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Abstract

We consider a polling system with a finite number of stations fed by compound
Poisson arrival streams of customers asking for service. A server travels through
the system. Upon arrival at a non-empty station i, say, with x > 0 waiting cus-
tomers, the server tries to serve there a random number B of customers if the queue
length has not reached a random level C < x before the server has completed the B
services. The random variable B may also take the value∞ so that the server has
to provide service as long as the queue length has reached size C . The distribution
Hi,x of the pair (B, C) may depend on i and x while the service time distribution
is allowed to depend on i. The station to be visited next is chosen among some
neighbors according to a greedy policy. That is to say that the server always tries
to walk to the fullest station in his well-defined neighborhood. Under appropriate
independence assumptions two conditions are established which are sufficient for
stability and sufficient for instability. Some examples will illustrate the relevance
of our results.
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1 Introduction

Our goal in this paper is to establish conditions which are sufficient for the stability or
for the instability of a Markov chain describing the evolution of a polling system with
K queues, one server and rather general service policies for each station. The routing
of the server is determined by the “greedy” routing mechanism. Hence, in order to
choose his next destination, the server needs to know the current state of the system.
It is this state-dependent routing which makes the analysis of the underlying Markov
chain interesting.

This paper continues the work in [4], where it was assumed that each station is
served according to the exhaustive policy. In this exceptional case the natural work-
load condition is sufficient and necessary for stability. This is even true for a state-
dependent routing mechanism much more general than the greedy one. Here we will
formulate our conditions in terms of a maximal and a minimal nominal load of the sys-
tem defined in terms of the means of the underlying random variables. Example 4.1 in
Section 4 shows that, unlike [4], the greedy routing seems to be an almost necessary
assumption for the general stability analysis of a polling system with state-dependent
routing and mixed service policies. But even for the greedy routing we are only able
to derive a couple of conditions which are either sufficient or necessary for stability.
These conditions coincide only in special cases and Example 4.2 explains why the de-
termination of the exact stability region can be a very difficult task.

Similarly as in [4] our main method of proof is to establish drift conditions at cer-
tain stopping times. To avoid duplications we will refer to [4] whenever possible.
However, because we allow here a much greater variety of possible service disciplines
(including those which have been studied in the literature) we have to resort to addi-
tional arguments detailed in Section 3. In particular, the proofs of the key lemmas 3.4
and 3.5 are based on the specific properties of the greedy routing and fail in case of a
general greedy-type routing.

There is a voluminous literature on polling systems (see Tagaki [10]) but there are
only few results on systems with state-dependent routing. A special case of our results
has been proved in [9] by another more direct method. In [2] the authors investigate
the stability region of a special polling system with state-dependent routing and the
1-limited service strategy using the approach of [7].

To give an outline of our results we next describe more details of the model. Con-
sider a server who visits (polls) the stations of a queueing network. The stations are
numbered 1 through K , and with each of them there is associated a queue with infinite
waiting capacity fed with an arrival stream of customers with intensity λi, i = 1, . . . , K .
The process of all arrival instants is assumed to be homogeneous Poisson. At a given
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arrival instant however, all stations may simultaneously receive a group of customers.
The joint distribution of these groups should render the expected group sizes to be
positive and finite. As indicated in Section 4 one might consider also more general
arrival processes. Upon arrival at a non-empty station i the server decides to serve no
more than a random number (possibly infinite) of customers as long as the queue is
non-empty. The distribution H ′i,x of that random number is allowed to depend on i and
on the number x of customers in station i at the server’s arrival time. The distribution
of the service times is assumed to have a finite mean bi. The family {H ′i,x : x > 0}
determines the service policy at station i. Different service times are independent and
independent of the arrival process. If H ′i,x = δ∞, then station i is served according to
the exhaustive policy. Other examples are H ′i,x = δx (gated policy) or if H ′i,x is given
as the distribution of min {x,Di}, where Di is a a random variable with mean di (Di-
limited policy). In fact, the model described in Section 2 is more general and contains
for instance also the decrementing policy as a special case.

The server chooses the station j , say, to be visited next in a set N (i) ⊆ {1, . . . , K}
of neighbors of i. It takes the server a random time with finite mean wij ≥ 0 to walk
from i to j . We assume here the greedy routing mechanism. That is to say that station
j is chosen among those stations in the neighborhood with the maximum number of
customers waiting at the start of the walk. It is assumed that i ∈ N (i) and that the
neighborhood relation defines a connected graph. For some slight generalizations of
the greedy routing mechanism we refer to Section 4.

We shall prove that the system is stable if ρ+ < 1, where

ρ+ :=
K∑
i=1

λi(bi + w
+
i /di), (1.1)

w+
i := max{wij : j ∈ N (i)},
di := lim

x→∞
d′i(x) ≤ ∞, (1.2)

d′i(x) :=
∫
yH ′i,x(dy),

and the limit (1.2) is assumed to exist. On the other hand, if d′i(x) ≤ di for all i and all
x, then the system turns out to be unstable if ρ− > 1, where

ρ− :=
K∑
i=1

λi(bi + w
−
i /di), (1.3)

w−i := min{wij : j ∈ N (i)}.

