
CONDITIONS FOR ERGODICITY IN QUEUES WITH MANY SERVERS AND WAITING 

S. G. Foss UDC 519.2! 

We consider here a queue with m servers and waiting. Let Wn, i (n ~ I and I ~ i K m) 
be the time from the month of arrival of the n-th call up to the moment of freedom of i servers 
from the calls that arrived before the n-th call and set w n = (Wnz,...,Wnm). In this article, 
we investigate the conditions for the convergence of distribution of the waiting-time vector 
Wn as n § ~ to limit distribution. 

I. Introduction 

Let there be given a metrically transitive stationary sequence {(s~, ~); --~<j<~} of 
random variables. Here Tj are the intervals between the times of arrival of calls and sj is 
the servicing time. 

The following well-known relation is fulfilled for the vectors ~h: 

~ + ~  = ~ ( ~  + G s ~ -  ~ ) + ,  ( 1 )  

w h e r e  ez  = ( 1 ,  0 , . . . , 0 ) ;  T = ( 1 ,  1 , . . . , 1 ) ;  i f  ~ i s  a n u m b e r ,  t h e n  a + = max ( 0 ,  a ) ;  i f  $ = 
(dz,...zan) , then (~)+ = (~ .... ,a~), and R(~) is the rearrangement of the components of the 
vector a in decreasing order. 

We will assume that the mathematical expectations M{sl} and M{TI} exist, are finite, and 
satisfy the inequality 

M{s,} - mM{~,} < O. (2 )  

We a r e  i n t e r e s t e d  i n  t h e  c o n d i t i o n s  f o r  t h e  weak c o n v e r g e n c e  o f  t h e  d i s t r i b u t i o n s  o f  t h e  
random vectors {Wn; n = 0, I,...} to a certain limit distribution. 

We cite two well-known results. 

THEOREM I [4]. If {sj} and {Tj} are two independent sequences of identically distributed 
independent random variables that satisfy (2), then there exists a proper stationary sequence 
{~n} that satisfies (1) and is such that the distribution of w n converges weakly to the dis- 
tribution of the vector ~0 as n § ~ for arbitrary initial condition w0. 

THEOREM 2 [I, 5]. If w0 = 0, then there exists a prope~ stationary sequence {~n} that 
satisfies (l) and is such that the distribution function of w n converges monotonically to the 
distribution function of the vector ~0. 

Let us observe that if w0 x 0, then the distribution function of w n does not necessarily 
converge to any limit distribution function for an arbitrary metrically transitive stationary 
sequence {(sj, Tj)}. An appropriate example is given in [5, p. 516]. 

Let ~.~ be the o-algebra generated by the variables (Sn, Tn),...,(Sn+~, Tn+~). Let 
T denote a one-to-one measure-preserving transformation shift of sets from the d-algebra 
~'=~" .... such that 

T { ~ : ( s i ,  % ) ~ B ~ ; j  = l , . . . ,  k} = {~:(s j+~,  T~+~)~B~,j  = t . . . .  , k }  

for each family of two-dimensional Borel sets Bj. Let us denote the corresponding transfor- 
mations over ~r -measurable functions by U, so that (sj+1, T]+z) = U(sj, T]). The transfor- 
mations T -l and U -I, and, by the same token, T n and U n for arbitrary integer n, are defined 
in the same nmnner (here T o and U ~ are the identity transformations). We will suppose that 
the o-algebra ~" is nondegenerate (i.e., at least one of the variable so and r0 is non- 
degenerate) and all the considered random variables are given on a single probability space 
and are measurable with respect to ~. 
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It follows from Theorem 2 that there always exists a stationary sequence {~n=U~~ 

--~ < n < m} that satisfies (I). The condition A is said to be fulfilled if this sequence 
is unique. In other words, the condition A means that if {~=U~~ -~<n<~} is a sta- 
tionary sequence that satisfies (I), then Sn = ~n almost surely (a.s.). 

In the present article, we prove the following theorem. 

THEOREM 3. The distribution function of the vector w n converges to a limit distribu- 
tion function as n § ~ for an arbitrary initial condition w0 if and only if the condition 

A is fulfilled. 

The following theorem is useful in finding sufficient conditions for the fulfillment 

of A. 

