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The notation G/G/1 queue is usually referred to a single-server queue with first-in-first-out
discipline and with a general distribution of the sequences of inter-arrival and service times
(which are the “driving sequences” of the system). Customers are numbered n = 0, 1, . . .. We
assume that customer 0 arrives to a system at time t = 0 and finds there an initial amount
of work, so has to wait for W0 ≥ 0 units of time for the start of its service. Let tn be the
time between the arrivals of nth and (n + 1)st customers and sn the service time of the nth
customer. Let Wn be the waiting time (delay) of the nth customer, i.e. time between its
arrival and beginning of its service. Then, for n ≥ 0, the sequence {Wn} satisfies Lindley’s
equations

Wn+1 = (Wn + sn − tn)+ (1)

where we use the notation x+ = max(0, x).
We assume the two-dimensional sequence {(sn, tn)} to be stationary. We consider mostly

the i.i.d. sequences (GI/GI/1 queue, here “GI” stands for “general independent”), and then
the general case in brief. The list of references contains a number of recent textbooks and
surveys with the whole coverage of problems discussed in the article. The key references are
[1] for Section 1 and [2, 4] for Section 2.

1 GI/GI/1 queue

In this Section we assume that each of the sequences {tn} and {sn} consists of i.i.d. (in-
dependent and identically distributed) random variables (r.v.’s), that these two sequences
are independent and do not depend on W0. W.l.o.g. we may assume that these sequences
are extended onto negative indices n = −1,−2, . . .. Let T0 = 0, Tn =

∑n−1
i=0 ti, n ≥ 1 and

Tn = −
∑−1

i=n ti, n ≤ −1.
Let a = 1

λ = Etn ∈ (0,∞) denote the interarrival mean (expectation) and b = Esn ∈
(0,∞) the mean service time. Then ρ = λb is the traffic intensity. We consider the case of
finite means only.

For the analysis of the waiting-time distributions, the key tool is the duality between the
maximum of a random walk and the waiting time processes. Define ξn = sn − tn, µ = Eξn =
b − a, S0 = 0, Sn = ξ0 + . . . + ξn−1, Mn = max0≤k≤n Sk. Note that ρ < 1 and µ < 0 are
equivalent.

For the random walk {Sn}, the Strong Law of Large Numbers holds, Sn/n → µ a.s. as
n→∞. So, if µ < 0, then the random variable ν = max{n : Sn > 0} is finite a.s. and Mn =
Mν for all n ≥ ν. Then M = supn≥0Mn = Mν and, for any n, P(Mn 6= M) ≤ P(ν > n)→ 0,
as n→∞.

Proposition 1.1. (1) For any n ≥ 0, r.v.’s Wn and max(Mn,W0 + Sn) are identically
distributed,

Wn =D max(Mn,W0 + Sn). (2)

In particular, if W0 = 0, then Wn =D Mn and probability P(Wn > x) increases in n, for any
x.
(2) If ρ < 1, then a limiting steady-state waiting time W exists and coincides in distribution
with that of M , W =D M . Further, the distribution of Wn converges to that of W in the total
variation norm, that is

sup
A
|P(Wn ∈ A)−P(W ∈ A)| ≤ P(ν > n)→ 0, n→∞. (3)
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For the steady-state random variable W and for an independent of it r.v. ξ =D ξ1, the random
variables (W + ξ)+ and W have the same distribution,

(W + ξ)+ =D W. (4)

(3) If ρ = 1 and if σ2 = Varξn = Vart1 + Vars1 is finite, then the distributions of Wn/
√
n

converge weakly, as n → ∞, to the distribution of the absulute value of a normal random
variable with mean 0 and variance σ2.
(4) If ρ > 1, then Wn/n→ µ a.s., as n→∞.

1.1 Regenerative structure

Consider the case W0 = 0. Let τ0 = 0, τ = τ1 = inf{n ≥ 1 : Wn = 0} and, for k ≥ 1,
τk+1 = inf{n > τk : Wn = 0}. Clearly, τ = inf{n ≥ 1 : Sn ≤ 0}.

Proposition 1.2. Assume W0 = 0. If ρ ≤ 1, then all τk are finite a.s. and the random
elements (τk − τk−1, (ti, si,Wi), i = τk−1, . . . , τk − 1) are i.i.d. Moreover, if ρ < 1, then
Eτ < ∞ and, for any α > 1, Eτα < ∞ if and only if Esα1 < ∞. Further, if ρ < 1 and if
Eecs1 is finite for some c > 0, then Eec1τ is finite for some c1 > 0.

