +  1 ) ; −  ∞  <  n <  ∞  } as follows: ξk+ 1 ( k +  1 ) =  ξk+ 1
 ∗

and ξn ( k +  1 ) =  ξn ( k ) for n ≠  k +  1 .

Therefore, for any 0 ≤  k <  ∞  we have defined a stationary metrically transitive sequence

{ ξ~l =  ( ξl
 ∗ , ξl

(1) , ξl
(0) , βl ) ; o ≤  l ≤  k } possessing the following properties:

a) the finite-dimensional distributions of the sequence { ξl
 ∗ ; 0 ≤  l ≤  k } are those of

the sequence { ξl ; 0 ≤  l ≤  k } ;

b) for any 0 ≤  l ≤  k the random variables ξl
(1) and βl  are mutually independent and

do not depend on the random variables { ξ~i ; o ≤  i ≤  k , i ≠  l }, while ξl
 ( 1 ) has the

distribution Ψ on the space ( Y , BY ) and P ( βl =  1 ) =  1 −  P ( βl =  0 ) =  q ;

c) ξl
 ∗ =  ξl

(1) ⋅  I ( βl  =  1 ) +  ξl
(0) ⋅  I ( βl =  0 ) .

According to the theorem of measure extension we can define the sequence

{ ξn
~  , n ≥  0 } assuming values in the space ( Y~ ∞   , BY~  ∞  ) , Y~ =  Y ×  Y ×  Y ×  { 0 , 1 }, with

the finite-dimensional distributions satisfying the relations introduced above. The sequence
obtained being stationary, it can be extended to a stationary one on the entire axis according
to the Kolmogorov theorem on compatible distributions.

Then, following the proof of Theorem 5, one can define a sequence { X  ∗ ( n ) } which

is a RC with driver { ξn ∗  } such that the finite-dimensional distributions of { X  ∗(n) , ξn
∗ }

and { X  ( n ) , ξn } coincide. Thus one may consider { X  ∗ ( n ) , ξn
∗  } as a realization of

{ X  ( n ) , ξn } on some probability space and omit the superscript asterisk further on.

Let us define the σ − algebras 

Fn , m′  =  σ { X  ( 1 ) , … , X  ( n ) , { ξj
(1) , j <  n } , {  ( ξj

(0) , βj ) , j ≤  n +  m  } },

Fn , m′′   =  σ { { ξj
(1), j <  n } , { ( ξj

(0) , βj ) , j ≤  n +  m  } } , 

and consider the sets A
~

n =  An  ∩  { βn+ i =  1 ; 0 ≤  i ≤  m  } ∈  Fn , m′′   with the positive

probability P ( A~ n ) =  P ( An ) ⋅  qm+ 1 >  0 .

For any n ≥  0 and B ∈  B X the equality 

P ( X  ( n +  m  +  1 ) ∈  B  |   Fn , m′   ) =  P ( X  ( n +  m  +  1 ) ∈  B  |   X  ( n ) ; βi+ n , 0 ≤  i ≤  m  ) 

holds a.s. on the set A~ n  and

P ( X  ( n +  m  +  1 ) ∈  B  |   X  ( n ) ∈  d x ; βn+ i =  1 ; 0 ≤  i ≤  m  ) =   

 =  P ( X̂  ( x , m  +  1 ) ∈  B ) ≥  p ⋅  ϕ ( B ) 

a.s. in x ∈  V with respect to the distribution of X  ( n ). Thus the conditions of Corollary

1 for ξn =   ( ξn
(0) , βn ), ηn =  ξn

(1) are satisfied. Theorem 6 is proved.

Let us go back to Example 1. Theorem 6 yields
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Corollary 3. Assume that the sequence { w ( n ) } is defined by relations (6) , and (7)
holds. Let, moreover, there exist a number q >  0 and a probability measure Ψ on
[ 0 , ∞  ) ×  [ 0 , ∞  ) such that

1) (8) is valid for the sequence ξn =  ( τn , sn ) , 

2) the measure Ψ contains an absolutely continuous component with respect to Lebesgue
measure λ on [ 0 , ∞  ) ×  [ 0 , ∞  ) ,

Ψ ( B ) ≥      ∫  ∫
B

   g ( x , y ) ⋅  λ ( d x ×  d y ),

and, besides, there exist numbers 0 ≤  a1 <  a2 <  ∞  and 0 ≤  b1 <  b2 <  ∞  such that 

vrai inf
A

  g ( x , y )  ≡   C >  0 ,

where A  =  [ a1 , a2 ] ×  [ b1 , b2 ] . 

Then the statement of Theorem 1 is valid for the sequence { w ( n ) }.

Proof. Define the number q̂ =  q ⋅  C and the measure Ψ̂ ( B ) =  λ ( B ∩ A  ). The
conditions of the corollary imply that (8) remains valid after replacement of q and Ψ
respectively by q̂ and Ψ̂ . Let us define the number M >  0 just as in the proof of Corollary
2, and, for arbitrary 0 ≤  x =  ( x1  , … , xl ) ≤   ( M , … , M ), consider the MC ŵx ( n ) with

the initial condition ŵx ( 0 ) =  x . With the help of simple although cumbersome calculations

one can ascertain that there exist a number m  ≥  0 , a set C =  [ a′1 , a′2 ] ×  [ b′1 , b′2 ],

λ ( C ) >  0, and a number d >  0 such that P ( ŵx ( m  +  1 ) ∈  B ) ≥  d ⋅  λ ( B ) for all B ⊆  C

, x ≤  ( M , … , M ). Thus the conditions of Theorem 6 are satisfied. Corollary 3 is proved.

CHAPTER 5. THE CONDITIONS PROVIDING EXISTENCE OF STATIONARY
RENOVATING EVENTS. STATIONARY MAJORANTS.

BOUNDEDNESS IN PROBABILITY

1. On the structure of renovating events

We have seen in Chapter 4 that Condition (II RC) for the ergodicity of RC is
"brought to the level" of Condition (II) for MC. It is expressed in terms of local characteristics
of the process under consideration, and in this sense it is final. Moreover, Condition (II RC)
and its modifications are rather concise, and the verification of them in applied problems
does not lead to any complications.

We face a different situation with Condition (I RC). It requires additional study.
Relatively simple conditions sufficient for (I RC) are constructed below. In this case we
observe once again an essential similarity with Condition (I) for MC.

Let us note, first of all, that inequalities of the form (II RC) are often fulfilled for

RC, as well as for SRS, on events Cn
 V of the form

Cn
 V =  { X  ( n ) ∈  V ;  ( ξn , … , ξn+ m ) ∈  Z  }, 

P ( ( ξn , … , ξn +  m ) ∈  Z  ) >  0 , (1)

where V ∈  B X is a subset of the phase space X , specified with the help of some (test)

function L   :  X → R  ,
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V =  VN =  { x  :  L  ( x ) ≤  N  }. (2)

It is evident that events of this form are not stationary in general. Only the "fragment"
{ ( ξn , … , ξn+ m ) ∈  Z  } is stationary. Thus the required renovating events will be found if

we succeed in constructing a stationary sequence Bn  such that 

Bn ⊆  { X  ( n ) ∈  V }; P ( Bn  ∩  { ( ξn , … , ξn+ m ) ∈  Z  } ) >  0. (3)

E xa m p l e  1 . Consider a sequence { w ( n ) } , w ( 0 ) =  0 of workload vectors in a
multiserver queueing system G  ⁄ G  ⁄ l (see Example 4.1): w (n +  1)= R (w (n)+ e1 sn −

−  i τn )+ . It forms a SRS with driver  ( τn , sn ). Denote w ( n ) =  ( wn1 , … , wnl ), where

wn1 ≤  wn2 ≤  … ≤  wnl  . The events

Cn
 N =  {    max

1≤ i≤ l
   wni ≤  N  ; sn+ j −  l τn+ j ≤  −  ε ; 0 ≤  j ≤  m  } 

are known to be renovating for { w ( n ) } (see [2]) for any ε >  0 and sufficiently large
N  and m  =  m  ( N  , ε ). In other words, we take for the set in (2)

V =  VN =  { x  :  L  ( x ) ≤  N  }, 

where L  ( x ) =     max
1≤ i≤ l

   xi  , and choose the set Z  ⊆  R 2m+ 2   to equal 

Z  =  { ( y1 , … , y2m+ 2 )  :  y2k− 1 ≤  l y2k  −  ε ; 1 ≤  k ≤  m  +  1 }.

The stationary events An implying Cn  and satisfying (3) are constructed in [2].

Let us go back to arbitrary RC { X  ( n ) }.
Definition 1. A sequence of events Bn ∈  F n  is said to be V-inducing for RC

{ X  ( n ) } (where V ∈  B X ), if

1) { Bn  } is stationary, P ( B0 ) >  0 ;

2) Bn ⊆  { X  ( n ) ∈  V } for any n ≥  n0  for some n0 <  ∞  .

The existence of V-inducing sequences for a rather wide class of the sets { V } is
necessary for sc-convergence, which is demonstrated by the following

Lemma 1. If { X  ( n ) }  → sc  { X  n } , then for any set V such that P ( X0 ∈  V ) >  0 , there
exists a V - inducing sequence { Bn  }.

Proof. Define, as before,

ν =  min { n ≥  1  :  U − k X  ( k ) =  X0  for all  k ≥  n }.

For a set V satisfying the conditions of the lemma, put

B0 =  { ν ≤  N  } ∩ { X0 ∈  V } , Bn =  T  n B0  ,

where

N  =  min { l ≥  1  :  P ( ν ≥  l ) ≥  1 −  P ( X0 ∈  V )  ⁄  2 }.

Then P ( B0  ) >  0 and the inclusion

{ X  ( n ) ∈  V } ⊇  { X  ( n ) ∈  V } ∩ Bn =  Bn  
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holds for n ≥  N  , since X  ( n ) =  X  n  a.s. on T  n { ν ≤  N  }.
In regard to the definition introduced above, Theorem 4.3 implies

Corollary 1. Let Condition (4.2)  be satisfied a.s. on events Cn
 V of the form (1)-(2) . If,

moreover, there exists a V -inducing sequence n ≥  N , such that

P ( B0  ∩  { ( ξ0 , … , ξm ) ∈  Z  } ) >  0 , (4)

then the sequence { X  (n) }  sc-converges to the certain stationary sequence { X  n ≡  U n X0}. 
Condition (4) is evidently satisfied if P ( B0 ) +  P ( ( ξ0 , … , ξm ) ∈  Z  ) >  1 or if

P ( B0 ) >  0 and P ( ( ξ0 , … , ξm ) ∈  Z   |   F − 1 ) >  0 a.e.

The above argument shows that one of the main problems arising in the course of
study of Condition (I RC) is to find the ways to construct "attainable" V -inducing sequences
of sufficiently large probability. If V is given in form (2), the problem is reduced to the
construction of non-trivial stationary majorants L n  for the sequence L  ( X  ( n ) ):
L n ≥  L  ( X  ( n ) ) a.s. If such a majorant L n  is constructed, V -inducing sequence has the

form

Bn =  { L n ≤  N  } ⊆  { L  ( X  ( n ) ) ≤  N  } =  { X  ( n ) ∈  VN  }.

