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Abstract

This paper gives a pathwise construction of Jackson-type queueing networks allowing the
derivation of stability and convergence theorems under general probabilistic assumptions on
the driving sequences; namely, it is only assumed that the input process, the service sequences
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the paper. The main tools for these results are the subadditive ergodic theorem, which is used
to derive a strong law of large numbers, and basic theorems on monotone stochastic recursive
sequences. The techniques which are proposed here apply to other and more general classes of
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Jackson-type networks with i.i.d. driving sequences which were studied in the past.

Keywords: Ordered directed graph, Euler graphs, Euler ordered directed graph, switching se-
quence, open Jackson-type queueing network, point processes, Euler network, composition, de-
composition, conservation rule, departure and throughput processes, first and second-order er-
godic properties, subadditive ergodic theorem, solidarity property, stochastic recursive sequences,
stationary solution, coupling-convergence, uniqueness of the stationary regime.

∗The work of this author was supported in part by a grant from the European Commission DG XIII, under the BRA
Qmips contract
†The work of this author was supported by a sabbatical grant from INRIA Sophia Antipolis

1



1 Introduction

A class of queueing systems is often considered as well understood if its state can be constructed
and its properties analyzed under general statistical assumptions, namely stationarity and ergod-
icity assumptions on the data of the system under consideration (see Loynes [29], Borovkov [8],
Franken, König, Arndt and Schmidt [21], Baccelli and Brémaud [2], Brandt, Franken and Lisek
[15], Borovkov and Foss [12]). Such constructions and analysis have been available for quite
general classes of acyclic queueing networks (see Kalashnikov and Rachev [24], Konstantopou-
los and Walrand [27] for instance), but only for specific classes of cyclic networks (see Baccelli
and Liu [6], Baccelli, Cohen, Olsder and Quadrat [5], Afanas’eva [1]). Most of these contribu-
tions are based on pathwise recursions which can be traced back to the pioneering work of Loynes
[29].

To the best of our knowledge, for Jackson-type networks, the stability problem was only ap-
proached either under specific statistical assumptions (this is the case for their definition using
product form theory by Jackson [22]), or under certain modifications of the service mechanism
(see for instance Baccelli and Liu [6] and Afanas’eva [1], who introduce either synchronization
constraints or priorities in order to analyze the network). Although some of the models focus-
ing on the actual Jackson-type problem are rather general (see Borovkov [10], Foss [18]-[19],
Kumar and Meyn [28] and Konstantopoulos and Walrand [27] for instance), all of them require
some sort of independence property or some distributional restrictions (see Foss [19] for a par-
tial bibliography on the matter). More generally, for the type of general assumptions alluded to
above (stationary-ergodic), no construction of the state of the network providing ergodic theo-
rems seems to be currently available. The object of the present paper is to make such a construc-
tion.

A first difficulty arises with the pathwise definition of such a generalized non-Markovian queue-
ing network. The networks we consider in this paper are characterized by the fact that service
times and switching decisions are associated with stations, and not with customers. This means
that the j-th service on station k takes σkj units of time, where {σkj }j≥0 is a predefined sequence.
In the same way, when this service is completed, the leaving customer is sent to station νkj (or
leaves the network) and it is put at the end of the queue on this station, where {νkj }j≥0 is also a
predefined sequence, called the switching sequence. The sequences {σkj }j≥0 and {νkj }j≥0 , where
k ranges over the set of stations are called the driving sequences of the net, and it is on these
driving sequences that the statistical assumptions are actually made. This is in a sense the proper
generalization of what happens in Markovian Jackson queueing networks where customers sam-
ple there service times upon their arrival in a queue and flip a coin locally to determine where
to go next. This explains why we propose to call Jackson-type networks those networks with a
pathwise definition based on such a station-centered numbering scheme.

This pathwise definition has to be opposed to what happens in Kelly-type networks where routing
(and service times) are associated with input customers (e.g. an arriving customer has a prede-
fined route and predefined service requirements at each of the stations of its route, all of which
are known upon its arrival). This second scheme will be referred to as customer-centered.

The distinction between Jackson-type nets, with station-centered numbering and Kelly-type customer-
centered nets is quite essential for the purposes of the present paper. The station-centered def-
inition preserves various basic monotonicity properties as already shown in Foss [18]- [19] and
Shanthikumar and Yao [33], whereas the second one does not. More importantly, the natural sta-
bility condition which we prove to hold in the present paper for Jackson-type station-centered
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networks was recently shown not to be sufficient for the case of Kelly-type networks based on the
customer-centered scheme (see Bramson [14]).