We may interpret τk− τk−1 as the number of customers served in the kth busy period, the
duration of the kth period is the total service time

Bk =
τk−1∑
i=τk−1

si,

and this busy period is followed by the idle period where the server is empty during

Ik =
τk−1∑
i=τk−1

ti −
τk−1∑
i=τk−1

si =
τk−1∑
i=τk−1

(ti − si)

units of time. The sum of a busy period and of the following idle period is a busy cycle,
Ck = Bk + Ik =

∑τk−1
i=τk−1

ti. In particular, the first idle period, I, is equal to I = I1 = −Sτ .

Proposition 1.3. Assume W0 = 0. If ρ < 1, then EI is also finite and, for any function
f : [0,∞)→ [0,∞),

Ef((W + ξ)−) =
Ef(I)
Eτ

= −Eξ
Ef(I)
EI

(5)

and, in particular,
E(W + ξ)− = −Eξ. (6)

Here we use notation x− = −min(x, 0).

1.2 Moments of the stationary waiting time

Proposition 1.4. Assume ρ < 1. Let W be the stationary waiting time. For any α > 0, if
Esα+1

1 <∞, then EWα <∞. Conversely, if EWα <∞ and Et1 <∞, then Esα+1
1 <∞.

Further, if, for some k = 1, 2, . . ., both Esk+1
1 and Etk+1

1 are finite, then

k∑
l=0

C lk+1EW
lEξk+1−l = E[−(W + ξ)k+1] = (−1)kEξ

EIk+1

EI
. (7)

In particular,

EW =
λ2(Vart1 + Vars1) + (1− ρ)2

2λ(1− ρ)
− EI2

2EI
(8)
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and then
ρ2 + λ2Vars1 − 2ρ

2λ(1− ρ)
≤ EW ≤ λ(Vart1 + Vars1)

2(1− ρ)
. (9)

Here again random variables W and ξ =D ξ1 are assumed to be independent.

1.3 Continuous time. The virtual waiting time

Recall that C = C1, B = B1 and I = I1 are, correspondingly, the (duration of) the first busy
cycle, the first busy period, and the first idle period.

Proposition 1.5. Assume W0 = 0. Suppose ρ < 1. Then the busy cycle has mean EC = aEτ ,
the busy period has mean EB = bEτ , and the mean of the idle period is EI = EC − EB =
−µEτ .

Let W (t) be the virtual waiting time at time t, i.e. the total residual workload at t
which is the sum of the residual service time of a customer in service and of all service times
of customers in the queue. As a function of t, W (t) decreases linearly between consequtive
arrivals if positive and stays at zero if zero, with positive jumps at the arrival epochs. Further,
Wn = W (Tn−), n = 0, 1, . . . and the process W (t), t ≥ 0 satisfied Lindley’s equations in
continuous time:

W (t) = (W (Tn−) + sn − (t− Tn))+, t ∈ [Tn, Tn+1) (10)

Non-Lattice distribution. A random variable X has a non-lattice distribution if∑∞
k=−∞P(X = kh) < 1, for all h > 0.

Proposition 1.6. Suppose that ρ < 1 and that {tn} have a common non-lattice distribution.
Then there exists a limiting (stationary) distribution, as t → ∞, of the virtual time W (t)
which is given by

P(V > x) =
1

EC
E
(∫ C

0
I(W (u) > x)du

)
. (11)

Further,

EV = ρ

(
Es2

2µs
+ EW

)
. (12)

Here I(·) is the indicator function, I(A) = 1 if event A occurs and I(A) = 0, otherwise.

Proposition 1.7. Assume that a random variable ŝ is independent of W and has an absolutely
continuous distribution with density P(s > x)/b where b = Es1. Then

P(V = 0) = 1− ρ

and, for all x ≥ 0,
P(V > x) = ρP(W + ŝ > x).

1.4 Queue Length and Little’s law

We introduce three quantities: the queue length QAn at the n arrival time, the queue length
QDn at the n departure time, and the queue length Q(t) at an abritrary time t.