2. Conditions of the existence of stationary V-inducing events for the phase spaces
X =  [ 0 , ∞  ) and X =  ( −  ∞  , ∞  ) 

In this section, as well as in the following one, we restrict ourselves to the consideration
of SRS. Note that the assertions introduced below for SRS can be reformulated for RC,
though in a more cumbersome form.

Let us consider a SRS { X  ( n ) } with values in R+ =  [0 , ∞  ). In this case equation

(1.1) can be rewritten in the form

X  ( n +  1 ) =  ( X  ( n ) +  h ( X  ( n ) , ξn ) ) +  , (5)

where x +  =  max ( 0 , x ) and h  :  R +   ×  Y → R is an arbitrary measurable function such that

 ( x +  h ( x , y ) ) +  =  f ( x , y ). Recording SRS in the form (5) is sometimes more convenient,
since it is less restrictive with respect to the increments h ( X  ( n ) , ξn ).

In this case the set V often takes the form of a compact set V =  { x  :  x ≤  N  }. Thus
the construction of a V-inducing set is reduced to that of a stationary sequence { L n  },

which is a majorant for { X  ( n ) } in a natural sense, 

L n ≥  X  ( n ) a.s. for all n ≥  0 , (6)

and to indicating such a value of N  that P ( L n ≤  N  ) >  1 −  P ( ( ξ0 , … , ξm ) ∈  Z  ).
The following sufficient condition for (6) was introduced in [22] (see also Section 5):
Theorem 1. Assume that there exist a number N  >  0 and a function g1  :  Y → R  possessing

the properties
1) E g1 ( ξ1 ) <  0 , (7)

2) h ( x , y ) ≤   




 g1 ( y )                   for  x >  N  ,
  g1 ( y ) +  N  −  x  for  x ≤  N  . 

(8)

If X  ( 0 ) ≤  M <  ∞  a.s., then the stationary sequence
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L n =  max ( M , N  ) +  max 







 0 ,   sup
k ≥  1

      ∑  
j= n− k

n− 1

  g1 ( ξj ) 







 

is a majorant for { X  ( n ) } (in the sense of (6) ).
The following simple lemma will be rather helpful.
Lemma 2. Conditions (7)-(8)  are jointly equivalent to the following ones: there exist

measurable functions g2  :  Y → R , g3  :  Y → R +   and a constant C ≥  0 , such that

1) E g2 ( ξ1 ) <  0 ; E g3 ( ξ1 ) <  ∞  , (9)

2) X  ( n +  1 ) −  X  ( n ) ≤  g2 ( ξn ) +  g3 ( ξn ) ⋅  I ( X  ( n ) ≤  C ) (10)

a.s. for any n ≥  0 .
Proof. Let Conditions (7)-(8) be fulfilled. Define a number z >  0 so that

E max ( g1 ( ξ1 ) , −  z ) <  0 . Then for n ≥  0 

X  ( n +  1 ) −  X  ( n ) =  max ( −  X  ( n ) , h ( X  ( n ) , ξn ) ) ≤   

≤  max ( −  X  ( n ) , g1 ( ξn ) ) +  ( N  −  X  ( n ) )+  ≤  max ( −  z , g1 ( ξn ) ) +  z ⋅  I ( X  ( n ) ≤  z ) +

 +  N  ⋅  I ( X  ( n ) ≤  N  ) ≤  max ( −  z , g1 ( ξn ) ) +  ( N  +  z ) ⋅  I ( X  ( n ) ≤  N  +  z ) .

Hence (9)-(10) hold for g2 ( y ) =  max ( −  z , g1 ( y ) ) , g3 ( y )  ≡   C =  N  +  z .

Let then (9)-(10) be satisfied. Denote α= − E g2 (ξ1) and find a number M >  0, such

that E { g3 (ξ1) ; g3 (ξ1)> M } ≤  α ⁄ 2. Define the function g1 (y)= g2 (y)+ g3 (y)⋅ I( g3 (y)> M).
Then E g1 ( ξ1 ) ≤  −  α  ⁄  2 <  0 and

h ( X  ( n ) , ξn ) ≤  X  ( n +  1 ) −  X  ( n ) ≤  g1 ( ξn ) +  M ⋅  I ( X  ( n ) ≤  C ) ≤   

 ≤  g1 ( ξn ) +  ( M +  C −  X  ( n ) ) ⋅  I ( X  ( n ) ≤  M +  C ) .

Thus (8) holds for N  =  M +  C. The lemma is proved.

Let us denote, as before, by Fn
 ξ the σ − algebra generated by the sequence

{ ξk ; k ≤  n }, F  ξ  =   F∞
 ξ  . Note that the course of the proof of Theorem 1 would not be

altered if we considered arbitrary stationary metrically transitive sequences { Ψn  } and

{ ϕn  } of random variables measurable with respect to F  ξ , and if we also assumed

X  ( n ) to admit values on the entire real line. Thus the following proposition is true under
this new set of assumptions. 

Corollary 2. Assume that X =  ( −  ∞  , ∞  ) and let X  ( n ) , X  ( 0 ) ≤  M <  ∞  be a SRS
with driver { ξn }. If there exist a number C and stationary sequences { Ψn  } , { ϕn  } measurable

with respect to F  ξ , such that
1) E Ψn <  0 , ϕn ≥  0 a.s.,  E ϕn <  ∞  , (11)

2) X  ( n +  1 ) −  X  ( n ) ≤  Ψn +  ϕn ⋅  I ( X  ( n ) ≤  C ) a.s. (12)

for all n, then there exists an a.e. finite stationary majorant { L n  } for the sequence

{ X  ( n ) }.
R e m a r k  1 . The statement of Corollary 2 would still be valid if the constant C in

(12) were replaced by a random variable ηn , where { ηn  } is an arbitrary stationary sequence
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of F  ξ -measurable random variables, E |  ηn |  <  ∞ . Indeed, it is sufficient to introduce the

sequence Y (n) =  X  (n)−  ηn
+  , ηn

 +  =  max ( 0 , ηn ) and notice that Y ( n +  1 ) −  Y ( n ) ≤  

 ≤  Ψn′  +  ϕn ⋅  I ( Y ( n ) ≤  0 ), where Ψn′  =  Ψn +  ηn
+  −  ηn+ 1

+  and E Ψn′  =  E Ψn <  0. Thus

Corollary 2 is applicable to the sequence { Y ( n ) } and so X  ( n ) ≤  L n ′   +   ηn
 +  , where

{ L n ′  } is a stationary majorant for Y ( n ) .

R e m a r k  2 .  It is easy to see that the statement of Corollary 2 would be still valid
if we did not assume { X  ( n ) } to be a SRS, but considered { X  ( n ) } to be an arbitrary
sequence defined on the same probability space with { ξn } and satisfying (11)-(12).

Let us introduce some sufficient conditions for the construction of a stationary
majorant, which are wider than (11)-(12). Note, first of all, that if a real-valued SRS
X  (n+ 1) =  f ( X  (n), ξn ) satisfies Conditions (7)-(8), then for G ( y ) =    sup

z> N
   ( f ( z , y ) −  z )

the inequality G ( y ) ≤  g1 ( y ) is true for any y ∈  Y and hence E G ( y ) ≤   E g1 ( ξ1 ) <  0 .

Let us provide an example for which E G ( ξ1 ) ≥  0, but the construction of a stationary

majorant still appears to be possible; it shoes that Conditions (7)-(8) (or (11)-(12)) are
too restrictive.

E x a m p l e  3 . Let the sequence X  ( n +  1 ) =  ( X  ( n ) +  h ( X  ( n ) , ξn ) ) +   assume

values on the set { 0 , 1 , 2 , … } and  ξn =  ( ψn , ηn ) be a two-dimensional driver with integer

coordinates,

h ( X  ( n ) , ξn ) =  Ψn +   




0    for  even  X  ( n ) ,
χn   for  odd   X  ( n ) . 

Suppose the sequences { Ψn  } and { χn } to be mutually independent, consisting each

of i.i.d. random variables, moreover P (Ψn = 1)= 1− P (Ψn = − 1)= p, 0 <  p <  1⁄2 and

P( χn = 2)= P( χn = − 2)=  1⁄2 . Note that G( ξ1 )=  max ( Ψ1 , Ψ1 +  χ1 )= Ψ1+ max (0, χ1 ) holds

for any N  > 0, and E G ( ξ1 ) =  2 p >  0. On the other hand, let X  ( 0 ) =  0. Denote

µn =  max { k ≤  n  :  X  ( k ) =  0 }. Then for any 0 <  ε <  1⁄2 −  p and for Ψk′  =  Ψk +  ε ,

χk′  =  χk −  ε hold the relations

X  ( n ) =       ∑  
k= µn

n− 1

  Ψk +      ∑  
k= µn

n− 1

  χk ⋅  I { k   is odd } ≤  max 







 0 ,    sup
k≤ n− 1

    ∑  
i= k

n− 1

  Ψi′  







 +  

+  max 







 0 ,    sup
k ≥  0

    ∑  
i= 0

k

  χ′n− 2i− 2   







 +  max 







 0 ,    sup
k ≥  0

    ∑  
i= 0

k

  χ′n− 2i− 1   







 ,

i.e., we have constructed a stationary majorant for { X  ( n ) }.
Note that Condition (12) can be rewritten in the form

X  ( n +  1 ) −  X  ( n ) ≤   




  Ψn  for  X  ( n ) >  C ,
   χn   for  X  ( n ) ≤  C , 

where χn =  Ψn +  ϕn  , E χ n
+  <  ∞  .
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In order to understand what extensions of (12) are possible let us consider the
following model. Suppose that the interval  ( C , ∞  ) can be split into two parts
H1  ∪  H2  so that the inequalities 

X  ( n +  1 ) −  X  ( n ) ≤   







  Ψn,0  for  X  ( n ) ≤  C ;  
  Ψn,1  for  X  ( n ) ∈  H1 ; 
  Ψn,2  for  X  ( n ) ∈  H2

  (14)

are valid for some stationary metrically transitive sequences { Ψn,0  } , { Ψn,1  } , { Ψn,2  }

measurable with respect to F  ξ  and such that E Ψn,0  +  <  ∞  , E Ψn,1 <  0 , E Ψn,2 <  0 . Do

these conditions imply the existence of a stationary majorant for { X  ( n ) } ? As illustrated
by the following example, the answer to this question is in the negative. Moreover, in all
these conditions X  ( n ) may go to infinity as n → ∞  .

E xa m p l e  4 .  Let the sequence X  ( n +  1 ) =   ( X  ( n ) +  h ( X  ( n ) , ξn ) ) +   be

defined by the driver ξn =  ( Ψn , χn ) just as in the previous example, and let the sequence

{ Ψn } consist of i.i.d. random variables, P (Ψn = 1)= 1− P (Ψn = − 1)= p. The sequence

{ χn } will be defined differently: { χn } does not depend on { Ψn  } and χn+ 1  ≡   −  χn ,

P ( χ0= 2)= P ( χ0 = − 2)=  1⁄2 . Condition (14) is satisfied for Ψn,1 =  Ψn  ; Ψn,2 =  Ψn +  χn .