3



Under weak additional assumptions the inequality ρ− ≥ 1 is sufficient for instability.
The condition for instability are also valid for more general polling systems where the
routing could depend on the current state of the system in an arbitrary manner. Note
that in (1.1) and (1.3) the numbers w+

i and w
−
i do not matter if di = ∞. In this case we

call the service policy at station i unlimited. Otherwise we call it limited, see [5] for
a similar definition. If, in particular, all stations are served according to an unlimited
policy, then

K∑
i=1

λibi < 1

is a necessary and sufficient condition for stability.
We will show by an example that the condition ρ+ < 1 is not sufficient for stability

of a polling system with the more general greedy-type routing mechanism (see [4]) and
with at least one station being served according to a limited policy. Another example
will show that if the inequality di(x) > di is allowed for some x and i with di <∞, then,
in case ρ− = 1, the system can be both stable or unstable. A third example will show
that in case ρ− < ρ+ the stability region may depend on the whole distribution of the
underlying walking times. It seems to be a hard task to determine the region explicitly
in such cases.

The paper is organized as follows. The complete model description is given in
Section 2. The stability results will be proved in Section 3. The final section is devoted
to examples and discussion.

2 Model description

We consider a queueing system consisting of K stations with infinite waiting capac-
ities. Each station receives an input of customers asking for service. We denote by
Ai(s, t] the number of customers who arrive at station i during the time interval (s, t]
and put Ai(t) := Ai(0, t]. We assume that (A1, . . . , AK ) is a multivariate compound
Poisson process (see [4]) defined (as all random elements in this paper) on the under-
lying probability space (Ω,F , P ). The ith arrival intensity λi is defined by the equation
EAi(t) = λit. There is only one server who travels through the system. Upon arrival
at a non-empty station he starts with a batch of services which may include customers
arriving after the server’s arrival epoch. Each served customer leaves the system im-
mediately. The size of the batch is determined by the service policy to be described
below.

We letXi(t) denote the number of customers in the ith queue at time t ∈ IR+ and S(t)
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the number of the station which is occupied by the server when servicing is in progress
and we let S(t) := 0, otherwise. Both Xi(t) and S(t) are taken to be right-continuous
and justified by our assumptions below we assume that there exist the limits from the
left, denoted by Xi(t−) and S(t−).

Let Tn, n ∈ IN, be the time of completion of the nth service and T n+1 the time of the
begin of the next service after time Tn. Note that we must always have that

XS(Tn+1 )(T
n+1) > 0, n ∈ ZZ+. (2.1)

To describe the service policies we assume for a moment that at time T n the server
has just arrived at station S(T n) = i with x = Xi(T n) > 0 waiting customers. The
server then generates a pair (Bn, Cn) of random variables with values in (IN∪{∞})×ZZ+

satisfying Cn < x and having distributionHi,x. This pair depends on the system history
at time T n only through (i, x). The server either serves Bn customers and thereafter
departs or else departs after the first service resulting in a drop to the queue length Cn,
whatever event comes first. In other words, if µ is the smallest m > n, for which

ψm := min{Bn − (m− n), 1{Xi(Tm) 6= Cn}}

becomes 0 then the server serves µ − m customers. Thereafter he walks to another
station j , say which is chosen according to a greedy mechanism to be described below.
The walking times are allowed to depend on the whole current state of the system. The
case i = j is not excluded. In this case the walking time could also be an idle or a
vacation time.

To formulate the assumptions on the routing mechanism we assume that each i ∈
{1, . . . , K} has a set N (i) ⊆ {1, . . . , K} of neighbors with i ∈ N (i). This neighborhood
relation is assumed to equip {1, . . . , K} with the structure of a directed and connected
graph. If the server has just finished at time Tn a batch of services at station i then the
greedy routing mechanism forces the server to choose his next destination in the set

{j ∈ {1, . . . , K} : Xj (Tn) = max{Xk(Tn) : k ∈ N (i)}}

provided that
∑

k∈N (i)Xk(Tn) > 0. Otherwise the server is allowed to choose any sta-
tion.

The initial conditions are given by (X1(0), . . . , XK (0)) and by a random element
(S0, B0, C0) of {1, . . . , K} × (IN ∪ {∞}) × ZZ+ satisfying C0 ≤ XS0 (0). We think of time
0 as a the moment of completion of the 0th service at station S0 and let

ψ0 := min{B0 − 1, 1{XS0 (0) 6= C0}}.
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If ψ0 > 0, then the server starts serving queue S(0−) = S(0) := S0 . Then T 1 = 0 and we
let B1 := B0 − 1, C1 := C0 . If ψ0 = 0, then the server starts walking and the epoch T 1

of the start of the first service satisfies (2.1). We then set S(0−) := S0 and S(t) = 0 for
0 ≤ t < T 1 . (If T 1 = 0 we have S(0) = S(T 1)).

It should be clear now how the system is operating and we are now going to make
our stochastic assumptions precise. We are given the arrival processes A1, . . . , AK
described above, processes Xi(t), i = 1, . . . , K , and S(t) with values in ZZ+ and in
{0, . . . , K}, and a sequence (T n, Tn, Bn, Cn), n ∈ ZZ+ , where T 0 = T0 := 0, S(T n) =
S(Tn−) ∈ {1, . . . , K} and Bn is the remaining number of services the server has to
provide at station S(Tn−) just before begin of the nth service if the queue length has
not reached level Cn before. In accordance with our assumptions we assume that
limn→∞ Tn = ∞ and that the times Tn, n ∈ IN, are different from all arrival epochs.
The process X = {X (t) : t ≥ 0} containing all relevant information is

X (t) := (X1(t), . . . , XK (t), S(t), B(t), C(t)), t ∈ IR+,

where
(B(t), C(t)) :=

∑
n≥0

1{T n ≤ t < T n+1}(Bn, Cn).

By
Ft := σ((S0, B0, C0), X (s) : s ≤ t), t ∈ IR+,

we define a right-continuous filtration {Ft : t ∈ IR+} describing the internal history of
the process. (If ψ0 = 0 and T 1 = 0, then X (0) does not contain all information about
the initial conditions.) As in [4] we assume that Ai(t, v] is in fact independent of Ft,
for all t < v, see Section 4 for possible generalizations.