THEOREM 4. Let {5~=U~~ --oo<n<oo} be a stationary sequence that satisfies (I) and 
is distinct from {wn} (i.e., p{~0 = ~0} < I). Then the following statements are valid: 

a )  P{a~ > ~o} = 1 ;  

b )  i f  a ~  ~ 1 7 6  a n d  7_v ~  then ~](ag--w%=const~>O, , ; ,  a s . .  a n d ,  c o n -  
s e q u e n t l y ,  p{5o = ~o} = O; i -1  

_ = . ~ 0_w0n a.s. for c )  (a~ % ) + -  (w~ + a~ ~ a.s and (a~ - -  "t'o)+ - -  (w~ - -  % )  + a i 
i = 2,...,m. 

Let us now consider a somewhat different problem-- to find the conditions for the so- 

called "strong" convergence of the distributions of the sequence {Wn}. 

Definition. A sequence of random vectors {w n} is said to converge strongly to a random 
vector ~o as n + ~ if 

p{u-k~k__ ~o for k >1 n} -+ i (3 )  

asn§ 

To find the conditions for strong convergence, Borovkov [3] proposed the method of re- 

newal events. Let us recall its definition. 

An event A~" .... +L is said to be renewal on the interval [n, n + L] if for k > L the 

random vectors Wn+k = Wn+k(m) on the set m~A~ admit the representation 

where the form of the function (p depends only on the number of arguments and is determined 

by the choice of the sequence An. 

THEOREM 5 [2, 3]. Let there exist a sequence of the renewal events Aj such that 

PI ~ ~ AjT-IAJ+zl -+1 (4) 
tl=Zo J=l J 

as n § ~ for some l0 > 0. Then the sequence {Wn} converges strongly to a random vector ~0 
as n § ~; in addition, the stationary sequence {w -n = unw ~ satisfies (I). If the sequence 
{Aj} is stationary (i.e., Aj+l = TAj), then the condition P{A0} > 0 is sufficient for the 

fulfillment of (4). 

In this article, we prove the following theorem (converse of Theorem 5). 

THEOREM 6. Let a sequence of random vectors {Wn } converge strongly to a random vector 
--0 w as n § ~. Then there exists a sequence {An} of renewal events that satisfies (4). 

Let us now consider renewal events of the form 

A~ = {h(X~,  ..., w~+~, s~,..., s~+~, �9 . . . . .  , ~ . + ~ ) ~  0 . . . . .  h ( ~  . . . . .  , ~,~+~, s . . . . .  , s~+~, T~, . . . ,  ~ + ~ ) ~  0}, ( 5 )  

where the functions fl,...,fk are nondecreasing with respect to the arguments corresponding 
to w i and s i and nonincreasing with respect to the arguments corresponding to T i. 

Let ~ be a positive number, w~)=0 , and ~1=R(w~)+e1(sn+e)--~Tn) + for n = O, 
],.... 

The following theorem is valid. 
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THEOREM 7. For a certain 
{A (~} of the form (5) such that 

n 

> 0 and for a sequence w~g) let there exist renewal events 

for ~ = ~, 2, .... Then the assertion of Theorem 5 is valid for the sequence (Wn} for arbi- 

trary initial condition w0. 

We give one of the corollaries that follow from Theorem 7. 

COR___OOLLAR~ i: Let the random vectors (sj, zj) be independent for different j~ Then the 
assertion of Theorem 5 is valid for the sequence {Wn } for arbitrary initial condition w0- 

Corollary I is a strengthening of Theorem 6 of [2]. 

2. Auxiliary Results 

LEMMA I. Let a0 = (a0~ .... , a0~) and ~0 = (b0~ .... , b0~) (where ao~ ~ ... ~ a0~, and b0~ ~<... ~ b0~) 

be two m-dimensional vectors and c, d, and �9 be nonnegative numbers. If bt~-~(b0+e~c--~d) + 

and a~----R(a0 +~(c+e)-~d) + , then 

m 

(b~  - -  a~)  + < ~ (bo~ - -  ao~) + + (bo~ - -  ao~ - -  ~)+. 
i = 1  ~,= 2 

(aot -}- 

Proof. The proof of this lemma is based on the following well-known inequalities: 

I) (x+-- y+)+ <~ (x-- y)+ for arbitrary numbers x and y. 