Spread-out distribution. A probability distribution F is spread-out if it can be repre-
sented as F = pG1 + (1− p)G2 where p ∈ [0, 1), G1 and G2 are probability distributions, and
G2 is abolutely continuous with respect to Lebesgue measure.
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Proposition 1.8. If ρ < 1, then the distribution of QAn (correspondingly, of QDn ) converges,
as n→∞, to that of a finite random variable QA (correspondingly, QD), in the total variation
norm.
If ρ < 1 and the distribution of the inter-arrival times is non-lattice, then the distribution of
Q(t) converges weakly, as t → ∞, to that of a finite random variable Q. If, in addition, the
common distribution of inter-arrival times is spread-out, then the convergence is in the total
variation norm.

Proposition 1.9. (Little’s law) Assume that ρ < 1, Es21 < ∞, and that the distribution
of inter-arrival times is non-lattice. Then

q = λ(w + b) (13)

where q = EQ is the mean stationary queue length, λ = 1/a the arrival rate, and w + b =
E(W + s1) the mean stationary sojourn time, i.e. the sum of mean waiting and mean service
times.

Proposition 1.10. (Distributional Little’s law in discrete time) Suppose ρ < 1.
Then, for any k = 1, 2, . . .,

P(QA ≥ k) = P(QD ≥ k) = P(W + s1 ≥
k∑
i=1

ti) (14)

where the random variables W, s1 and {ti}ki=1 are assumed to be mutually independent. Fur-
ther, if either s1 or t1 has a continuous distribution, then equations (14) are equivalent to

P(QA = 0) = P(QD = 0) = P(W = 0) (15)

and, for k ≥ 1,

P(QA ≥ k) = P(QD ≥ k) = P(W >

k−1∑
i=1

ti). (16)

Proposition 1.11. (Distributional Little’s law in continuous time) Suppose that
ρ < 1 and that the distribution of inter-arrival times is non-lattice. Then the stationary
distribution of the queue length Q is given by

P(Q = 0) = 1− ρ

and, for k = 1, 2, . . .,

P(Q ≥ k) = P(V >
k−1∑
i=1

ti) = ρP(W + ŝ >
k−1∑
i=1

ti) (17)

where we assume the mutual independence of all r.v.’s in the formula above.

1.5 Continuity under perturbation

Proposition 1.12. Consider a series of single-server queue indexed by the upper k. Assume
that, as k →∞, the distributions of t(k)1 weakly converge to that of t1, the distributions of s(k)1

weakly converge to that of s1, and that ρ < 1 and ρ(k) < 1, for all k. If Es(k)1 → Es1, then the
distributions of W (k) converge weakly to that of W . If, in addition, either the distribution of
s1 or the distribution of t1 is continuous, then P(W (k) = 0)→ P(W = 0).
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1.6 Heavy-traffic limits

Proposition 1.13. Consider a series of single-server queues indexed by the upper index k.
Assume that, as k →∞, the distributions of t(k)1 weakly converge to that of t1, the distributions
of s(k)1 weakly converge to that of s1, and that the distributions of s1 and of t1 do not both
degenerate. Assume further that ρ(k) < 1, for all k, and ρ(k) → ρ = 1, and that the squares(
s
(k)
1

)2
and

(
t
(k)
1

)2
are uniformly integrable.

Then the distributions of random variables Y (k) = |µ(k)|W (k)
(
σ(k)

)2
converge weakly to an

exponential distribution with intensity 2 and also EY (k) → 1
2 . Furthermore, for each T and

for y ≥ 0,

P

(
|µ(k)|(
σ(k)

)2W (k)

[T(σ(k))2
]
> y

)
→ P( max

0≤t≤T
(B(t)− t) ≥ y) (18)

where {B(t), t ≥ 0} is the standard Brownian motion, and [x] is the integer part of a number
x.

1.7 Rare events

In the stable case, ρ < 1, the exact values of the tail probability P(W > x) may be found
only in a number of particular cases. But the asymptotics for this probability may be written
down in a great generality. There are two particular cases, of light tails and of heavy tails of
the service time distributions, where the tail asymptotics differ and are caused by different
phenomena.

For two positive functions f and g on the real line, we write f(x) ∼ g(x) if lim f(x)
g(x) = 1 as

x→∞.