The behaviour of the system just after the completion of the nth service is deter-
mined by the random variable

ψn := min{Bn − 1, 1{XS(Tn−)(Tn) 6= Cn}}, n ≥ 0.

If ψn > 0, then the server continues serving queue S(T n). Then (Bn+1, Cn+1) = (Bn −
1, Cn), where∞−1 := ∞. It follows that Cn ≤ XS(Tn−)(Tn) for all n ∈ ZZ+ . In particular,
XS(Tn−)(Tn) = 0 implies ψn = 0. The service times are assumed to be independent from
the arrival process and to satisfy

P (Tn − T n ∈ ·|FTn ) = Gi(·) P − a.s. on {S(T n) = i}, n ∈ IN, (2.2)

where G1, . . . , GK are distributions on (0,∞) with finite means b1, . . . , bK . If ψn = 0,
then the server stops serving queue S(T n−) and travels to station S(T n+1) = S(Tn+1−)
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choosen according to the greedy routing mechanism, that is

XS(Tn+1 )(Tn) = max{Xk(Tn) : k ∈ N (i)}} (2.3)

P − a.s. on

S(Tn−) = i, ψn = 0,
∑
k∈N (i)

Xk(Tn) > 0


for all n ∈ ZZ+ . Denote

Wn+1 := T
n+1 − Tn, n ∈ ZZ+.

If ψn = 0 then Wn+1 = 0. If ψn > 0 then Wn+1 is the walking time taken by the server to
travel from station S(Tn−) to S(T n+1). We assume that

E[Wn+1|FTn−] ≤ w+
i P − a.s. on

S(Tn−) = i, ψn = 0,
∑
k∈N (i)

Xk(Tn) > 0

 , (2.4)

for non-negative numbers w+
i and

E[Wn+1|FTn−] ≤ w P − a.s. on {ψn = 0} (2.5)

for a finite constant w. If T is a {Ft}-stopping time then we define here FT− as the
σ-field generated by the initial conditions (X1(0), . . . , XK (0), S0, B0, C0), T and {X (t) :
t < T}. Regarding the service policies we assume that

P ((Bn, Cn) ∈ ·|FTn−, S(T n)) = Hi,Xi(Tn) P − a.s. on {ψn−1 = 0, S(T n) = i}, n ≥ 1,
(2.6)

where the Hi,x, (i, x) ∈ {1, . . . , K} × IN, are probability measures on (IN ∪ {∞}) × ZZ+

satisfying Hi,x((IN ∪ {∞}) × {0, . . . , x− 1}) = 1. Let

ν1 := min{k ≥ 1 : ψk = 0}.

For all i ∈ {1, . . . , K} and x ∈ ZZ+ there is a unique number di(x) satisfying

di(x) = E[ν1|FT 1−, S(T
1) = i] P − a.s. on {ψ0 = 0, S(T 1) = i,Xi(T

1) = x}.

This is the number of customers the server has to serve at an average at station i with
x customers waiting at his arrival’s epoch. We assume the existence of the limits

di := lim
x→∞

di(x) ≤ ∞. (2.7)
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If di = ∞ then we call the service policy at station i unlimited. If di < ∞, then we
assume that there is a finite d̃i satisfying

E[ν1|F0] ≤ d̃i P − a.s.on {ψ0 > 0, S0 = i}, (2.8)

and call the policy limited.
We now make the natural but important Markovian assumption that the conditional

distribution of (Wn+1, X1(T n+1), . . . , XK (T n+1), S(T n+1)) given FTn− and ψn = 0 is inde-
pendent of n and depends only on

X̂ (n) := (X1(Tn), . . . , XK (Tn), Ŝ(n), Bn, Cn), (2.9)

where
Ŝ(n) := S(Tn−), n ∈ ZZ+.

This is in accordance with the independence properties of the arrival process. Conse-
quently, {X̂ (n)} is a homogeneous Markov chain with respect to the filtration

F̂n := FTn−, n ∈ ZZ+,

where we recall that F̂0 is generated by the initial conditions. This chain is our main
object of interest. (Notice that X̂ (n) is indeed measurable with respect to F̂n and that
equality Tn = T n+1 is not excluded.) Finally we assume that there is a constant p > 0
satisfying

P (A(W1) = 0|F0) > p P − a.s. on {ψ0 = 0,
∑
k

Xk(0) > 0}, (2.10)

where
A(t) :=

∑
i

Ai(t).

Hence, if the server has completed a batch of services at a moment when the system
is not empty, then there is a uniformly positive chance that he will reach one of these
non-empty stations before the next arrival. (Note that W1 may depend on the arrival
process.)

For examples illustrating the routing mechanism and walking times as well as as-
sumptions (2.5) and (2.10) we refer to [4]. We will add here examples of service dis-
ciplines.
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Example 2.1 Let h be a measurable and non-negative function on {1, . . . , K}× IN×Y,
where (Y,Y ) is some measurable space. Assume that

Bn = h(i,Xi(T
n), ηin), P − a.s. on {ψn−1 = 0, S(T n) = i}, n ≥ 1,

and Cn ≡ 0, where the (ηin) are i.i.d. sequences of random elements of Y which are
independent of each other and independent of the arrival process, the service times
and the walking times. In this case Hi,x can be identified with the distribution H ′i,x
discussed in the introduction and given by the distribution of h(i, x, ηi1). Obviously, the
definitions (1.2) and (2.7) yield indeed the same values. To mention a few special cases
we fix an i ∈ {1, . . . , K}. The choice h(i, x, y) ≡ ∞ determines the exhaustive policy,
while h(i, x, y) = x defines the gated policy. These service policies are unlimited. An
example of a limited policy is obtained by taking Y = IN and h(i, x, y) = min{x, y}, and
ηi1 is assumed to have a finite mean di.