2) If x~...~x~ and Y~...<~ym , then 

a) (y~ - x~)+ + . . .  + ( y , ,  - xm) + ~ (y~ - x,~) + + (y~ - x~)+ + . . .  + (y.~ - x~_~) +, 

b )  ( y ~ - - x i ) + +  . . .  + (y, , --  xm)+ ~ (y,~-- xl)+ + (y, -- x~)+ + . . .  + (Y,~-l-- xm) +. 

Now, l e t  k b e  s u c h  t h a t  ( b o b - d )  + ~ ( b o , + c - d )  + < ( b o . ~ + ~ - d )  +, a n d  L b e  s u c h  t h a t  ( a o ~ - d )  + 
c + e - d )  + < ( a o , z + l - d )  +. Then  

[ (bo,i+ 1 - -  d) + for i < k ,  

bl l  = t(bol + c - -  d) + for i = I t ,  

((boi__d) + for ~ > k ,  

[ (a~,~+l - -  d) + for i < l,  

b t i = l ( a o t + c @ e - - d )  + for i=l, 

[(ao~ -- d) + for ~ > l, 

Let us consider three cases: ~) k = ~; B) k < ~; y) k > ~. 

C a s e  c~), The  f o l l o w i n g  r e l a t i o n s  a r e  v a l i d :  

E (bli  - -  a~i) + = E ((bo3+~ - -  d) + - -  (ao3+~ - -  d ) + )  + + ((boa + c - -  d) + - -  
i=l ~=1 

- (~o, + ~ + ~ - d)+) § + E ((bo,--  a) § - -  (~o, - -  ~)§247 < E (bo, - -  ~o,)+ + ( b ~  - -  ~o~ - -  ~)§ 
i = k + l  ~ = 2  

Case ~). The following relations are valid: 

m h - - 1  l m 

Z 
i-----1 i = l  i=h i = I + l  

(by the inequali ty a)) 

h--1 

~< ~] + (bib - -  al~) + + 
i=1 

(bl~ - -  b1 j- l)  § + ~ < ~ (bo~-- ~o~)+ + (bo~ --  ~oa - -  ~)+. 
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Case y). This case is considered in the same manner as the case ~) with the application 

of the inequality b). The lemma is proved. 

Let there be given two sequences of nonnegative numbers {ci}i=0 and {di}i= 0 and also 
a vector x = (x~,...,Xm). Let us set h(x) = min {k:x k = minxi}. 

We introduce the following sequences of vectors: For k = 0, I,... we set 

+ 

a'~+l = (a~ + eh(a~ ) (eh --}- e) -- 7dn)+; 

--! --! - -  

where b0 = b0 and ~0 = a0. Let us observe that the following equalities are always fulfilled: 

bk = R(b~) and Sk = R(~). Let us set %=min{k~1: b~aa and btm~a,m for ~ k} and vo = 

if no such k exists. 

LEMMA 2. If at least one of the conditions 

ci=co or ~di:co 

is fulfilled, then ~0 < ~. 

Proof. We introduce the following notation: 

v l ( r )==min{k~>l :  for l f / . k  b' o . ~ a t , . ] ,  

% (r) ---- rain [k >.~ 1: for l >~ k bt,, ~-~ a'l,r] 

for r = I,... ,m. Then v0---- max max{%(r), v2(r)} . We show that v1(r) is finite for | ~< r < m. 

Let kl < k2 <... < kn < ... be numbers such that h( n ) = r. Let us observe that if 

~d~<oo and ~ci----co , then there are always infinitely many such numbers. But if~d~----oo , 

then in the case where there are only finitely many numbers kn there exists a number no such 
--T 

that bl, r = 0 for ~ >i no. Therefore v1(r) ~< no < ~. 

b' Let {kn} be an infinite sequence. Then, by virtue of Lermna I, the event [ hn,r~ahna-~e } 

can happen at most m'([aom/e]-{-1) times (here [x] is the integral part of x). Consequently, 
t 

there exists a number no such that bknr<ahn,rq-e for n >7 no. Hence for each n >~ no there 
t t 

exists a ]~{i, ..,, m} such that bir~a~,jn for Ig,~q-i<~i<~k,~+~. Since a~,m=maxa~,t , it fol- 
' l 

t 
lows that bi,r~a~,rn for i~Ignoq-i �9 By the same token, ~1(r)~k%q-i<co The finiteness of 

v1(r) is proved. 

Wenowprove the finiteness ofv2(r). Let k~ < ... < k n < ... be such that h(a~n )=r �9 If 
P 

the sequence {kn} is infinite, then there exists an no such that bkn,1<ahn,~'-l-e for n >~ no. 