However it is easy to ascertain that X  ( n ) → ∞  a.s. for any initial condition. For the sake
of simplicity, let us check this fact for X  ( 0 ) =  0 only and on the set { χ0 =  2 }. It is easily

seen that, if Ψ0 =  1 , then X  ( 1 ) =  1 and X  ( 2 ) =  ( 1 +  Ψ2 −  2 ) +  =  0 . Moreover,

X  ( 2 ) =  0 also in the case when Ψ0 =  −  1, Ψ1 =  −  1 . Let ν =  min { k ≥  0  : Ψ2k =  −  1 ,

 Ψ2k+ 1 =  1 } . It is clear that P ( ν <  ∞  ) =  1 and X  ( 2 ν ) =  0 . Besides, X  ( 2 ν +  1 ) =  0 ,

X  ( 2 ν +  2 ) =  1 and for i ≥  1 holds the equality

X  ( 2 ν +  2 i +  1 ) =  1 +  2 i +     ∑  
j= 3

2i+ 1

  Ψ2ν+ j− 1 ;

the right-hand side goes to infinity a.s. for i → ∞  .
Note that the "negative" effect employed in the example consists in the fact that

E ( χn+ 1  |   Fn
 ξ ) may be positive with a positive probability. If we exclude this possibility,

then under certain additional assumptions one can succeed in constructing a stationary
majorant, as demonstrated below.

Let us proceed with the statement of results. We shall need one definition.
Let V ⊆  X be a measurable set. We shall say that Condition ( NV ) holds if the random

variables X  ( n ) assume only a finite number of values on the set V , i.e.,
(NV) There exists a finite collection of points x1 , … , xM ∈  V , such that for all n 

P ( X  ( n ) ∈  V ) =     ∑  
i= 1

M

  P ( X  ( n ) =  xi  ) .

Condition (NV) is certainly satisfied if the set V is finite. If { X  ( n ) } assume values

in the integer lattice { 0 , 1 , 2 , … }, then Condition (NV) is satisfied for any bounded set

V .
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Theorem 2. Let X =  R +    and { X  ( n ) } , X  ( 0 ) =  const be a SRS with driver

{ ξn }. Assume that for some C ≥  0 there exist functions F1 : Y ∞  → R , F2 : R +  ×  Y ∞  → R ,

,F3 : Y  ∞  → Y such that the random variables Ψn =  F1 ( ξn , ξn− 1 , … ) , ζn ( x ) =  F2 ( x ,

 ξn , ξn− 1 , … ) , ϕn =  F3 ( ξn , ξn− 1 , … ) satisfy the relations:

1) X  ( n +  1 ) −  X  ( n ) ≤  Ψn +  ζn ( X  ( n ) ) +  ϕn ⋅  I ( X  ( n ) ≤  C ) ; (15)

2) E ϕn <  ∞  , δ >  0 ;

3) for some δ >  0   sup
x

  E { |  ζ0 ( x ) | 2+ δ  } <  ∞  ;

4) for all n ≥  0 and x   E { ζn ( x )  |   Fn− 1
 ξ  } ≤  0 a.s.

If in addition the set V =  [ 0 , C ] satisfies Condition (NV) , then an a.e. finite stationary

majorant can be constructed for the sequence { X  ( n ) }.
Denote by X  ( y , n ) a SRS with initial condition X  ( 0 ) =  y , and denote by γ0 ( y )

the first hitting time 

γ0 ( y ) =  min { n ≥  1  :  X  ( y , n ) ∈  V },

and by Sn ( y ) the random variable

Sn ( y ) =     ∑  
j= 0

n

  ζj ( X  ( y , j ) ).

Consider, along with (NV) , the weaker condition:

(NV
1 ) There exist a random variable Φ0  , E Φ0 <  ∞   , and a finite collection of points

x1 , … , xM ∈  X , such that for any y ∈  V , n ≥  1 the inequality

Sn ( y ) ≤  Φ0 +    max
1≤ i≤ M

   Sn ( xi ) 

holds a.s. on the set { γ0 ( y ) >  n }.

Theorem 3. If Condition (NV) in Theorem 2 is replaced by Condition (NV
1 ) , then one

can construct a stationary majorant for the sequence { X  ( n ) =  X  ( X  ( 0 ) , n ) } with an
arbitrary initial value X  ( 0 ) ∈  R +   , X  ( 0 ) =  const .

According to the reasoning presented in the proof of Lemma 2, Theorems 2 and 3,
one may assume without loss of generality that ϕn  ≡   C1 =  const ≥  0 . Let us note also

that Corollary 2 follows from Theorem 3 for ζn  ≡   0, Φ0  ≡   0, M =  1, x1 =  C.

Proof of Theorem 2. Assume that U is, as before, the measure-preserving shift
transformation generated by { ξn } and denote by µn =  max { k ≤  n  :  X  ( k ) ∈  V } the last

hitting time of the set V =  [ 0 , C ] on the interval [ 0 , n ]; µn =  0 if X  ( k ) >  C for all

k ≤  n .
The following relations hold for the sequence of the theorem

X  ( n +  1 ) ≤  C2 +     ∑  
j= µn+ 1 

n

  Ψj  +     ∑  
j= µn+ 1 

n

  ζj (X  ( j ) )  ≡    
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≡   C2 +     ∑  
j= µn+ 1 

n

  ( Ψj  +  α  ⁄  2 ) +     ∑  
j= µn+ 1 

n

  ( ζj ( X  ( j ) ) −  α  ⁄  2 )  ≡   C2 +    ∑  
1

 +   ∑  
2

 ,

where α =  −  E Ψ1 >  0 and C2 =  max ( x0 , C ) +  C1 . Denote Ψj ′  =  Ψj +  α  ⁄  2;

ζj ′  ( y ) =  ζj ( y ) −  α  ⁄  2 ; Sn ′ ( y ) =    ∑  
j= 0

n

  ζj ′  ( X  ( y , j ) )  ≡   Sn ( y ) −  ( n +  1 ) α  ⁄  2 .

Note that ∑  
1

 ≤  max ( 0 ,   sup
k≤ n

    ∑  
i= k

n

  Ψj′   )  ≡   Ψ n+ 1 <  ∞  a.s. and

∑  
2

  =  I ( µn+ 1 =  0 ) Sn ′  ( x0 ) +   

 +     ∑  
k= 1

n

  I ( µn+ 1 =  k )    ∑  
i= 1

M

  I ( X  ( k ) =  xi )    ∑  
j= k

n

  ζj ′  ( X  ( j ) )  ≡   ∑  
3

  +   ∑  
4

 ,

where

∑  
3

  ≤  U n+ 1 max ( 0 ,   sup
k≥ 0

   U − k− 1 Sk ′  ( x0 ) )  ≡   T  n+ 1 ( x0 ) ;

∑  
4

  =      ∑  
k= 1

n

  I ( µn+ 1 =  k )    ∑  
i= 1

M

  I ( X  ( k ) =  xi )    ∑U k

j= k

n

 ξj− k ′  ( X  ( xi , j −  k ) ) ≤   

 ≤     ∑  
i= 1

n

  I ( µn+ 1 =  k ) ⋅     max
1≤ i≤ M

    U k Sn− k ′  ( xi ) ≤   

 ≤    sup
k≤ n

     max
1≤ i≤ M

   U k Sn− k ′  ( xi )  ≡   U n+ 1 (     max
1≤ i≤ M

     sup
k ≥  0

   U − k− 1 Sk ′  ( xi ) ) 

≡      max
1≤ i≤ M

   T  n+ 1 ( xi ) .

For each i =  0 , 1 , … , M the sequence { T  n ( xi ) } is stationary. Let us show that

T  n ( xi ) <  ∞  a.s. Indeed,

P ( T0 ( xi ) >  t ) ≤     ∑  
k= 0

∞
  P ( U − k Sk ′  ( xi ) >  t ) =   

 =      ∑  
k= 0

∞
  P ( Sk ′  ( xi ) >  t ) =     ∑  

k= 0

∞
   P ( Sk ( xi ) >  t +  ( k +  1 ) α  ⁄  2 ).

If { Sn ( xi ) } forms a submartingale, Condition 3) and some well-known inequalities

for submartingales [22] imply

∑  
k= 0

∞
  P ( Sk ( xi ) >  t +  ( k +  1 ) α  ⁄  2 ) ≤     ∑  

k= 1

∞
  k ⋅  c ( t +  k α  ⁄  2 )− 2− δ , 

where the right-hand side goes to zero as t → ∞  . The theorem is proved.
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Proof of Theorem 3 is obtained from the proof of Theorem 2, if we notice that in
the conditions of Theorem 3 the upper estimate for ∑  

4
 coincides with

T~ n+ 1  ≡   U n (     max
1≤ i≤ M

     sup
k ≥  0

   U − k ( Φ0 +  Sk ′  ( xi ) ) 

and

∑  
k= 0

∞
  P ( Sk ( xi ) +  Φ0 >  t +  ( k +  1 ) α  ⁄  2 ) ≤   

 ≤     ∑  
k= 0

∞
  P ( Sk ( xi ) >  t  ⁄  2 +  ( k +  1 ) α  ⁄  4 ) +     ∑  

k= 0

∞
  P ( Φ0 >  t  ⁄  2 +  ( k +  1 ) α  ⁄  4 ) .

3. Conditions for the existence of V -inducing events for an arbitrary phase space

The results stated in the preceding section for the phase spaces X =  [ 0 , ∞  ) and
X =  ( −  ∞  , ∞  ) are naturally transferred to the case of an arbitrary phase space X if we
use the so-called test functions.

As in the preceding section, we restrict ourselves to the case of SRS.
Let { X  ( n ) } , X  ( 0 ) =  const, be a SRS with driver { ξn }, assuming values in space

( X , BX ), and L   :  X → R +   a measurable function. Denote X  L  ( n ) =  L  ( X  ( n ) ).
Corollary 3. Assume that Conditions (11)-(12) are satisfied for the sequence

{ X  L  ( n ) }. Then one can construct for { X  L  ( n ) } an a.e. finite stationary majorant
{ L n  } . Hence if a number c ′  ≥  c is such that P ( L n ≤  c ′  ) >  0 , then the sequence of

events Bn =  { L n ≤  c ′  } is V ′  -inducing for { X  ( n ) } , where V ′  =  L− 1 ( [ 0 , c ′  ] ) .

Corollary 3 follows from Corollary 3, Remark 2 and the definition of V-inducing
events.

The following theorem is also valid.
Theorem 4. Let Conditions 1)-4) of Theorem 2 be satisfied for some c ≥  0 . If,  moreover,

one of Conditions (NV) or (NV
1 ) is valid for the SRS { X  ( n ) } and for the set

V= L− 1([0 , C]), then one can construct an a.e. finite stationary majorant { L  n } for the

sequence { X  L  (n)}. Thus the sequence of events Bn= { L n≤ c′}, where c′  ≥  c,  P ( Bn ) >  0 ,

is V′-inducing for { X  ( n ) } if V′  =  L− 1 ( [ 0 , c′  ] ) .
The assertion of Theorem 4 does not follow formally from Theorems 2 and 3, since

the sequence { X  L  ( n ) } does not, generally speaking, of necessity constitute a SRS.
However, it is easy to make sure that the reasoning applied in the course of the proof of
Theorems 2 and 3 can be applied also in this case without serious alterations.