Our model also allows for a convenient treatment of decrementing service policies:

Example 2.2 Assume that the server upon entering station i with x > 0 waiting cus-
tomers provides service there until the queue length after a service completion has
reduced to x − 1. Then Hi,x = δ(∞,x−1) determines the decrementing policy and di is
the mean number of steps taken by a random walk to decrease by 1. The step size of
this random walk is Ai(ηi) − 1, where ηi has distribution Gi and is independent of Ai.
If λibi < 1, then this policy is limited. This example can be generalized. Thinking of
the customers as units of works it is quite natural to decrease the queue length not only
by 1 but by a finite (possibly random) number. The random number B need not equal
deterministically∞ but could be used to model the maximal time the server is willing
to stay at station i.

3 Proof of the stability results

The main part of this section is devoted to the proof of a criterion for stability which
is based on the maximal nominal load of the system defined by (1.1) and (2.4). For
shortness we let X := ZZK+ × {1, . . . , K} × (IN ∪ {∞})× ZZ+ denote the state space of the
Markov chain {X̂ (n)}. For any A ⊆ X we define

τA := inf{n ≥ 1 : X̂ (n) ∈ A},

where inf ∅ := ∞. We call A positive recurrent (for the Markov chain {X̂ (n)}) if

Px(τA <∞) = 1, x ∈ X,
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and
sup
x∈A

ExτA <∞,

where Ex denotes expectation with respect to Px. Here Px is the governing probability
measure if X̂ (0) = x, which is a standard notation for Markov chains (see e.g. Meyn
and Tweedie [8] or the Appendix in [4]).

Theorem 3.1 Assume that ρ+ < 1. Then:

(i) The set A := {(0, . . . , 0)} × {1, . . . , K} × (IN ∪ {∞}) × ZZ+ is positive recurrent.

(ii) If the conditional distribution of (Wn+1, X1(T n+1), . . . , XK (T n+1), S(T n+1)) given
FTn− and

∑K
i=1Xi(Tn) = 0 is independent of Bn, then each essential state of

{X̂ (n)} is positive recurrent.

Note that the additional assumption in (ii) is very natural and could have assumed
from the very beginning.

Remark 3.2 Assume that there are no batch arrivals, i.e. that A1, . . . , AK are inde-
pendent homogeneous Poisson processes. Then there is only one absorbing class of
communicating states for {X̂ (n)}. Indeed, taking some j ∈ {1, . . . , K} and some m
with Hj,1({m} × ZZ+) = Hj,1({(m, 0)}) one can use assumption (2.10) to show that state
(0, . . . , 0, j,m, 0) can be reached from any other state with a positive probability.

To prove Theorem 3.1 it is now convenient to consider a more general model, where
the stochastic behaviour of the system is influenced by a further piecewise constant
process {U (t) : t ≥ 0} taking values in some measurable space (U,U ) and being right-
continuous w.r.t. discrete topology. We let

X (t) := (X1(t), . . . , XK (t), S(t), B(t), C(t), U (t))

and define the filtration {Ft} as before, using now the new process X (t). We apply
the assumptions on the arrival process, service policies and service times of section 2
verbatim and we also assume that

X̂ (n) := (X1(Tn), . . . , XK (Tn), Ŝ(n), Bn, Cn, U (Tn)), F̂n := FTn , (3.1)

is a homogeneous Markov process fitting the general setting of the Appendix of [4].
We define a test function V on X × U by

V (x) := r1x1 + . . . + rKxK , x = (x1, . . . , xK , i,m, k, u), (3.2)
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where
ri := bi + 1{di <∞}w+

i /di.

If all stations are served according to an unlimited policy, then V (x) is the mean work
in the system with xi customers in queue i. In general the function takes into account
the walking times starting at a station with a limited service policy which could be
considered as additional work the system has to cope with. Roughly speaking, if xi is
large then w+

i /di is an upper bound for the mean additional work per customer. With
this modified interpretation of work, function V (x) provides an upper bound for the
expected work load in the system. It is natural to expect that a negative drift of V (x)
outside bounded sets should result in a ergodic behaviour. However, we cannot estab-
lish this drift condition at deterministic times but rather at random stopping times that
might depend on the whole process history. To make these ideas rigorous we formulate
three lemmas the first of which is an adaption of Lemma 3.5 in [4] to the present more
complicated situation. The proofs of the other lemmas however rely heavily on the
properties of the greedy routing.

We need to introduce some further notation. Let {θ̂n : n ∈ ZZ+} be the flow of
shift operators associated with the process {X̂ (n)}, see the Appendix in [4]. A family
Z = {Z(n) : n ≥ 0} is called a subadditive process (w.r.t. the filtration {F̂n} and the
shift θ̂) if Z(n) is F̂n-measurable for each n ∈ ZZ+ and

Z(m + n) ≤ Z(m) + Z(n) ◦ θ̂m, m, n ∈ ZZ+.

Define ν0 := 0 and
νn+1 := min{k > νn : ψk = 0}, n ∈ ZZ+.

If ψ0 = 0 (resp. > 0) then νn, n ∈ IN, is the number of completed services before the
server starts his (n + 1)st (resp. nth) walk.