Consequently, w,(r)~kno-~i<co �9 Let the sequence {k n} be finite. Let ] ~< rl < ... < rj ~< m 

denote all the numbers such that the sequences {k~(r~)}, ..., {k~(rj)} are infinite. Then there 
t 

exists an i0 < o0 such that a~1~ rain al.r t for i >~ i0. Set n0=max{i0, %(rj), ...,~,(r~)} . Then 

a'n#z~b m f o r  n>~no, 1 ~ l ~ ] ,  and ,  c o n s e q u e n t l y ,  a'n,r~anl~bnl.  By the  same token,v2(r)~<n0<oo.  

The Iemma i s  p roved .  

Remark 1. If the sequence {(Tj, sj)} is metrically transitive, then P [ ~ , x ~ = c o ] = t  
p r o v i d e d  P{T0 > 0} > 0. By v i r t u e  of  t he  c o n d i t i o n  ( 2 ) ,  t h i s  i n e q u a l i t y  i s  a lways  f u l f i l l e d .  

Remark 2. L e t  x = ( x l , . . . , X m )  and y = (Yl ,  . . . .  Ym) b e _ t w o _ v e c t o r s .  I f  x l  ~ y l , . _ . . , x  m ~< 
Ym, then we will use the expression x ~< ~._ Therefore, if x ~< y, then R(x) ~< R(y), (x) + ~< 
(27)+, x + elc ~< y + elc, and x -- id ~< y -- id for arbitrary numbers c >~ 0 and d. 

LEMMA 3. If at least one of the two conditions ~c~----co and ~di-----co is fulfilled, 

then 
~ ~  for l ~ k  ~ < & } < o o .  
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Proof. 

I,... we set 

Let the conditions of the lemma be fulfilled. Then v0 < ~. 

a ( k ) - - - - m i n { l : l ~ l ~ < m a n d f o r  l ~ < r a  b ~ < a ~ } .  

For k = v0, v0 + 

Let us observe that u(k) ~< m and u(k) r 2 for k ~> ~0. We must prove that there exists a 

k~>v0 such that u(k) = I. 

Let us observe that the sequence (u(k); k /> ~0} is nonincreasing. Indeed, we take an 
arbitrary k i> v0. If u(k) = I, then we obviously have u(k + ]) = 1. Let u(k) = 7 ~> 3. Se~ 

r(a, k) ----- rain {n  : (a~l + s ~ +  e - -  ~)+ ~< (a~. ~,+~ - ~)+} 

and r(a, k) = m if no such n exists; we define r(b, k) analogously. Therefore if max (r(~, 

k), r(b, k)) < u(k), then u(k + I) ~< u(k)~ But if max (r(ff, k), r(b, k)) ~> u(k), then, as 
is easily verified, u(k + I) ~< u(k) -- ~. 

Since the sequence (u(k)} is integral, positive, and nonincreasing, the limit limu(k) = 
u exists and, in addition, u(k) = u, starting from a certain number k0 < ~. Let u ~ 1. Then 

max (r(~, k), r(b, k)) < u for k /> k0. This is possible only when ~di~ oo . But then b~+~---- 

(b~- da) + and a~+~.~= (a~m- d~) + for k >~ k0 �9 Consequently, bkm = akm = 0, and therefore, b- k = 
~k = 0, starting from a certain number k~. We have obtained a contradiction~ By the same 
token, the lemma is proved. 

We introduce some notation. Let Un ~ = 0 for -~ < n < ~ and 

--k+l ~k - ~§ = ~ ( ~ + ~ (~ + ~) - ~)§ 

-~+~ ~(;n ~ + e~s~-- ~)§ fo~ for k i> 0 and ~ > O; v-~ ..... bm) (where b~4...~b~) ; and Vn+~= 
k ~ 0. 

Let v-~=min{r~i:5~G} for ao=U~, bo= 

LEMMA 4. If (2) is fulfilled, then P{v < 

Proof. It follows from Theorem 2 that 
to a finite limit ~0 a.s. By virtue of Lemma 

~0 ~, c~----s~ , and d~=~ and w=maxv -h. 
h~>o 

~} = I. 

do not decrease as k increases and converge 
I, for arbitrary k ~ 0 we have 

_ < _ < 

/=I 1=1 / = !  