Let us provide some examples showing that the conditions of Theorems 2-4 are similar
to those in well-known criteria of positive recurrence for MC.

E x a m p l e  5 .  Let { ξn } be a stationary metrically transitive sequence with values

on the line, E ξn <  0 , E ( ξn
 +  )2 <  ∞  and generate a new sequence using the function

f  :  R +  ×  R → R +  and the initial condition X  ( 0 ) =  0 : X  ( n +  1 ) =  f ( X  ( n ) , ξn ) .

Suppose that there exists a constant c >  0, such that the inequality f ( x , y ) ≤
≤  ( x +  y ⁄ max ( x, c ))+  is satisfied. Let us construct a stationary majorant for { X  ( n ) }.
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Firstly, note that one may assume without loss of generality that P( ξn≥ − N)= 1 for some

very large N ,  N  >  c2 . In this case

f ( x , y ) ≤   







  N  +  y +   ⁄  c      for  0 ≤  x ≤  N  ,

  x +  g1 ( y )  ⁄  x  for  x >  N  ,
 

where g1 ( y ) =  max ( y , −  N  ) . Secondly, introduce the test function L  ( x ) =  x2 . Then

L  ( f ( x , y ) ) −  L  ( x ) ≤   








  ( N  +  y +   ⁄  c )2 ,             for  o ≤  x ≤  N  ,

  2 g1 ( y ) +  g1
2 ( y )  ⁄  x2 , else .

 

Let us choose a number k >  N2  so that E ( 2 g1 ( ξ1 ) +  g1
2 ( ξ1 )  ⁄  k ) <  0 and define

the function g2 ( y ) =  2 g1 ( y ) +  g1
2 ( y )  ⁄  k . Then

L  ( f ( x , y ) ) −  L  ( x ) ≤   






  g2 ( y )  for  x2 >  k ,

  G ( y )  for  x2 <  k ,
 

where G ( y ) =  (N+  y+  ⁄ c)2 +  2 y+  +  max (N2 , ( y+ )2 ) ⁄ k , E G ( ξ1 ) <  ∞  . Thus one can

apply Corollary 3, i.e., there exists a stationary sequence L n  such that L  ( X  ( n ) ) ≤  L n 

a.s. for all n. We obtain finally the estimate X  ( n ) ≤  ( L n )1⁄2  for all n.

E xa m p l e  6 . Let us consider the so-called oscillating random walk on the real line.
Let { ξn,1 } , { ξn,2 } , { ξn,0 } be three mutually independent sequences consisting of

independent random variables, identically distributed in each sequence, E |  ξn,0 |  <  ∞ ,

E ξn,1 <  0, E ξn,2 <  0. For a , b>  0 define the sequence X  ( n ) according to the rule

X  ( n +  1 ) −  X  ( n ) =   







      ξn,1      for  X  ( n ) >  b ,
  −  ξn,2      for  X  ( n ) <  −  a ,
      ξn,0       for  −  a ≤  X  ( n ) ≤  b .

 

For the sake of definiteness, assume −  α  ≡   E ξn,1 ≥  E ξn,2 . Let ϕn =  ξn,1  ,

ηn =  ξn,2 −  ξn,1 , E ηn ≤  0 . For a fixed number N  define the random variables

ψn= α ⁄ 3 +  ϕn +  2| ϕn| ⋅ I {| ϕn| > N  } +  2| ηn| ⋅ I {| ηn| > N  } +  2| ξn,0| ⋅ I {| ξn,0| > N  } 

and choose N  large enough in order to provide validity of relations

E ψn ≤  −  α  ⁄  3 , E { ηn ; |  ηn |  ≤  N  } ≤  α  ⁄  3 .

In this case

|  X  ( n +  1 ) |  −  |  X  ( n ) |  ≤  ψn +  ζn +   







  3 N  ,    for  |  X  ( n ) |  ≤  N  ,

  0 ,        else ,
 

where ζn =  ζn (X  ( n ) ) =  ηn  ⋅   I { |  ηn |  ≤  N  } ⋅  I { X  ( n ) <  −  a } −  α  ⁄  3, i.e., Condition 1)

of Theorem 2 is satisfied for L  ( x ) =  |  x | . Conditions 2)- 4) of Theorem 2 are satisfied

provided the values ζn  are bounded. Last, Condition (NV
1 ) is satisfied for V =  [ −  N  , N  ],
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if we choose ε < <  N  so that ε divides N  without a remainder, and set M =  2 N   ⁄  ε +  1,
xi =  −  N  +  ( i +  1 ) ε , 1 ≤  i ≤  M . Hence Theorem 4 can be applied, i.e., there exists such

a stationary sequence L n  for { X  ( n ) } that |  X  ( n ) |  ≤  L n  a.s. Note that the reasoning

of this example can be applied in a somewhat more general case, when the sequence
{ ( ξn,0 ; ξn,1 ) } is stationary and metrically transitive, and the sequence { ηn =  ξn,2 −
−  ξn,1  }, being independent of { ξn,0 ; ξn,1  }, consists of independent identically distributed

random variables. 

4. Conditions for boundedness in probability

Let us go back to the case of the phase space X =  ( −  ∞  , ∞  ) and study the following
problem: what are the conditions for { X  ( n ) } to be bounded in probability, i.e., when
sup

n
  P ( X  ( n ) >  t ) → 0 for t → ∞  ? Surely, the existence of a stationary majorant implies

boundedness in probability. However the converse is not true in the general case, and
boundedness in probability may be obtained in a much wider range of situations.

Note that although the problem of finding conditions for boundedness in probability
lies aside from the main direction of the present paper, it is rather important in itself,
since in applied problems it is frequently sufficient to indicate conditions providing for
boundedness in probability of the process considered, while the study of stabilization
conditions of the process is less important.

As we shall see below, conditions for boundedness in probability are much more
general than those for the existence of V-inducing sets. Moreover, they are formulated for
arbitrary sequences { X  ( n ) }, which are not necessarily SRS or RC. 

Theorem 5. Let sequences { X  ( n ) } , { ψn  } , { ζn  } of real-valued random variables

and an increasing sequence of σ −  algebras F n be defined on the same probability space so

that
1) X  ( n +  1 ) −  X  ( n ) ≤  ψn +  ζn +  C1 ⋅  I ( X  ( n ) ≤  C2 ) (16) 

for some C1 , C2  a.s. for all n ≥  0 ;

2) { ψn  } is a stationary metrically transitive sequence; E ψn <  0 ;

3) F n ⊇  σ { ζk ; k ≤  n } ; E ( ζn+ 1  |   F n ) ≤  0 a.s.;

4) sup
n

  E ( |  ζn |  ⋅  g ( |  ζn |  ) )  ≡   C <  ∞  for some function g  :  R +   → R +  , which is

continuous, concave, monotone increasing, and satisfies the conditions:

g ( 0 ) =  0 ,    ∫  
1

∞
 [ x ⋅  g ( x ) ]− 1 d x <  ∞  .

Then the sequence { X  ( n ) } is bounded in probability.

It is evident that one may take g ( x ) =  xε  with any 0 <  ε ≤  1 .
Corollary 4. Assume that SRS { X  ( n ) } takes values in R +  =  [ 0 , ∞  )  , X  ( 0 ) =  0 ,

and the function f is monotone non-decreasing in its first variable. Then under conditions of
Theorem 5 one can construct a stationary majorant for the sequence { X  ( n ) } . Moreover,
the distributions of X  ( n ) weakly converge to a non-singular limiting distribution.
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Proof of Corollary 4. The monotonicity properties show that the sequence

U − n X  ( n ) is non-decreasing. Hence there exists the a.s. limit X0 =    lim
n → ∞

  U − n X  ( n ) and,

by Theorem 5, P ( X0 >  x)=  sup
n

 P (U − n X  (n) >  x)=  sup
n

 P ( X  (n) >  x) → 0 for x → ∞  .

Proof of Theorem 5. Let us begin with two auxiliary lemmas.
Lemma 3. Let g  :  R +   → R +   be a concave continuous non-decreasing function,

g ( 0 ) =  0 . Then there exists a constant K =  K ( g ) , 1 ≤  K ≤  3 , such that for any numbers
a , b 

|  a +  b |  ⋅  g ( |  a +  b |  ) ≤

≤  |  a |  ⋅  g ( |  a |  ) +  K |  b |  ⋅  g ( |  b |  ) +  b ( g ( |  a |  ) +  |  a |  ⋅  g ′  ( |  a |  ) ) sign a .

Here 

g′  ( x )  ≡     lim
∆  ↓  0

   g ( x +  ∆  ) −  g ( x )
∆

is (for x >  0 ) the right derivative at the point x .
Proof. One may assume without loss of generality that g ( x ) >  0 for x >  0 . Note then

that g′  ( x ) is a non-increasing function, so the inequality x ⋅  g′  ( x ) ≤  g ( x ) holds for any
x >  0 . Indeed,

g′  ( x ) ⋅  x =       ∫  
0 

x

 g′  ( x ) d z =     lim
∆  → 0

     ∫  
∆  

x

  g′  ( x ) d z  ≤  

 ≤     lim
∆  → 0

      ∫  
∆  

x

  g′  ( z ) d z =    lim
∆  → 0

   ( g ( x ) −  g ( ∆  ) ) =  g ( x ) .

Thus one can introduce a constant c =  c ( g ) =     sup
x> 0

   g′  ( x ) ⋅  x
g ( x )  ≤  1 and put

0 ⋅  g′  ( 0 ) =  0 .
It is sufficient to prove the assertion of the lemma for a >  0 only. Denote

d =  |  b |  and consider three possible cases: 1) b ≥  0; 2) b <  0 , d ≤  a; 3) b <  0 , d >  a .
C a s e  1 ). The equality

( a +  b) g ( a +  b) =  a ⋅  g ( a ) +  b ⋅  g ( b) +  a [ g ( a +  b) −  g ( a )] +  b [ g ( a +  b) −  g ( b)] 

takes place, and, since

g ( a +  b ) −  g ( a ) =       ∫  
a

a+ b

  g ′  ( z ) d z ≤  g′  ( a ) ⋅  b and g ( a +  b ) −  g ( b ) ≤  g ( a ) ,

one arrives, for any K ≥  1 , at the estimate

 ( a +  b ) ⋅  g ( a +  b ) ≤  a ⋅  g ( a ) +  b ⋅  g ( b ) +  b [ a ⋅  g′  ( a ) +  g ( a ) ] ≤   

 ≤  a ⋅  g ( a ) +  K b ⋅  g ( b ) +  b [ a ⋅  g ′  ( a ) +  g ( a ) ] . 