Lemma 3.3 Assume that σ is an {F̂n}-stopping time and 0 ≤ c < 1, L0, c1 ∈ IR+ , are
constants, satisfying

ExV (X̂ (σ)) ≤ cV (x) if V (x) > L0, (3.3)

Exσ ≤ c1V (x) if V (x) > L0. (3.4)

Then
Exτ ≤ aL0V (x) + cL0 , x ∈ X, (3.5)

where
τ := min{n ≥ 1 : |X̂ (n)| = 0},
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(min ∅ := ∞), and aL0 , cL0 are constants which may depend on L0 . Assume in addition
that {Z(n)} is a subadditive process satisfying

ExZ(σ) ≤ QLV (x) if V (x) > L, L ≥ L0, (3.6)

where limL→∞QL = 0. Then, for all L ≥ L0 , there are numbers d̃L and Q̃L such that

ExZ(τ ) ≤ d̃L + Q̃LV (x) if V (x) > L/c (3.7)

and limL→∞ Q̃L = 0.

PROOF. The proof is an obvious modification of the proof of Lemma 3.5 in [4]. The
role of the pair (σ, νσ) in the latter lemma is now played by (Z(σ), σ). We omit further
details. ut

Let
Ni(m) := card {0 ≤ n ≤ m : S(T n) = i, ψn = 0}

be the number of walks started at station i by time Tm and

Di(m) := card {1 ≤ n ≤ m : S(T n) = i}

be the number of departures from station i by time Tm and

Ci(m) := card

0 ≤ n ≤ m : ψn = 0,
∑

i∈N (S(Tn))

X̂i(n) = 0

 .

We would like to prove the existence of a stopping time σ satisfying the assumptions
of the preceding lemma with

Z(n) := Z1(n) + Z2(n) + Z3(n),

where

Z1(n) :=
∑
i:di<∞

w+
i

(
Ni(n) −

Di(n)
di

)
,

Z2(n) := ρ+w
∑
i:di=∞

Ni(n),

Z3(n) := ρ+w
∑
i

Ci(n),

and w is the upper bound for the means of the walking times, see (2.5).
For x = (x1, . . . , xK , i,m, k, u) ∈ X × U we define |x| := x1 + . . . + xK , s(x) := i, and

ψ(x) := min{m− 1, 1{xi 6= k}}.
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Lemma 3.4 For all ε > 0 there exists an n ∈ IN such that, for all m ≥ n,

Ex[Z1(m) + Z2(m)] ≤ εm if xs(x) ≥ 2m.

PROOF. By assumption (2.7) we find for any ε′ > 0 and all i ∈ {1, . . . , K} with di < ∞
an n′ ∈ IN such that, for all m ≥ n′,

|Exν1 − di| ≤ ε′ if s(x) = i, ψ(x) = 0, xi ≥ m.

Assume that xs(x) ≥ 2m for some m ≥ n′. Due to the greedy walking mechanism all
batches of services starting before Tm start at a station with at least m waiting cus-
tomers. Hence, using also (2.8),∑

i:di<∞

Ex

[
Ni(m) − Di(m)

di

]

=
∑
i:di<∞

Ex

[
∞∑
l=0

1{νl < m ≤ νl+1}[1{S(T 1) = i}ν1
di

+
l−1∑
k=1

1{S(T νk+1) = i}
(
1 − νk+1 − νk

di

)
+ 1{S(T νl ) = i} (m− νl)

di

]]
≤ a1ε

′
∑
i:di<∞

ExNi(m) + a2,

where a1, a2 are generic constants which do not depend on n′. Since∑
i

Di(n) = n, (3.8)

ExNi(n′) can be bounded by a linear function of n′ if di <∞. Hence we may conclude
the assertion for Z1 .

Also by assumption we find for any C > 0 and all i ∈ {1, . . . , K} with di = ∞ an
n′ ∈ IN such that, for m ≥ n′,

Exν1 ≥ C if s(x) = i, xi ≥ m.

Hence we get for xs(x) ≥ 2m and m ≥ n′ that∑
i:di=∞

ExDi(m)] ≤ a3 + C
∑
i:di=∞

ExNi(m)

for a constant a3 not depending on n′. Taking into account (3.8), we get the assertion
for Z2 and the lemma is proved. ut
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Lemma 3.5 Assume that ρ+ < 1. Then there exists a {F̂n}-stopping time σ and con-
stants c ∈ [0, 1), L0, c1 ∈ IR+ such that inequalities (3.3), (3.4) and (3.6) in Lemma 3.2
are satisfied.

PROOF. As in [4] we proceed by induction on the number of stations. For K = 1 we
choose σ := max{k ∈ IN : k ≤ |X (0)|/2}. Then equality (3.4) is trivial while (3.3)
can be proved as in the induction step. Inequality (3.6) reduces to the corresponding
inequality for Z1 and follows from Lemma 3.4.

Now we consider a system with K + 1 stations. As in [4] we couple the process

X (t) = (X1(t), . . . , XK+1(t), S(t), B(t), C(t), U (t))

with another auxiliary process X̃ (t) describing a polling system with stations {1, . . . , K}
that behaves like the original system until the time when the server first enters station
K + 1. Hence we define

(X̃1(t), . . . , X̃K (t), S̃(t)B̃(t), C̃(t)) := (X1(t), . . . , XK (t), S(t), B(t), C(t)), t < T̃∞,

where
T̃∞ := inf{t : S(t) = K + 1}.