Then, by virtue of Remark 2, vok~.~w0@~(Eb~) a.s. 

For $0 = 0 and bo----w~ , we set 

~* = m i n { r  ~> I : ~ ~ d~}. 

T h e n ,  a s  i s  e a s i l y  s e e n ,  v* /> v ( - k )  a . s .  f o r  e a c h  k ~> 0 a nd  v* ~> v a . s .  By v i r t u e  of  Lemma 
3, the random variable ~* is finite a.s. Consequently, ~ is finite. The lemma is proved. 

LEMMA 5. Let x be a positive number, b0=~~ , and b~=/~(b~_~+~iG~_~T~_~) + for 

n = 1, 2, .... Then there exists a stationary sequence {~----U~~ --oo<n<co} that satisfies 
(I) and is such that the distribution of bn converges to the distribution of b ~ as n § ~. 

Proof. Let us set c kn--~rr-n+k~n,~~ . We observe that 

b~ = R(~0 + ~,s0 -- ~0) + ---- R(~ ~ + ~x + ~Is0 - ~o) + ~< 

<~ R ( ~  ~ + g~so - ~-~o) + + ~x = ~ + ~x = U(5 ~ a.s. 

Consequently, U-~(b~)~<~0 a.s., i.e., c~co ~ a.s. By virtue of monotonicity, p{~2<~l{(~;+[x+ 

~s~--~T~)+}----l. Consequently, P{c~ Analogously, P{c-~176 for n = 2, 3, .... 

Since P{cg~0}=1 for n = 0, I .... , the limit limcon=~~ 0 exists a.s. In exactly the 

same manner, Jim -h ~h wa n_~ooCn----- ~ exists a.s. for k = I, 2 ..... Let us observe that /{(chnnue~sh-- 

[~)+ :~+~ ~+~ �9 -~+~ 
= c~+~; = h m ~  = ~ i m g ( 7 ~ ) = V ( ~ ) ,  a~d ~ §  = n ( ~ + e ~ s ~ - ; ~ l  § , w h i c h  was d e s i r e d  t o  be  

p r o v e d .  
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3. Proof of Theorems 3, 4, 6, and 7 

Proof of Theorem 6. Let ~+~=U~+~ ~ for k >~ 0 and n ~> I. Set L=min{/~i:P{U-~= 

~o)>0} ,  Co={w~=w~},C~----T~Co , and B ~ = { ~ = ~ }  f o r  k = 1, 2 . . . . .  

Let us observe that the renewal takes place on the event A k = CkBk+ L for the sequence 

(w n} on the interval [k, k + L- I]. 

We show that the events (A n } satisfy the condition (4). Indeed, if we set 

) ~ = m i n { n : U - ~ = ~ ~  k = n , n + l , . . . } ,  

then 

~ AjT-tAj+z ~ ~ Aj ~ T-~Aj+z-~ ~ CjBj+L ~ T-ZBj+L+Z 
/=1 j = l  j==l /=1 j ~ l  /=1 

= ~ CjT j+L({~< ] -k  L})---- ~ T j(CoT L({L<]-6 L})---- H. 
j=a j=l 

Le t  1;=min{]:P{CoTZ({L~y+L})}>O}. L e t  us s e t  Do=CoTZ({~ ~ k + L } )  and D l = T~Do f o r  L = 
1, 2 , . . . .  Then 

H ~ ~ T ~(CoTL(Q,~]+L}))~ ~ Dj. 
j=h j=h 

I~ 
Since P{D0} > 0 and Dj = TJD0, it follows that p U Dj ~i as n § ~, which was desired to 

~j=h J 
be proved. 

Remark 3. The proof of Theorem 6 is valid (without any changes) under the more general 

conditions of [3] also. 

Proof of Theorem 7. Let the conditions of the theorem be fulfilled. Since the events 

and A(~) have the form (5), we have 
n 

T-IAj+z N (v < n} _= -~A ~) N {v<n}, 

for j >/ n and ~ /> 0. Let us set 

B,= ~ Aj ~ T-~A~+z for n = l , 2 , . . . .  
j : n  1~1 

We take an arbitrary G > 0 and find an n=n(6)=min{k:P{v>k}~5} , depending on it. Then 

P {B,} >~ P {B~} ,~> P {B~ • {v ~ n}} = 

}{ } ----P iU,~ {Aifl{v~n}}t=~ ~ {T-ZAJ+tN{v<n}}) ~ P  J=~ ~ (A}e) n{v<~n}} ~i--P{v>n}~l--6. 