C a s e  2 ). The equality

 ( a +  b ) g ( a +  b ) =  ( a −  d ) g ( a −  d ) =    
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 =  a ⋅  g ( a ) +  d ⋅  g ( d ) −  a [ g ( a ) −  g ( a −  d ) ] −  d [ g ( a −  d ) +  g ( d ) ] 

takes place, and since

g ( a −  d ) +  g ( d ) ≥  g ( a ) and g ( a ) −  g ( a −  d ) =       ∫  
a− d

a

  g ′  ( z ) d z ≥  g ′  ( a ) ⋅  d , 

the relations

 ( a −  d ) g ( a −  d ) ≤  a ⋅  g ( a ) +  d ⋅  g ( d ) −  a ⋅  g′  ( a ) d −  d ⋅  g ( a ) ≤   

≤  a ⋅  g ( a ) +  K |  b |  ⋅  g ( |  b |  ) +  b ( g ( a ) +  a ⋅  g′  ( a ) ) 

hold for any K ≥  1 .
C a s e  3 ). The following relations are valid under the assumptions listed above:

|  a +  b |  ⋅  g ( |  a +  b |  ) =  ( d −  a ) ⋅  g ( d −  a ) ≤  d ⋅  g ( d ) ≤   

 ≤  a ⋅  g ( a ) +  ( 2 +  c ) ⋅  d ⋅  g ( d ) −  ( 1 +  c ) ⋅  d ⋅  g ( d ) ≤   

 ≤  a ⋅  g ( a ) +  ( c +  2 ) ⋅  d ⋅  g ( d ) −  d ⋅  ( g ( a ) +  a ⋅  g′  ( a ) ) =   

 =  a ⋅  g ( a ) +  ( c +  2 ) |  b |  ⋅  g ( |  b |  ) +  b ( g ( a ) +  a ⋅  g′  ( a ) ) .

Therefore the assertion of the lemma is valid for K =  c +  2 .

 Lemma 4. Let { η− k  }k= 1
∞  be a sequence of random variables, Sk =  η− k +  … +  η− 1 

, S0 =  0 , and let… ⊆  F − k ⊆  F − k+ 1 ⊆  … ⊆  F − 1  be an increasing sequence of σ − algebras,

such that 
1) F − k  ⊇  σ ( η− l ; l ≥  k ) for all k ,

2) E ( η− k  |   F − k− 1  ) ≤  −  δ <  0 a.s. (17)

for all k, 
3) sup

k≥ 1
   E ( |  η− k |  ⋅  g ( |  η− k |  ) ) =  c <  ∞  , (18)

where g is a function satisfying the conditions of Theorem 5. Then S
__

 =     sup
k≥ 0

   Sk  is an a.e.

finite random variable. Moreover, one can choose constants K1  and K2  so that 

P ( S
__

 >  t ) ≤  K1  ⋅  [ g ( t ) ]− 1 +  K2  ⋅       ∫  
tδ ⁄ 2

∞
  [ x ⋅  g ( x ) ]− 1 d x .

R e m a r k  4 .  The assertion of Lemma 4 is still valid if
a) Condition (17) is replaced by the following one:

E ( η− k  |   F − k+ 1
 +   ) ≤  −  δ <  0 a.s. for all k , 

where F − k
 +   ⊇  σ ( η− l ; 1 ≤  l ≤  k ) is some decreasing sequence of σ − algebras; 

or
b) Conditions (17)-(18) are replaced by

P ( η− k  >  t  |   F − k− 1  ) ≤  ψ ( t ) ) a.s. for all t , k , 

where ∫   t d ψ ( t ) >  0 .
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Proof of Lemma 4. Without loss of generality, one can assume that F − k =
=  σ ( η− l ; l ≥  k ). Introduce the random variables zk =  η− k− E (η− k |  F − k− 1), Yk, n=
= zn+ 1+  … + zn+ k , Y

__
k,n   =  max ( 0 ,    max

1≤ l≤ n
   Yl,n  ) , Yk =  Yk,0 ; Y

__
k =  Y

__
k,0  . Denote dk, n =

=  E ( Y
__

k, n  ⋅  g ( Y
__

k, n  ) ) . Note that the sequence { Yk  } forms a martingale and

E { |  zk |  ⋅  g ( |  zk |  ) ) ≤  c ′  <  ∞  }. Besides, a.s. zk ≥  η− k +  δ. Let us apply Lemma 3:

dk , n =  E { max ( 0 , zn+ 1 +  Y
__

k− 1 , n+ 1   ) ⋅  g ( max ( 0 ,  zn+ 1 +  Y
__

k− 1 , n+ 1   ) ) } ≤   

 ≤  E { |  zn+ 1 +  Y
__

k− 1,n+ 1  |  ⋅  g ( |  zn+ 1 +  Y
__

k− 1,n+ 1 |  ) } ≤   

 ≤  dk− 1,n+ 1 +  K ⋅  E { |  zn+ 1 |  ⋅  g ( |  zn+ 1  |  ) } +  E { g ( Y
__

k− 1,n+ 1 ) +   

 +  Y
__

k− 1,n+ 1  ⋅  g′  ( Y
__

k− 1,n+ 1  ) ) ⋅  E { zn+ 1  |   F − n− 2  } ≤  dk− 1,n+ 1 +  K ⋅  c ′   .

So, since d1, l≤ c′< ∞  for any l, we obtain by induction the estimate dk, n ≤  k⋅ K c′  ≡
≡   k ⋅  K1  for all n , k ≥  0 . Further, for any integer t >  0 

P ( S
__

 ≥  t ) ≤  P ( S
__

t  ≥  t ) +      ∑  
i= 1

∞
  P (        max

t⋅ 2
i− 1< k≤ t⋅ 2

i
        Sk  ≥  t ) ≤   

 ≤  P ( Y
__

t  ≥  t ) +      ∑  
i= 1

∞
  P (        max

t⋅ 2
i− 1< k≤ t⋅ 2

i
        Yk  ≥  t ( 1 +  2i− 1 δ ) ) ≤   

≤  P ( Y
__

t  ≥  t ) +      ∑  
i= 1

∞
  P ( Y

__
t ⋅  2

i
  ≥  t ( 1 +  2i− 1 δ ) ) .

By the Chebyshev inequality, the latter sum does not exceed the expression (here
dk  ≡   dk,0  ):

dt 
t ⋅  g ( t )   +     ∑  

i= 1

∞
  

dt  ⋅  2i 

t ⋅  2i− 1  ⋅  δ ⋅  g ( t ⋅  2i− 1  ⋅  δ )
 ≤  

 ≤  
K1 

g ( t )   +     ∑  
i= 1

∞
  

K1  ⋅  t ⋅  2i 

t ⋅  2i− 1   ⋅  δ ⋅  g ( t ⋅  2i− 1  ⋅  δ )
 =   

K1 
g ( t )  +     ∑  

i= 1

∞
  

4 K1 
δ       ∫  

t ⋅  2
i− 2

 δ

t ⋅  2
i− 1

 δ
    [ t ⋅  2i− 1 δ ⋅  g ( t ⋅  2i− 1 δ ) ]− 1 d x ≤   

 ≤  
K1 

g ( t )   +  
4 K1 
δ     ∑  

i= 1

∞
      ∫  
t ⋅  2

i− 2
 δ

t ⋅  2
i− 1

 δ
    [ x ⋅  g ( x ) ]− 1 d x =  

K1 
g ( t )   +  

4 K1 
δ       ∫  

t δ ⁄ 2

∞
   [ x ⋅  g ( x ) ]− 1 d x .

The lemma is proved.
We proceed to the 

Proof of Theorem 5. We introduce the random variables ψk
 ∗ =  ψk +  ε  ⁄ 2 and

ζk
 ∗ =  ζk −  ε  ⁄ 2, where ε =  −  E ψk . Then

67 A.A.Borovkov and S.G.Foss



X  ( n +  1 ) ≤  C1 +  C2 +       ∑  
k= µn+ 1 

n

   ψk
 ∗  +       ∑  

k= µn+ 1 

n

   ζk
 ∗  ≡   C3 +   ∑  

1
 +  ∑  

2
 ,

where µn =  max { k ≤  n  :  X  ( k ) ≤  C2  } and µn =  0  if X  ( k ) >  C2  for any k ≤  n. Note

that

∑  
1

 ≤  max ( 0 ,    sup
j≥ 0

    ∑  
k= n− j

n

  ψk
 ∗  )  ≡   Ψ − n+ 1 <  ∞  a.s.,

where the sequence { Ψ n  } is stationary.

Set ζk
 ∗ =  −  ε  ⁄  2 for k ≤  0 and ηl =  ζl+ n− 1

 ∗  . Then ∑  
2

 ≤  max ( 0 ,   sup
l≥ 1

    ∑  
k= − l

− 1

  ηk ) .

Lemma 4 implies that

P ( ∑  
2
>  t ) ≤  K1 [ g ( t ) ]− 1 +  K2      ∫  

t ε ⁄ 4

∞
  [ x g ( x ) ]− 1 d x ,

where the right-hand side of the inequality does not depend on n . Therefore 

P ( X  ( n +  1 ) >  t +  C3 ) ≤  P ( Ψ n+ 1 >  t  ⁄  2 ) +  P ( ∑  
2
>  t  ⁄  2 ) , 

and the right-hand side goes to zero as t → ∞  uniformly in n. Theorem 5 is proved.

5. On other conditions implying existence of V-inducing events
and boundedness in probability

The essence of Sections 2-4 is, roughly speaking, as follows: having taken (7)-(8) for
initial conditions, we have considered some different ways of extending them, which suffice
for the construction of V -inducing events or for boundedness in probability of the sequence
under study, { X  ( n ) }. The approaches introduced above can also be applied to models
with different "initial" characteristics.

Consider, for instance, a sequence { X  ( n ) } with values in X =  R +  =  [ 0 , ∞  ) , for

which the inequalities

X  ( n +  1 ) ≤  αn  ⋅  X  ( n ) +  




 βn     for  X  ( n ) >  C2 , 
 C1    for  X  ( n ) ≤  C2 ,  

(19)

hold a.s., where { αn , βn  } is a stationary metrically transitive sequence, P ( αn >  0 ) =  1, 

E ( ln αn )+   <  ∞ , and E ( ln βn
 +  ) +  <  ∞  .

 The asymptotic properties of sequences of the form X  ( n +  1 ) =  αn X  ( n ) +  βn  and

those of the related processes in continuous time were studied in [24], [25].
Denote σn =  ln αn  . 

Theorem 6. If E σn <  0 or σn  ≡   0 and E βn <  0 , then a stationary majorant can be

constructed for the sequence { X  ( n ) }.
The last two relations σn  ≡   0, E βn <  0 signify the realization of Conditions (7)-(8).
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Proof. For the sake of simplicity, assume that X  ( 0 ) =  const ≤  C1 . Let us introduce,

as above, the random variable µn+ 1 =  max { k ≤  n +  1  :  X  ( k ) ≤  C2  }. Then

X  ( n +  1 ) ≤  C2 ⋅      ∏ 
i= µn+ 1 

n

  αi  +      ∑  
i= µn+ 1 

n

  βi     ∏ 
j= i

n− 1

  αj   +  C1 =  

 =  C2  ⋅   exp {    ∑  
i= µn+ 1 

n

  σi  }  +      ∑  
i= µn+ 1 

n

  βi  exp {    ∑  
j= i

n− 1

  σj  }  +  C1  ≤   

 ≤       sup
−  ∞< m≤ n+ 1

        { C1 +  C2  ⋅  exp (     ∑  
i= m

n

  σi  )  +     ∑  
i= m

n

  βi  ⋅  exp (     ∑  
j= i

n− 1

  σj  )   }  ≡   Y n+ 1  .