Further we let Ũ (t) := (U (t), XK+1(0) + AK+1(t)) for t < T̃∞ and Ũ (t) = u∞ for t ≥
T̃∞, where u∞ is not in the space U × ZZ+ . Consequently Ũ (t) takes values in the set
U × ZZ+ ∪ {u∞}. It is an easy technical point to define the dynamics of X̃ (t) after
the epoch T̃∞ such that all assumptions of this section are satisfied. Therefore we
can use the induction hypothesis together with a geometrical trial argument based on
assumption (2.10) to conclude from Lemma 3.3 that (3.5) and (3.7) are satisfied with τ
replaced by the stopping time

min{n ≥ 1 : Ŝ(n) = K + 1},

if XK+1(0) > 0, see [4]. Of course this conclusion remains true for the stopping time

σ̃ := min{n ≥ 1 : Ŝ(n) = ξ},

where ξ is an F0-measurable random element of {1, . . . , K + 1} satisfying

Xξ(0) ≥
|X (0)|
K + 1

.

We claim that

σ := σ̃ + max

{
k ∈ IN : k ≤ |X (0)|

2(K + 1)

}
(3.9)

14



satisfies (3.3), (3.4) and (3.6) for suitable chosen constants. The validity of (3.4) is ob-
vious. Using Lemma 3.4, the equation Z3(σ) = Z3(σ̃) and the definitions and properties
of σ̃ and σ, we obtain for any ε′ > 0 that

ExZ(σ) = ExZ(σ̃) + Ex[Ex[Z(σ) − Z(σ̃)|FT σ̃+1 ]]

≤ Q̃L′V (x) + d̃L′ + ε′
|x|

2(K + 1)

if |x| > L′ and L′ has been chosen large enough. For any ε > 0 this expression can
be made smaller than ε

2V (x) + d̃L′′ if V (x) > L′′ and L′′ is chosen large enough. Hence
there is an L > 0 with

ExZ(σ) ≤ εV (x) if V (x) > L,

proving (3.6). It remains to check the drift condition (3.3). Using a similar calculation
as in [4] we obtain that

ExTσ = Ex

[
∞∑
m=0

1{νm < σ ≤ νm+1}((
m−1∑
k=0

Wνk+1 +
νk+1∑

n=νk+1

(Tn − T n)
)
+

(
Wνm+1 +

σ∑
n=νm+1

(Tn − T n)
))]

≤
∑
i:di<∞

w+
i ExNi(σ) + w

∑
i:di=∞

ExNi(σ)

+
∑
i

biExDi(σ) + w
∑
i

ExCi(σ),

where we recall the definitionW1 := 0 if ψ0 > 0. From

X̂i(σ) = X̂i(0) + Ai(Tσ) −Di(σ),

the assumptions on the arrival process, definition (3.2) of test function V , and defini-
tion (1.1) of ρ+ we have

ExV (X̂ (σ)) = V (x) +
∑
i

riλiExTσ −
∑
i

riExDi(σ)

≤ V (x) − (1 − ρ+)Exκ(σ) + ExZ(σ),

where
κ(n) :=

∑
i:di<∞

w+
i Ni(n) +

∑
i

biDi(n). (3.10)
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By definition (3.9) of σ, Exκ(σ) ≥ C̃V (x) for a certain constant C̃ and hence

ExV (X̂ (σ)) ≤ c′V (x) + ExZ(σ),

where c′ < 1. Choosing a c with c′ < c < 1 and using (3.6) we conclude (3.3) for large
enough L0 . ut

In the remainder we return to the more specific setting of Section 2, where process
U (t) is constant.

Proof of Theorem 3.1: The first assertion follows directly from (3.5). To prove
the second we now restrict {X̂ (n)} to an absorbing class B of essential states. Let τ (n) ,
n ∈ IN, be the time of the nth visit of the set A defined in the theorem. (We must have
B ∩ A 6= ∅.) By assumption, Z(n) := Ŝ(τ (n)), n ∈ IN, is a homogeneous Markov chain
and we denote the set of its essential states by S. By (3.5) this set is not empty because,
starting with any initial conditions in B , the chain X̂ (n) must hit at least one of the sets

Ai := {(0, . . . , 0, i)} × (IN ∪ {∞}) × ZZ+

i = 1, . . . , K infinitely often. By irreducibility of {X̂ (n)} on B , all states of S must
communicate and since S is finite, all states in S are positive recurrent for the chain
{Z(n)}. Using the strong Markov property and positive recurrence of A it is now easy
to prove that Ai is positive recurrent for {X̂ (n)} whenever i ∈ S. Now the assertion
can be deduced from standard splitting techniques (see e.g. [8], pp. 102, pp. 422) upon
noticing that the conditional distribution of {X (t) : t ≥ Tn} given X̂n does not depend
on (Bn, Cn) provided that X̂ (n) ∈ Ai.

Now we prove conditions sufficient for instability. We use the notation introduced
before Lemma 3.4.

Theorem 3.6 For all i ∈ {1, . . . , K} with di <∞ let w−i be a number satisfying

ExW1 ≥ w−i if s(x) = i, ψ(x) = 0,

and let w−i := 0 if di = ∞. Assume that di(x) ≤ di for all i with di < ∞ and all x. If
the chain {X̂ (n)} is ergodic (i.e. aperiodic with only one absorbing class of positive
recurrent states), then ρ− ≤ 1, where ρ− is given by (1.3).

PROOF. For all n ∈ IN we have as in [4]

ExXi(Tνn ) = xi + λiEx(W (n) + ζn) − ExDi(n), (3.11)

16



where

ζn :=
K∑
i=1

biDi(n),

W (n) :=
n−1∑
m=0

Wνm+1.