By virtue of arbitrariness of 6 > 0, Theorem 7 is proved. 

Proof of Corollary 1. We will consider renewal events of the form 

m--I } 

An'~{wn+i,I=O; ] ~ 0  . . . . .  m--i;  Wn.m~ ~=oTj+n. 

Since M{sj -- mTj} < 0, there exists an ~ > 0 such that M(sj -- m~j} < --s. Let us set 
! T 

sj = sj + s. Then M{sj --m~j} < 0. 

By the same token, it is sufficient for us to prove the following state_ment: If the 
conditions of Corollary I are fulfilled, then under the initial conditions w0 = 0 there exist 

stationary renewal events (A n } such that P(A0} > 0. 

By virtue of (2), P{mTj -- sj > 0} > 0. Therefore, there exists a ~ > 0 such that P 

{mTj -- sj > 6} > 0. Since 
{m'~j - sj > ~} ~_ U {'rj >~ az; sj <~ ma~ - -  6} ,  

a l ~ f  

966 



where I is the set of positive rational numbers, there exists an a > 0 such that P{~a; 

sj~ma--~}>0. By virtue of Theorem 2, w0 is a proper random vector. Consequently, there 

exists a number x < ~ such thatP{w~<ix}>0 Since ~0 does not depend on {~;, ss); ]~} , 
for arbitrary number N ~ 0 we have 

N 
P [ w % < x ;  "~ >~ a; si<.~ m a - -  ~; ] = 0 . . . . .  N} --_ p [ w ~  "1~ P { z i . ~ a ;  s 5 < m a - -  ~)}'.> O. 

The remaining part of the proof of Corollary I coincides verbatim with the proof of Theorem 
7 of [3]. 

Proof of Theorem 4. For a vector x = (x~ . . . . . .  ,x m) we set llxll = x + § § • 

We prove a). Let us observe that g~ a.s. Consequently, g ~  a.s. for n = 

, 2,.... By virtue of Theorem 2, ~ 0  as n § ~ and P{llf~ ~-~I[>e}-~0 as n + ~. Since 

[I~--~11~]I~-~11, it follows that P{[[~--~H>8}-+0 as n § oo. But []~--~ll=U%w~--a~ o Con- 

sequently, P{I!W~-~II>e}=P{II~o-~~ Therefore, P{]l~-g~ for arbitrary ~ > 0, 
which was desired to be proved. 

We prove b). By virtue of Lemma I, [[~+1 wn+l[l=l[ -n - __ - 

- ~(~ + e r  § ~ ( ~ + ~ - - ~ ) + ~ <  
[ IZ " -T~ ' I [  a.s. But since I I Z " + ' - T ~ + ~ I I = u ( Z ~ - ~ " I I ) ,  it follows that I [Zn-T~n[]--- l !a,n~'~--wn+~![ 
a.s. By virtue of the metric transitivity of the sequence {(sj, ~j)}, the random variable 
[[~0 _ w0]l must be degenerate. 

We prove c). Let us observe that 

Since 

[I ~' - m'll = ( 4  + , o -  ,o)+ - ( ~  ~ + ,o - ,o) + 

+ ~ [ ( ~ ~  = l i f o -  moil= ( ~ _  ~,o)+ E (a~  w~). 
h~g h=2 

(a + x )  + -- (b + x )  + ~< a -- b f o r  a r b i t r a r y  numbers  a ,  b ,  and x such  t h a t  a ~> b ,  we h a v e  

(~o + ~o - ~o) + - (~o + ,o - ~o)+ = o _ ,4  ~.~ ~ ( ~  - ,o)+ 

_ ( ~  _ , 0 ) +  = ~ o _  ~ ~.,. fo~ ~ = 2 , . . . ,  m.  

Proof of Theorem 3. Necessity. Let the condition A be not fulfilled. Then there exists 
a stationary sequence ~ a ~ ~ t  satisfies (I) and is such that P{~~176 By virtue 

of Theorem 4, P{g~176 . Since we have assumed that at least one of random variables So 
and ~0 is nondegenerate, there exists a set C~o{(s0, ~0)} such that 0 < P{C} < 1o Let us set 

bo=~~163176 and b~+i-----R(~+[is,,-[T~)+ for n = 0, I,.... It is easily seen that 
the distribution of the vector bn does not converge to a stationary distribution as n § ~. 