Let us show that Y n+ 1 <  ∞  a.s. Indeed, for n =  −  1 the random variable

sup
m≤ 0

   (    ∑  
i= m

− 1

  σi ) is a.s. finite and

sup
m≤ 0

    ∑  
i= m

− 1

  βi exp (    ∑  
j= i

− 2

 σj ) ≤    sup
m≤ − N

   ( … ) +  max
− N≤ m≤ 0

   ( … ) ,

and the first term in the right-hand side admits the estimate

P (    sup
m≤ − N

    ( … ) >  t ) ≤  P (    sup
m≤ − N

     ∑  
i= m

− 1

  βi
 +  ⋅  e− i(ε −  δ) >  t  ⁄  2 ) +   

 +  P (    sup
m≤ − N

   (    ∑  
i= m

− 2

  σi −   ( i −  1 ) ( ε −  δ ) ≥  0 ) ,

where ε =  −  E σ1 >  0 and 0 <  δ <  ε is any number. The latter inequalities imply that Y0 

is a.s. finite, and thus lead to the proof of the theorem.
Condition (19) may be generalized via approaches introduced in Sections 2 - 4.
The assertion of Theorem 6 was initiated by discussing the problems highlighted in

this chapter with Prof. F.Baccelli. 

CHAPTER 6. STABILITY OF STATIONARY DISTRIBUTIONS
FOR RECURSIVE CHAINS

Let us consider a sequence of RC { r X  =  ( r X  (n)) ≡  ( r X  (rx0 , n)) }, r =  1 , 2 , … , ∞ ,

with drivers { r ξn } and transition functions r P ( x , y , B ) depending on the parameter r.

All the RC r X  assume values in a space ( X , BX ) and the drivers (which are stationary

metrically transitive sequences) assume values in a space ( Y , BY ). All the notations

introduced above will be supplied with the left superscript r when they refer to the process
r X . It will be convenient to abbreviate X  =  ∞  X .

We shall assume the following condition to be fulfilled:

(S1) For any r =  1 , 2 , … , ∞  the RC { r X  ( n ) } satisfies Conditions (I RC) -  (II RC)

so that { r X  ( n ) } sc-converges to a stationary sequence { r X   n }.
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Moreover, in order to avoid too cumbersome notations and statements, we shall
assume in addition that 

(S2)  The functions ϕ and p involved in Condition (II RC) do not depend on their
arguments  ( y0 , … , ym ) (i.e., p  ≡   const and ϕ ( … ; B ) =  ϕ ( B )); the parameters m  ≥  0, p,

and the measure ϕ do not depend on r .
The stability problem is to reveal conditions which provide for convergence of the

stationary and non-stationary distributions of RC r X  to the stationary ones of RC

X  =  ∞  X .
To state the main result we need some additional notations.

Let a stationary sequence of renovating events An ∈  Fn+ m
 ξ  , P ( An ) >  0 be given.

Introduce the random variables

µ0 =  max { k ≤  −  m   :  I ( Ak ) =  1 };

µj+ 1 =  min { k ≥  µj +  m   :  I ( Ak ) =  1 } for j ≥  0;

µj− 1 =  max { k <  µj −  m   :  I ( Ak ) =  1 } for j ≤  0. 

In other words, we have introduced the consecutive realization times of events An , separated

by time intervals of length m .
For given numbers n ≥  0,  k1 ≤  0 ≤  k2 ,  and a sequence { lj ,  k1 ≤  j ≤  k2  } such that

lk2  <  n −  m  ,  l0 =  −  m , and  lj −  lj− 1 >  m  for j =  k1 + 1 , k1 +  2 , … , k2 , denote by

Dn =  Dn  { k1 , k2  , { lj  } } the event of the form

Dn =     ∩
j= k1 

k2 

     { µj =  lj  } ∩ { µk2 + 1 ≥  n −  m   }.

In particular, for m  =  0 the occurrence of the event Dn  signifies that exactly k2  events

Aj  (called "successes") happen on the time interval [ 1 , n −  1 ] (i.e., there are k2  successes,

of which the first happens at time l1 , the second one at time l2 , … , and   k2-th happens

at time lk2  ; the  ( k2 + 1 )-th success may happen at time n −  m  or later). The consecutive

"successes" on the negative semi-axis happen at times lj , k1 ≤  j ≤  0 , respectively. A similar,

but more complicated, verbal description may be provided also for m>  0.

For x ∈  X , B ∈  B X , and event D ∈  Fn
 ξ, denote by P(n) ( x , B , D ), n ≥  0, the probability

P(n) ( x , B , D ) =  P ( { X  ( x , n +  1 ) ∈  B } ∩ D ).

Theorem 1. Assume that the following conditions are valid along with (S1), (S2):

(S3)  P (    ∪
i= 1

n
  r Ai  ) → 1 for n → ∞  uniformly over r, i.e.,

lim inf
r → ∞

    P (    ∪
i= 1

n
  r Ai  )  ≡   dn  → 1 for n → ∞  ;
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(S4)  ∫   ϕ ( d x )   r P(n) ( x , B , r Dn  ) → ∫   ϕ ( d x ) P(n) ( x , B , Dn  ) 

as r → ∞  for some B ∈  B X and any n , k1 , k2 , { lj  } satisfying the conditions listed in the

definition of the event Dn . Then  

P ( r X  ( n ) ∈  B ) → P ( X0  ∈  B ) as n , r → ∞  

for this B. In particular,  P ( r X0  ∈  B ) → P ( X0  ∈  B ).
R e m a r k  1 . One may introduce a series of intrinsic and comparatively simple

conditions which are sufficient for (S3) - (S4). Assume that the spaces X and Y are
provided with the weak convergence topologies associated with the corresponding

σ− algebras. Suppose, for the sake of simplicity, that r X  are SRS with drivers { r ξn } for

all r: r X  ( n +  1 ) =  r f ( r X  ( n ) , r ξn ); the events r An  ∈  r F n+ m  are renovating for
r X  ( n ), i.e., r X  (n +  m  +  1)=  r g ( r ξn , … , r ξn+ m) a.s. on r An ; and r An  can be represented

in the form r An =  { r hn <  C }, where C =  const, r hn =  h ( r ξn+ m , r ξn+ m− 1 , … ), while

h  :  Y ∞   → R  is some measurable function.
Then (see [22]) Conditions (S3) - (S4) will be satisfied if

1) the finite-dimensional joint distributions of  ( r ξn , r hn ) converge weakly as

r → ∞  to the distributions of  ( ξn , hn ) and P ( hn =  C ) =  0 ; 

2) the functions gk ( x0 , … , xk ) defined by the equalities gm =  g and gk+ 1 ( x0 , … ,

 xk+ 1 ) =  f ( gk ( x0 , … , xk ) , xk+ 1 ) are a.s. continuous with respect to the distribution of

 ( ξ0 , … , ξk ) for all k, and

sup
(x0,...,xk ) ∈  Bk

r
      |  r gk ( x0 , … , xk ) −  gk ( x0 , … , xk ) |  → 0 

for any sequence of sets { Bk
r  ; r ≥  1 } such that P (  ( r ξ0 , … , r ξk ) ∉  Bk

r ) → 0 for r → ∞ ;

3) the set B ∈  B X is such that P ( X0 ∈  ∂ B ) =  0, where ∂ B denotes the boundary

of the set B .
Proof of Theorem 1. As before, we shall restrict ourselves to the case m  =  0 . Consider

all the random variables as defined on the same probability space.

As in the proof of Theorem 4.3, we consider the "extended" RC r X~  ( n ) =
=  ( r X  ( n ) , δn ) with the drivers r ξ~n =   ( r ξn , δn ) and introduce the events r Cn =

=  r An  ∩ { δn =  1 }. Note that Condition (S3) implies

lim inf
r → ∞

   P (   ∪
i= 1

n
  r Ci  ) → 1 (1)

for n → ∞  .
Indeed, consider the event

El k =  { δl =  δl+ 1 =  … =  δl+ k =  1 }.

Then for k ≤  n

71 A.A.Borovkov and S.G.Foss



lim inf
r → ∞

   P (   ∪
i= 1

n
  r Ci  ) ≥     ∑  

l= 0

n− k

  P ( El k ∩ (    ∩
j= 0

l− 1
   E
__

j k ) ) ⋅  lim inf
r → ∞

   P (   ∪
i= l

l+ k
  r Ai  ) =   

 =  P (    ∪
l= 0

n− k
  El k ) ⋅  lim inf

r → ∞
   P (   ∪

i= 0

k
  r Ai ) =  P (    ∪

l= 0

n− k
  El k ) ⋅  dk  .

Let us choose k so that dk  ≥  1 −  ε, and define n so that P (    ∪
l= 0

n− k
  El k ) ≥  1 −  ε. Then the

limit we look for will be no less than 1 −  2 ε. The choice of ε >  0 being arbitrary, (1) is
proved.

Denote then r γn =  max { k ≤  n  :  I ( r Ck ) =  1 }. Since

P ( r γn <  n −  j ) =  P (     ∩
i= 1

j
   r C

__
n− j  ) , 

there exists for any ε >  0 a number L  such that

P ( r γn <  n −  L  ) ≤  ε  for all r =  1 , 2 , … , ∞  .

Thus for n > >  L  

P ( r X~  ( n +  1 ) ∈  B ) =    ∑  
i= m

L

  P ( r X~  ( n +  1 ) ∈  B ; r γn =  n −  i ) +  O ( ε ) .

Let us demonstrate that for all i 

P ( r X~  ( n +  1 ) ∈  B ; r γn =  n −  i ) → P ( X~  ( n +  1 ) ∈  B ; γn =  n −  i ) as r → ∞  .

Indeed, the relations 

P ( r X~  ( n +  1 ) ∈  B ; r γn =  n −  i ) =  P ( r X~  ( s +  1 ) ∈  B ; r γs =  0 ) =   

=     ∑  
1≤ k≤ s

            ∑  
l1 <  … <  lk ≤ s

       P ( r X~  ( s +  1 ) ∈  B ; r µ0 =  0 ; r µj = lj ; 1 ≤  j ≤  k ; 

r µk+ 1 >  s ; δ0 =  1 ; δlj 
 =  0 ; 1 ≤  j ≤  k ) 

hold for s =  n −  i. Each component of the latter sum can be represented as

P ( r X~  ( s +  1 ) ∈  B ; r µ0 =  0 ; δ0 =  1 ; r µj = lj ; 1 ≤  j ≤  k ; r µk+ 1 >  s ) −   

 −     ∑  
t= 1

k

  P ( r X~  ( s +  1 ) ∈  B ; r µ0 =  0 ; δ0 =  1 ; r µj = lj ; 1 ≤  j ≤  k ;

 r µk+ 1 >  s ; δlj 
 =  0 ; 1 ≤  j ≤  k ; δlt 

 =  1 ) .