Assume that {X̂ (n)} is ergodic. Then the chain Y (n) := X̂ (νn), n ∈ IN, is also ergodic
and we denote its equilibrium distribution by π. By our Markovian assumption we
have a stochastic kernel K from X to ZZK+ × {1, . . . , K} satisfying

Py(Z(n) ∈ ·|Y (n)) = K(Y (n), ·) Py − a.s.

for all y ∈ X, where Z(n) := (X1(T νn+1), . . . , XK (T νn+1), S(T νn+1)). Obviously,

π′(·) :=
∑
x∈X

K(x, ·)π(x)

is a equilibrium distribution for the chain {Z(n) : n ∈ IN}. As in [4] we may conclude
that

ρ :=
K∑
i=1

λibi

satisfies ρ 6= 1 and that
w̄ :=

∑
y

w(y)π(y),

is a positive number, where

w(y) := EyW1 if ψ(y) = 0,

is the mean walking time if y is the state of the system just after completion of a batch
of services.

We denote
πi :=

∑
x∈X

1{s(x) = i}π(x) =
∑
x∈ZZK+

π′((x, i)).

As in [4] we get
λjw̄

1 − ρ
= B̄jπj, j ∈ {1, . . . , K}, (3.12)
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where
B̄i := π

−1
i

∑
x∈ZZK+

di(x)π
′((x, i)),

is the stationary average size of a batch of services given that the server is at station i.
If w−i = 0 for all i, then ρ− = ρ < 1. Therefore we will assume now that

w− :=
∑
i:di<∞

w−i πi

is positive. By assumption, w̄ ≥ w− and B̄i ≤ di. Hence

λjw
−

(1 − ρ)dj
≤ πj. (3.13)

Multiplying this equation with w−j and summing up over all j satisfying dj < ∞ we
obtain that ∑

j:dj<∞

λjw
−
j

(1 − ρ)dj
≤ 1

which implies ρ− ≤ 1. ut
We note in passing that the preceding proof did not use any specific assumptions on

the routing mechanism.

Corollary 3.7 If the chain X̂ (n) is ergodic, then (3.12) holds.

In most cases the assumptions of Theorem 3.6 imply the strict inequality ρ− < 1:

Corollary 3.8 Let the assumptions of Theorem 3.6 be satisfied and let π and π′ be as
introduced in the proof above. Any of the following conditions implies that ρ− < 1.

(i) di = ∞ for some i with π({(0, i)} × (IN ∪ {∞}) × ZZ+) > 0.

(ii) w(x) > w−i for some i ∈ {1, . . . , K} and x ∈ X with s(x) = i, di < ∞ and π({x} ×
(IN ∪ {∞}) × ZZ+) > 0.

(iii) di(x) < di for some i ∈ {1, . . . , K} and x ∈ IN with di <∞ and π′((x, i)) > 0.

PROOF. In the first case we have w̄ > w− because w(x) > 0 if |x| = 0. Hence inequality
(3.13) is in fact strict implying that ρ− < 1. The other two cases follow similarly
because we then have w̄ > w− or B̄i < di, respectively. ut
Remark 3.9 If ρ− = 1, then the chain X̂ (n) might be null-recurrent. However, if ρ− >
1, then it is not difficult to see that

lim
n→∞

∑
k

X̂k(n) = ∞ P − a.s.
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4 Examples and discussion

The proof of the stability result in the last section relies essentially on the greedy
walking mechanism. Our first example shows that if we allowed for a greedy-type
mechanism as in [4], then the system might become unstable even if ρ+ < 1.

Example 4.1 Consider a polling system with two stations, where the first station is
served according to the exhaustive policy and the second according to H ′2,x = δmin{x,1},
see Example 2.1. After the server has completed a batch of services at station 1 or
one service at station 2 he chooses a non-empty station to be served next, where each
station gets an equal chance if both are non-empty. If the system is empty, then the
server waits till the next customer will have arrived. It takes the server a fixed time w
to get from station 1 to 2. All other walking times are supposed to be zero. Customers
arrive at each station according to a Poisson process with intensity λ and service times
are supposed to equal 1. This model fits the setting of the present paper except for the
walking mechanism which is greedy-type, see [4].

Let us assume that ρ+ := 2λ < 1. Assume that at time 0 the server is at station 1
which is empty and let Z0 be the corresponding queue length at station 2. Let Z1 denote
the number of customers in station 2 after the completion of the first batch of services
at station 1. A routine calculation shows that

E[Z1|Z0] ≥ Z0 + λw + c if Z0 ≥ L0,

where L0 and c are constants and c might be negative. Hence the underlying Markov
chain cannot be ergodic if w is large enough. The reason is clearly that lots of cus-
tomers may arrive during the walk from station 1 to station 2. Because the walking
mechanism is not greedy but only greedy-type the server leaves station 2 after a geo-
metrically distributed random time as soon as station 1 became non-empty no matter
what the queue size at station 2 is.

Our next example will show that in case ρ− < ρ+ the stability region can depend on
the whole distributions of the underlying walking times. Without additional assump-
tions it seems to be a difficult task to determine that region explicitly.