Sufficiency. Let a0 be an arbitrary nonnegative random vector. For each number 6 > 0 

we find an x > 0 such that P{~0~~ ~>I-8 . Let b0=~~ and y be an arbitrary non- 
negative vector. Then 

On the other hand, since ~0~0=0 a.so (and, consequently, ~ a.s.), it follows that 

P{g,, < ~} ~ P{~, < ~} for n = I, 2,.... 

Therefore, by virtue of Lemma 5, limP{~<~}~P{~~ and li--mp{~<~}~p{~0<~} 

Since the number 6 is an arbitrary positive number, the limit limP{d~<~}=p{~~ exists, 
which was desired to be proved. 

Remark. After this article was sent to the editor, the author succeeded in obtaining 
the following strengthening _~ Theorem 3: The condition A is fulfilled if and only if the 
sequence of random vectors {Wn} converges strongly to a vector ~0 

I .  
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A PROBLEM OF INTEGRAL GEOMETRY FOR TENSOR FIELDS AND THE 

ST. VENANT EQUATION 

V. A. Sharafutdinov UDC 517.9+513/516 

I. Statement of the Results 

1.1. In this article we give a detailed exposition of the results announced in [I]. 

It is known [2, 3] that a smooth function on R n with compact support is uniquely deter- 

mined by its integrals over all lines. It is also known [4] that a differential one-form of 
compact support is determined by its integrals over all lines to within the differential of 
an arbitrary function of compact support. In this paper we generalize these results to the 
case of tensor fields of arbitrary degree m. More precisely, let g be a symmetric tensor 
field of degree m on R n with compact support; then g is determined by the integrals over all 

lines of the corresponding m-form (obtained by antisymmetrizing g) to within a tensor field 
f of the form f = oVx, where x is an arbitrary symmetric tensor field of degree m -- I with 
compact support, V denotes the differentiation operator, and o is the symmetrization operator. 

In this context the question arises of describing the tensor fields f for which the 

equation 

~vx=[ (I) 

has a solution. We note that the analog of Eq. (I) for skew-symmetric x and f is the equation 

~ V x =  dx = ] ,  (2)  

where  ~ d e n o t e s  a n t i s y m m e t r i z a t i o n .  The f a m i l i a r  P o i n c a r e  lemma a s s e r t s  t h a t  f o r  a skew-  
s y m m e t r i c  f i e l d  f on R n ,  Eq. (2) h a s  a s o l u t i o n  i f  a n d  o n l y  i f  f i s  c l o s e d :  d f  = 0 .  I n  t h i s  
p a p e r  we d e r i v e  a s i m i l a r  r e s u l t  f o r  Eq. ( 1 ) .  More p r e c i s e l y ,  we d e f i n e  a d i f f e r e n t i a l  o p e r -  
a t o r  V on the space of symmetric tensor fields f such that the condition 

vf= 0 (3) 

is necessary and sufficient for (I) to have a solution. We call (3) a St. Venant equation 
since it coincides for m = 2 with the consistency condition for deformations obtained by St. 
Venant [5]. In this paper we will also study the uniqueness problem for Eq. (I). 

1.2. We denote by T m (m ~ 0) the real vector space of all covariant tensors of degree 
m over R n, i.e., the space of all m-linear functions x:R n x ... x R n § R, and we write S m for 

the subspace of T m consisting of all symmetric tensors. If U is a domain in R n then Tm(U) 
denotes the space of all covariant tensor fields of degree m on U. In particular, To = R 
and T0(U) is the space of real-valued functions on U. We agree to write T-I = T_I(U) = 0, 
the zero space. If x~F~,(U) , the expression x = (xjl...j m) will mean that the functions 

xjl...jm(U ) = xjl...jm(U 1,...,u n), u~U are the components of the field x with respect to 

some affine (or more generally, curvilinear) coordinate system defined in U. We use a simi- 
lar notation for x~ T~ , except that in this case the components are real numbers. We write 
C~Tm(U) (Z~0) for the subspace of Tm(U) consisting of all fields whose components are I times 

continuously differentiable; similarly for Sm(U) , CISm(U). 

We will need the following standard tensor operations: symmetrization over a group of 
indices, antisymmetrization with respect to two indices, and cyclization over three indices. 
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