The minuend of the latter equals 

p⋅ ∫  ϕ (d x) P ( r X~  ( x , s ) ∈  B ; r µ0 = − 1 ; r µj = lj− 1 ; 1 ≤  j ≤  k ; r µk+ 1 >  s− 1 ) , (2)

and each of the subtrahends coincides, naturally, with
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p2  ⋅  ( 1 −  p )t− 1   ∫   ϕ ( d x ) ⋅  P ( r X~  ( x , s −  lt −  1 ) ∈  B ; 

r µj− t = lj −  lt −  1 ; 1 ≤  j ≤  k ; r µk+ 1− t >  s −  lt −  1 ) . (3)

By virtue of Condition (S4) each of expressions (2) and (3) converges, for r → ∞ , to the
corresponding expression with superscript r omitted. Thus the theorem is proved.

Other approaches to the stability problems are considered in [26] - [27].

CHAPTER 7. ERGODICITY OF THE PROCESSES
ADMITTING EMBEDDED RECURSIVE CHAINS

1. The main definitions

Let Z  =  { Z  ( t ) =  Z  ( t , x ) , t ∈  T } , Z  ( x , 0 ) =  x be arbitrary X-valued random
processes. Time t ≥  0 may be either discrete  ( T =  { 0 , 1 , 2 , … } ), or continuous
 ( T =  [ 0 , ∞  ) ) .

One of the natural approaches to the study of ergodicity conditions for the process
Z  is connected with construction of the so-called "embedded" sequences, for which ergodicity
can be established. One usually calls a sequence embedded if it is constituted by the values
of the process at some "embedded" (usually, Markov) times. Let

0 ≤  T0 <  T1 <  … <  Tn <  … ; Tn ∈  T  ; Tn  → ∞  a.s. for n → ∞  (1)

be some random sequence. It is natural to expect the ergodicity of the process Z  to follow
from the ergodicity of the sequence X  ( n ) ≡  Z  ( Tn ) under fairly general assumptions (see

[28] for another approach to ergodicity studies of the processes in continuous time).
We shall assume Tn  to be stopping times, i.e., for any n , t the event { Tn ≤  t }

belongs to the σ − algebra F (t)  =  σ { Z  ( u ) ; u ≤  t }. Denote νt =  max { k  :  Tk ≤  t }, so that

the random variables νt  and Tνt 
  are measurable with respect to the σ − algebra F (t)  .

Define the σ − algebra F(t)
 ∗ , generated by sets of the form B ∩ { Tνt 

 ≥  u  }, B ∈  F (u) ,

u ≤  t , u ∈  T . It is clear that F(t)
 ∗  ⊆  F (t) .

Definition 1. We shall say that the process Z  admits an embedded RC if there exist
a sequence of stopping times { Tn ; n ≥  0 } satisfying (1), a measurable space ( Y , BY ), and

a sequence of Y-valued random variables ηn , which are measurable with respect to the

σ − algebras F (Tn)
 , such that

1) the sequence ξn  ≡   ( en  ≡   Tn+ 1 −  Tn , ηn ) , n ≥  0 is stationary;

2) the sequence X  ( n ) =  Z  ( Tn ) , n ≥  0 forms a RC with the driver { ξn }; 

3) for any t the conditional distribution (with respect to F(t)
 ∗  ) of the random variable

Z  ( t ) depends on X  ( νt ) and t −  Tνt 
  only, i.e.,

P ( Z  ( t ) ∈  B  |   F(t)
 ∗  ) =  P ( Z  ( t ) ∈  B  |   X  ( νt ) ; t −  Tνt 

 )  ≡   G ( X  ( νt ) , t −  Tνt 
 , B )  a.s.

for all B ∈  B X , where the function G ( x , u , B ) is measurable with respect to the pair

of variables  ( x , u ) for any B ∈  B X and is a probability measure on X for any  ( x , u ).
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R e m a r k  1 . One may define processes admitting embedded RC in another way.

Namely, if we introduce σ− algebras F(t)
 ∗∗ generated by sets of the form B∩{Tνt+ 1 ≥  u},

B ∈  F (u) , u ∈  T , and replace Condition 3) in Definition 1 by the following one,

3’) the conditional distribution of Z  ( t ) with respect to F(t)
 ∗∗ depends on X  ( νt ),

X  ( νt +  1 ) , ξνt +  1 , and t −  Tνt 
  only,

then we obtain a different version of "embedding". The statements below can be reformulated
and proved for the processes admitting "embedding" in the sense of 3’).

Let us obtain first the ergodicity theorems for processes admitting embedded RC,
and then clarify by examples, what assumptions in terms of the process Z  provide for the
existence of an embedded RC. In case of continuous time we shall require the trajectories
of the process Z  to be continuous and assume that the spaces X , Y are metric.

Let us start from one simple case.

2. Ergodicity of processes in the case when the driver { ξn }

of the embedded chain consists of independent elements

Note that, in the conditions of this section, the embedded RC is a MC. Consider
the case of continuous  time.

Theorem 1. Assume that the process Z  admits an embedded chain, T0 <  ∞  a.s., the RC

{ X  ( n ) } sc-converges to some stationary RC { X  n }, and the sequence { ξn } consists of i.i.d.

random elements. Let also
1) the random variable e0  be non-lattice, E e0 <  ∞ , 

2) the trajectories of the process Z  be right (or left) continuous with probability one (this
condition may be replaced by the following one: a.e. in the path space of the process Z  the
closure of the set of discontinuity points has zero Lebesgue measure).

Then there exists a non-singular probability distribution P  on ( X , BX ) such that weak

convergence 

Pt  (  ⋅   )  ≡   P ( Z  ( t ) ∈   ⋅   ) ⇒ P (  ⋅   ) (2)

takes place for t → ∞  , or, which is equivalent,

E h ( Z  ( t ) ) →  ∫   h ( x ) P ( d x ) 

for any bounded continuous function h .
If we replace the assumption that e0  is non-lattice by the stronger condition ,

3) the distribution of the random variable e0  has an absolutely continuous component,

then Condition 2) becomes redundant and there is the convergence in total variation: 

sup
B ∈  B X

     |  Pt ( B ) −  P ( B ) |  → 0 as t → ∞  . (3)

If Condition 3) holds, the spaces X and Y need not be metric.
Proof. It is sufficient to consider only the case when { X  ( n ) } forms a SRS. Let V

and Gn =  { X  ( n ) ∈  V } ∩ An
(2)  be the inducing set and the event from the statement of

Theorem 2.9. Introduce the event D~ n =  { en ≤  M , en+ 1 ≤  M , … , en+ m ≤  M }, where the

number M is large enough for the event Dn  ≡   Gn  ∩  D~ n  to have a positive probability.
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Introduce the random variables γ0 =  0 and γj =  Tµj 
  for j ≥  1.  Denote by µj+ 1 =

=  min { n >  µj + m   :  I ( Gn ) =  1 } the consecutive times of realization of the events Gn 

defined in Theorem 2.9. Set ψj =  γj −  γj− 1 . Theorem 2.9 implies that { ψj  } is a sequence

of independent  and, for j ≥  2, identically distributed random variables; thereto ψj  are

non-lattice and, by the Wald identity, E ψ2 <  ∞ .

Denote by H ( y ) the renewal function for the sequence { γj  }. Without loss of

generality one may assume T0 =  0. Let h  :  X → R , 0 ≤  h ≤  1, be an arbitrary non-negative

continuous bounded function. For L  =  m  M the process Z  ( t ) =  Z  ( x , t ) satisfies equalities:

E h ( Z  ( t +  L  ) ) =      ∑  
j= 0

∞
  E ( h ( Z  ( t +  L  ) ) ; γj ≤  t ≤  γj+ 1 ) =   

 =  E ( h ( Z  ( t +  L  ) ) ; γ1 >  t ) +

+     ∑  
j= 1

∞
      ∫  

0

t

  d P ( γj <  u ) ) ⋅  E ( h ( Z  ( t +  L  ) ) I ( γj+ 1 >  t )  |   γj  ∈  d u ) =   

 =  E ( h ( Z  ( t +  L  ) ) ; γ1 >  t ) +

+     ∑  
j= 1

∞
      ∫  

0

t

  d P ( γj <  u ) ) ⋅  E ( h ( Z  ( w , t +  L  −  u ) ) I ( γ1 >  t −  u )  |   D0 ) =   

 =  E ( h ( Z  ( t +  L  ) ) ; γ1 >  t ) +

+      ∫  
0

t

  d H ( u ) ⋅  E ( h ( Z  ( w , t +  L  −  u ) ) I ( γ1 >  t −  u )  |   D0 ) ,

where the point w ∈  V is arbitrary.
In the sequel we use the same argumentation as in the proof of the ergodicity theorem

for regenerative processes (see, e.g., [29]). Introduce the random process

ϕ ( u ) =  g ( Z  ( w , L  +  u ) ) ⋅  I ( γ1 >  u ) ⋅  I ( D0 ) ⋅  [ P ( D0  ) ]− 1  , u ≥  0,

and denote F ( u ) =  E ϕ ( u ). Here

E g ( Z  ( t +  L  ) ) =       ∫  
o

t

  d H ( u ) F ( t −  u ) +  E ( g ( Z  ( t +  L  ) ) ; γ1 >  t ) ,

and to prove (2) it suffices to check whether the fact that the function F ( u ) is directly
Riemann integrable (see [30]). Condition 2) implies that trajectories of the process
ϕ ( u ) are right-continuous with probability one. Thus, by the Lebesgue majorated
convergence theorem on limit transition under the integral sign, the function F ( u ) is also
right-continuous. Moreover,

F ( u ) ≤  P ( γ1 >  u  |   D0  ),    ∫  
0

∞
  P ( γ1 >  u  |   D0  ) d u =  E ( γ1  |   D0 ) <  ∞  .

As demonstrated in, e.g., [29], under these conditions the function F is directly Riemann
integrable and
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E g ( Z  ( t +  L  ) ) →  
1
a     ∫  

0

∞
  F ( u ) d u .

Hence (2) is proved.
Let us prove the second statement. The calculations above demonstrate that for any

B ∈  B X 

P ( Z  ( t +  L  ) ∈  B ) =      ∫  
0

t

  d H ( u ) ⋅  F1 ( t −  u ) +  P ( Z  ( t +  L  ) ∈  B ; γ1 >  t ) ,

where F1 ( u ) =  P ( Z  ( x0 , u +  L  ) ∈  B ; γ1 >  u  |   D0  ) .