Example 4.2 Consider a system of two stations each of which is fed by a Poisson
process with intensity λ. Each queue is served according to the policy H ′1,x = H ′2,x =
δ1 and service times are deterministically equal one. After completion of a service
the server chooses the station with the longest queue for his next visit, where each
station gets an equal chance if the queue lengths coincide. If the system is empty,

19



then the server stays at the station he is at and waits for the next arriving customer.
It takes the server no time to travel from station i to i, i = 1, 2, while the walking
times from one station to the other follow a distribution W with finite mean w. Note
that ρ− = λ and ρ+ = λ(1 + w). The transition probabilities of the chain X̂ (n) are
homogeneous on IN × IN × {1, 2} and can hence be used to define an (auxiliary) chain
X ′(n) = (X ′1(n), X

′
2(n), S

′(n)) with state space ZZ×ZZ×{1, 2} which behaves on IN×IN×
{1, 2} like X̂ (n). The process M (n) := (X ′1(n) − X ′2(n), S

′(n)) is again an irreducible
aperiodic Markov chain and satisfies, for i = 1, 2,

E[|M1||M0 = (m, i)] = |m| − 1, |m| ≥ 1,

because the arrival intensities coincide. Foster’s criterion shows thatM (n) is ergodic.
Let p be the probability of the event S ′(0) 6= S ′(1) under the equilibrium distribution
of M (n). Let us run the chain X ′(n). After a random time β satisfying E[β|X ′(0)] =
c1|X (0)|, where |X (n)| := X ′1(n) + X

′
2(n) and c1 is a constant, the chain M (n) couples

with its stationary version. Thereafter, on an average, λ+λwp customers arrive between
two service completions. Therefore, letting T := c1(1 + C)|X ′(0)|, for some (large)
C > 0, one can prove that

E[|X ′(n)| − |X ′(0)||X ′(0)] = c1C(λ + λwp− 1)|X ′(0)| + O(|X ′(0)|).

Hence the chain X̂ (n) is stable if λ + λwp < 1. If λ + λwp > 1, then the chain is
transient. The stability region is hence determined by the value of the constant p. Since
the transition probabilities of the chainM (n) are determined by the distributionW , the
constant p may, in general, depend on the whole distribution W and, in particular, on
any finite number of moments ofW .

Theorem 3.5 uses the assumption di(x) ≤ di for all i and x. If this assumption
fails, then we do not know whether inequality ρ− > 1 implies the transience. For this
conclusion we need additional assumptions on the service disciplines. Assume for
example that the service policies are of the type described in Example 2.1. If for all
stations i with a limited policy the function h(i, ·, y) is monotone decreasing for all y
and limx→∞ h(i, x, ηi1) is integrable, then it is possible to prove that ρ

− > 1 is sufficient
for transience.

If the assumptions of Theorem 3.5 are violated, then in case ρ− = 1 both is possible,
stability or instability of the system:

Example 4.3 Consider a model with only one station, i.e. a single server with vaca-
tions. Assume that service times and walking (or vacation) times are identically 1 and
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w, respectivly. The service discipline is defined as in Example 2.1 with Y = IN and

h(x, y) := min{x, 1 + 1{y > x}},

i.e., there is an i.i.d. sequence (ηn) such that, with obvious notation,

Bn = h(X (T n), ηn) P − a.s. on {ψn−1 = 0}, n ≥ 1.

Then, for x ≥ 2, d(x) = 1 + ax, where ax := P (η1 > x) and d := limx→∞ d(x) = 1. In
the following we assume that ρ+ = ρ− = λ(w + 1) = 1. A direct computation yields, for
x ≥ 2,

E[X̂ (1) − x|X̂ (0) = x] = −(1 − λ)ax.

This term is negative but at the moment nothing can be said on recurrence of the chain
X̂ (n). Taking a quadratic test function one obtains, using straightforward computa-
tions, that

E[(X̂ (1))2 − x2|X̂ (0) = x] = 1 − 2(1 − λ)xax + ax − λax + λ2ax.

Assume that limx→∞ xax = m for some positive constant m. In particular, Eη1 = ∞.
Then the above expression tends to 1−2(1−λ)m and if this number is negative positive
recurrence follows. If 2(1 − λ)m < 1, then one can use the approach of Lamperti [6]
and Fayolle [1] to prove transience of the chain X̂ (n).

In the following we skip the Poisson assumptions on the input and discuss the pos-
sibility to extend our results to more general arrival processes of the form

Ai(t) =
∑
n≥1

1{τn ≤ t}Bi
n, t ≥ 0, i = 1, . . . K,

where τ1 < τ2 . . . are the arrival epochs of batches of customers and Bn = (B1
n, . . . , B

K
n ),

n ≥ 1, are random elements of ZZK+ satisfying
∑K

i=1 B
i
n > 0. A general reasonable

assumption is that, at any time t ≥ 0, the conditional distribution of the future of the
arrival processA := {(A1(t), . . . , AK (t)) : t ≥ 0} given the complete history Ft, depends
only on the corresponding history of A. In order to conclude the results of this paper
one needs further regenerative-type assumptions. We give two examples.

Example 4.4 (i) The (τn − τn−1, Bn), (τ0 := 0) are independent and have the same
distribution for n ≥ 2.
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(ii) There are K independent sequences (τ in, B̃
i
n) of random elements of IR+ × IN such

that
Ai(t) =

∑
n≥1

1{τ in ≤ t}B̃i
n, t ≥ 0, i = 1, . . . K.

The (τ in − τn−1, B̃i
n), (τ

i
0 := 0) are independent and have the same distribution for

n ≥ 2.

Taking the arrival processes in the above examples, the results of this paper as
well as those of [4] can still be proved under additional smoothness assumptions on
the underlying interarrival distributions. This remains even true for a more general
class of marked point processes with an inherent regenerative structure, see [3] for the
definition. However, a proof would require a lot of technical effort without yielding
more insight into the basic ideas. Similar generalizations apply to service and walking
times.

Our final remark concerns possible modifications of the greedy routing mechanism.

Remark 4.5 Consider the following generalization of the greedy routing mechanism.
Assume that the server is at station i and chooses his next customer randomly in the set

{j : gj (xj ) ≥ max{xk : k ∈ N (i)}}

where the gj : ZZ+ → IR+ are functions satisfying

lim inf
m→∞

gj (m)/m > 0.

It is easy to see from the proof that inequality ρ+ < 1 is still sufficient for ergodicity.
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