1.7.1 Rare events in the presence of light tails

Proposition 1.14. Assume that ρ < 1 and the distribution of the service times has the light
tail, Eeds1 < ∞ for some d > 0 and, moreover, that there exists a constant γ > 0 such that
Eeγ(s1−t1) = 1 and d := E(s1 − t1)eγ(s1−t1) ∈ (0,∞). Assume further that the distribution of
r.v. s1 − t1 is non-lattice. Then, as x→∞,

P(W > x) ∼ re−γx (19)

where r = Ee−γχ ∈ (0, 1) and χ is the overshoot over the infinite barrier (see, e.g., [1] or [2]
for the definition and more detail). Further, assume that W = W0 is the stationary waiting
time of customer 0 in the system that runs, say, from time −∞. As x→∞,

P(A(x) | W0 > x)→ 1 (20)

where A(x) is the event of the form:

A(x) = {
−[x/d]+j−1∑
i=−[x/d]

(si−ti) ∈ (−R(x)+j(d−ε(x)), R(x)+j(d+ε(x)), for j = 1, 2, . . . , [x/d]}

and R(x) is any function tending to infinity and ε(x) is any function tending to zero, as
x → ∞. Roughly speaking, the latter means that, given the event {W0 > x} occurs, all
increments (si − ti), are approximately equal to d, for i = −[x/d],−[x/d] + 1, . . . ,−1.

In particular, the distribution of s1− t1 is non-lattice if either of the distributions of s1 or
t1 is non-lattice.

5



1.7.2 Rare events in the presence of heavy tails

Here we assume that the distribution of service times is heavy-tailed, i.e. does not have finite
exponential moments, Eeαs1 =∞, for all α > 0.

A distribution F on the positive half-line with an unbounded support is subexponential if

F ∗ F (x) ∼ 2F (x), as x→∞.

It is known that any subexponential distribution is long-tailed, i.e. F (x+c) ∼ F (x) as x→∞,
for any constant c. Further, any long-tailed distribution is heavy-tailed.

Typical examples of subexponential distributions are log-normal distributions, distribu-
tions with power tails (1 + x)−α, α > 0 and Weibull tails e−x

β
, β ∈ (0, 1).

Let again r.v. ŝ have the absolutely continuous distribution with distribution function
Fbs(x) and density fbs(x) = P(s > x)/b. Clearly, the distribution of service time s is heavy-
tailed if and only if the distribution of ŝ is.

Proposition 1.15. Assume that ρ < 1 and that the distribution of ŝ is subexponential. Then,
as x→∞,

P(W > x) ∼ ρ

1− ρ
(1− Fbs(x)) =

1
a− b

∫ ∞
x

P(s1 > y) dy. (21)

Further, assume that W = W0 is the stationary waiting time of customer 0 in the system that
runs, say, from time −∞. As x→∞,

P(B(x) | W0 > x)→ 1 (22)

where B(x) is the event of the form:

B(x) =
⋃
i≥1

{(s−i > x+ i(a− b)}.

This means that, for large x, the main cause for the event {W0 > x} to occur is a single big
jump of one of previous service times.

2 General G/G/1 queue

In this Subsection we consider the single-server queue under the the stationary ergodic
assuptions on the driving sequences. Namely, the sequence {tn, sn)} is stationary if the
joint distribution of random vectors {(tm+i, sm+i)}0≤i≤k does not depend on m, for any
k. In addition, this sequence is ergodic if, for any event A generated by the driving se-
quence, the equality P(A

⋂
Aθ) = P(A) implies that P(A) is either 0 or 1. Here Aθ is

defined as follows. Any event A generated by the driving sequence may be represented as
A = {g(ti, si; i = . . . ,−1, 0, 1, . . .) = 1} where g is a measurable function of the driving se-
quence. Then Aθ = {g(ti+1, si+1; i = . . . ,−1, 0, 1, . . .) = 1}. In particular, the sequence is
ergodic if it is i.i.d. or, more generally, the tail sigma-algebra generated by this sequence is
trivial, i.e. contains only events of probability 0 or 1.

Proposition 2.1. Under the stability condition ρ = Es1/Et1 < 1, there exists a unique
stationary workload process W̃ (t),−∞ < t < ∞ which satisfies equations (10) on the whole
real line and is such that

W̃ (0) = sup
n≤0

(
Tn +

n∑
i=0

si

)+

. (23)

Further, there is an infinite number of negative indicies n and infinite number of positive
indices n such that W̃ (Tn−) = 0.
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If ρ > 1, then there is no a finite staionary workload process and, for any initial condition
W0 ≥ 0, W (t)/t→ ρ− 1 a.s., as t→∞.
If ρ = 1, then there may or may not exist a finite stationary process.[

Comment to the Editors: I discuss only FCFS G/G/1 queue and DO NOT consider

a number of related topics, like batch arrivals, other service disciplines, etc. Hope they are

covered in other articles.

]
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