Let us show that

P ( Z  ( t +  L  ) ∈  B ) →  
1
a     ∫  

0

∞
  F1 ( u ) d u 

(4)

uniformly in B ∈  B X. Since F1 ( u ) ≤  P ( γ1 >  u  |   D0  ) , E ( γ1  |   D0 ) <  ∞ , in order to

prove (4) it suffices to verify that

Ib  ≡   |       ∫  
0

b

  ( −  du H ( t −  u ) ) F1 ( u ) −   
1
a      ∫  

0

b

 F1 ( u ) d u |   → 0  

uniformly in B ∈  BX for arbitrary fixed b <  ∞ . Set R ( u ) =  H ( u ) −  u  ⁄  a . Condition 3)

implies that the random variables { ψi  } have absolutely continuous components. Thus

   ∫  
t− b

t

  |  d R ( u ) |  → 0 as t → ∞  for any b <  ∞  (see, e.g., [31]), . As for any B ∈  B X  

Ib =  |       ∫  
0

b

  F1 ( u ) d R ( t −  u ) |  ≤       ∫  
0

b

  |  d R ( t −  u ) |  =       ∫  
t− b

t

  |  d R ( u ) | , 

the second statement of the theorem is also proved.
In the case of discrete time, the following assertion is valid.
Theorem 2. Assume that the process Z  admits an embedded RC, T0 <  ∞  a.e., the RC

{X(n)} sc-converges to some stationary RC { X  n }, and the sequence { ξn } consists of i.i.d.

random variables. If, moreover, the G.C.D. of those k , for which P ( e1 = k ) >  0 , is equal

to one, then there exists a non-singular probability distribution P  on ( X , BX ) such that

convergence (3)  occurs.
Proof. For t =  1 , 2 , … and a fixed integer b

 ∫  
0

b

( −  du H ( t −  u ) ) F1 ( u ) =   ∑  
k= 1

b

 ( H ( t −  k ) −  H ( t −  k −  1 ) ) F1 ( k ) →  1a     ∑  
k= 1

b

  F1 ( k ),

where the function F1  was introduced in the proof of Theorem 1; thereto, the convergence

is uniform over B ∈  B X . According to the remarks above, this implies the convergence

in total variation. The theorem is proved.
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3. Ergodicity of processes admitting embedded Markov chains

The statements of Theorems 1 and 2 stay valid in a somewhat more general situation.
Let us introduce the following

Definition 2. Let us say that the process Z  admits an embedded MC, if there exists
a sequence of Markov times {  Tn }  satisfying relations (1) such that

1) the sequence X  ( n ) =  Z  ( Tn ) constitutes a homogeneous MC;

2) for any n ≥  0 , t ≥  0 the joint distribution of { Z  ( Tn +  t ) , { en+ k , k ≥  0 } } depends on

Z  ( Tn ) =  X  ( n ) and t only, i.e.,

P ( Z  ( Tn +  t ) ∈  B , { en+ k , k ≥  0 } ∈  D  |   F (Tn )  ) =   

 =  P ( Z  ( Tn +  t ) ∈  B , { en+ k , k ≥  0 } ∈  D  |   σ ( X  ( n ) ) ) 

a.s. for any B ∈  B X , D ∈  BR +
 ∞

   .

Note that this definition lacks the independence requirement for the elements of
{ ξn } (in terms of Definition 1).

If we denote en =  Tn+ 1 −  Tn  , then, evidently, the sequence { X  ( n ) , en  } also forms

a homogeneous MC; thereto the distribution of en  depends on X  ( n ) only.

Note also that if the process Z  admits an embedded MC, it is not necessarily a
Markov process.

Apparently, for the first time the notion of an embedded MC was introduced by
Kendall [32]. The up-to-date literature employs various definitions of processes admitting
embedded MC (semi-Markov or, according to Asmussen, regenerative processes, etc.; see
[29], [33], and the references in these books).

Suppose that a MC X  =  { X  ( n ) } satisfies Conditions (I) - (II) (see Chapter 2). Let
a number n1 >  0 be such that P ( τV ( ϕ ) =  n1  )  ≡   q >  0 . Define a probability measure

ϕ(1)  on X by the relation 

ϕ(1) ( B ) =  P ( X  ( ϕ , n1 ) ∈  B ∩ V )  ⁄  q . (5)

for B ∈  B X. By definition, ϕ(1) ( V ) =  1. Besides, for any x ∈  V,  B ⊆  V  and   B ∈  B X , 

P ( X  ( x , m  +  1 +  n1 ) ∈  B ) ≥  p ⋅  q ⋅  ϕ(1) ( B ).

Consider the MC X (1) =  { X (1) ( n ) , n ≥  0 }, where X (1) ( n ) =  X  (  ( m  +  1 +  n1 ) ⋅  n ). It

is clear that if a MC X  satisfies Conditions (I) - (II), then the MC X (1)  satisfies Conditions

(I) - (III) for p(1) =  p ⋅  q , m (1) =  0 , n1
(1)=  0, and for ϕ(1)  defined in (5), where the

superscript "(1)" signifies correspondence to the chain X (1) . Moreover, if the process Z

admits the embedded MC X , then, evidently, it admits also the embedded MC X (1)  .
Therefore we may assume, without loss of generality, that the process Z  admits an

embedded chain X  satisfying Conditions (I) - (III) for m  =  0. It was noted above (see [7],
[8] and also Chapters 2, 4) that the MC X~  =  { X  ( n ) , δn  } possessing a "positive" atom

can be defined on an extended probability space. If we define in addition a random variable
δ ( t ) assuming value δn  on the set Tn ≤  t <  Tn+ 1  , then, evidently, the process

Z~  ( t ) =  ( Z  ( t ) , δ ( t ) ) admits the embedded MC X~ .
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Consider the consecutive hitting times 0 ≤  µ~1 <  µ~2 <  …  of the "atom" x~ =  ( V , 1 ) by

X
~  ( n ) , and assume that T̂n =  tµ~n   . Then it is easy to see that the process Z

~  admits the

"trivial" embedded RC  X̂  =  { X̂  ( n ) =  X~  ( T̂n )  ≡   x~ } with the driver ξ̂n =  ( ên , ⋅  ) which is

a sequence of i.i.d. random variables. Here E ên  is finite if

sup
x ∈  X

    E { e0  |   X  ( 0 ) =  x } <  ∞ . (6)

Denote by τ ( y ) a random variable with the distribution

P ( τ ( y ) >  t ) =  P ( Tµ −  T0 >  t  |   X  ( 0 ) ∈  d y ),

where µ is the first positive hitting time of the set V by X  ( n ) and ϕ is the measure from
Condition (II).

Theorem 3. Assume that the process { Z  ( t ) , t ∈  [ 0 , ∞  ) } admits an embedded MC
X and the conditions below are fulfilled:

1) the MC X satisfies Conditions (I) - (III) ;
2) (6) takes place;
3) the distribution 

P ( τ̂ >  t ) =    ∫   ϕ ( d y ) ⋅  P ( τ ( y ) >  t ) 

of the random variable τ̂ is a non-lattice one;
4) Condition  2) of Theorem 1 holds.
Then the distributions Pt (  ⋅   ) =  P ( Z  ( t ) ∈   ⋅   ) weakly converge to some probability

distribution. If we require instead of 3) the distribution of τ̂ to possess an absolutely continuous
component, Condition 4) becomes redundant and the convergence is in total variation. 

Theorem 3 follows immediately from Theorem 1 and the argumentation above. Indeed,

the process Z  admits the trivial embedded RC X̂ , and Conditions 2), 3) of Theorem 3
imply Condition 1) of Theorem 1.

An analogous assertion may be stated for the discrete case.

4. Ergodicity of processes in the case of embedded RC with stationary drivers

Suppose that a process Z  admits an embedded RC X  with the driver ξn =  ( en , ηn ),
which is a stationary metrically transitive sequence. As remarked above, without loss of
generality one may assume X  to be a SRS with driver ξn . Assume in addition that the

following condition is satisfied:
(A)  ( Tn , ηn ) is a stationary marked point process (SMPP) (viz.,  ( T  ) is a point process

and  ( ηn ) is a sequence of corresponding stationary "marks").

Definition of SMPP can be encountered, for instance, in [3], [5], [25].
Theorem 4. If Condition (A)  is fulfilled and there exists a stationary sequence of "positive"

renovating events An ∈  Fn+ m
 ξ  for SRS X, then there exists a probability measure P (  ⋅   ) on

( X , BX ), such that the convergence in total variation

sup
B ∈  BX

    |  P ( Z  ( t ) ∈  B ) −  P ( B ) |  → 0  as t → ∞  

takes place.
Proof. Define the random variables βt =  t −  Tνt 

 ; 
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α ( n ) =  min { k >  m   :  I ( An− k ) =  1 }; αt =  α ( νt ). 

Further, set l ≥  m  

ψn , l =  f l− m ( g ( ξn , … , ξn+ m ) , ξn+ m+ 1 , … , ξn+ l ) ,

where, as before, f i  are iterations of the function f and g is the function involved in the
definition of renovating events. Finally, put ψ ( t ) =  ψνt −  αt , αt − 1 . 

Condition (A) stipulates that the process  ( ηνt 
 , αt , βt ) is stationary; hence, the process

 ( ψ ( t ) , βt ) also obtains this property.

Define the measure P (  ⋅   ) by the equalities P ( B ) =  E G ( ψ ( t ) , βt , B ), where

t >  0 is arbitrary. Let { X  n } be the stationary sequence, to which the sequence
{ X  ( n ) } sc-converges. Note that

X  νt  =  ψ ( t ) a.s. for all t 

and

P ( X  ( νt ) =  X  νt  ) ≥  P ( αt ≤  νt ) → 1  for t → ∞  .

Thus

P ( Z  ( t ) ∈  B ) =  E G ( X  ( νt ) , βt , B ) =   

 =  E G ( ψ ( t ) , βt , B ) +  O ( P ( αt >  νt ) ) ,

and this probability converges to P ( B ) as t → ∞  uniformly in B ∈  B X . The theorem is

proved.
The case, when Condition (A) fails and the sequence  ( Tn , ηn ) converges in a certain

sense only to some SMPP, is technically more sophisticated, so we found it expedient not
to consider this case in the present paper.

5. Examples of processes admitting embedded RC

Let us consider one particular case which is rather important for applications, when
a process in continuous time is determined by the embedded SRS. Such processes are
studied, for instance, in queueing models.

Suppose that we have specified a SRS { X  ( n +  1 ) =  f ( X  ( n ) , ξn ) }, and the space,

where the elements of the driver ξn assume their values, is [ 0 , ∞  ) ×  Y ( with ( Y , BY )
some measurable space). In this case it is natural to write down the random variables
ξn in the form ξn =  ( en , ηn ) , where en ≥  0 a.s.. Assume additionally that en >  0 a.s. Denote

T0 =  0 and Tn =  e0 +  … +  en− 1  for n ≥  1.

Let h  :  X ×  [ 0 , ∞  ) → X be a measurable function such that h ( x , 0 ) =  x for all
x ∈  X. Define the process Z  ( t ) according to the rule:

Z  ( t ) =  h ( X  ( n ) , t −  Tn ) (7)

for Tn ≤  t <  Tn+ 1 , n =  0 , 1 , … . The definition implies, in particular, the equality

Z  ( Tn ) =  X  ( n ) a.s.
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It is easy to see that the process Z  (t) defined by (7) admits the embedded RC X  .
Ergodicity conditions for the processes of the form (7) were considered in [25], [34].

The processes of virtual waiting times, studied in queueing theory, may be considered
as examples of the processes of the form (7). In particular, for systems G  ⁄ G  ⁄ 1 the virtual
waiting time is defined by the equalities Z  ( t ) =  ( X  ( νt ) −  ( t −  Tνt 

 ) ), t ≥  0 , where

Tn =  e0 +  … +  en− 1  is the arrival time of the n-th customer, sn  is its service time, and

X  ( n ) =  ( X  ( n −  1 ) −  en− 1 ) +  +  sn  is the sojourn time of the n-th customer in the system.
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