The second difficulty lies in the construction of state variables amenable to some sort of stochastic
recurrence equation which satisfies a first-order ergodic theorem (i.e. a SLLN). These variables
will be referred to as first-order state variables. The possibility of defining such state variables
is obtained from recursive equations which were derived for a class of stochastic Petri net which
contains Jackson networks (see Baccelli, Cohen and Gaujal [4]). The understanding of the ap-
propriate stationarity and ergodicity assumptions to be made on service and routing sequences
comes from graph theoretic considerations, and in particular from the notion of Euler switch-
ing and Euler network. These graph theoretic considerations provide an in-depth understanding
on the pathwise dynamics of such networks (see the appendix on the geometry of routes). They
also reveal the right ergodicity assumptions to be made on the driving sequences. The first-order
ergodic theorem follows from the subadditive property satisfied by the time to clear the system
of its workload after the last epoch of an interrupted arrival point process (§4). This technique
generalizes that of Baccelli, Cohen, Olsder and Quadrat [5] for the stability of event graphs. The
time to clear the workload is an adequate variable for getting a SLLN under rather general as-
sumptions since this is true for event graphs, for Jackson networks, and for certain classes of
stochastic Petri nets with general topology (Baccelli and Foss [7]).

The third difficulty comes from the search for increments of the first-order state variables which
satisfy some stochastic recurrence equation with appropriate monotonicity properties and for
which could be proved a second-order ergodic result of the Loynes-type (e.g. coupling with
a stationary ergodic regime or simply weak convergence to such a regime). These second-order
state variables are introduced in §3. following ideas developed in Foss [19]. The relation between
the finiteness of the second-order state variables and the constants that show up in the SLLN is
investigated in § 5. This gives the stability threshold ensuring the finiteness of queue length and
the like. The stochastic recursion that these second-order variables satisfy is investigated in §6
and used in §7 for proving certain coupling convergence results and uniqueness results.

Besides the theoretical interest of this construction, several new results or new proofs of known
results can be obtained for various models. For instance, we can always construct a minimal
stationary regime (see §6). In the particular case when routing and services are i.i.d., the distinc-
tion between service associated with stations and service associated with customers vanishes as
both coincide in law. So, when restricted to the i.i.d. case, our results show that the Cramer-
type conditions considered in Borovkov [10] on the distribution functions of the service times
can be relaxed (see also Foss [19] and Chang [16]). Similarly, whenever the switching decisions
are i.i.d, we show the following generalization of results in Foss [19]: there is a unique station-
ary regime which is reached with coupling, under general assumptions on the arrival and service
processes.

2 Ordered Directed Graphs.

2.1 Routes and Switching Sequences.

Let K and ϕ be two positive integers.

Definition 1 The finite sequence of integers r = (r1, . . . , rϕ) is a route with length ϕ on nodes
{0, 1, . . . ,K,K + 1} if 0 ≤ r1 ≤ K , 1 ≤ ri ≤ K for all i = 2, . . . , ϕ− 1 and 1 ≤ rϕ ≤ K + 1.
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The variable ri gives the identity of the i-th node of the route. Node 0 represents the source
and node K + 1 represents the sink. Thus, a route can start either from the source of from an
internal node, and it must stop either in the sink or in some internal node. The variable ϕ will be
referred to as the length of the route. For reasons which will become clear later, it is often useful
to consider nodes 0 and K + 1 as a single node, and we will do it without special warning when
this is non-ambiguous.

Definition 2 The route r is admissible if rϕ ∈ {r1,K + 1} and successful if in addition rϕ =
K + 1, r1 = 0. If rϕ = r1 6= 0, r will also be called a circuit. This circuit will be said to be simple
if it contains no other smaller circuit.

Consider an admissible route r with length ϕ. For each k, l = 0, 1, . . . ,K,K + 1, let

ϕk,l = ]{i : ri = k, ri+1 = l}, (1)

and let

ϕk =
K+1∑
l=1

ϕk,l. (2)

The variable ϕk counts the number of departures from node k. If route r is admissible, then
for each node k = 1, . . . ,K , the number of arrivals to node k should be equal to the number of
departures from k and therefore

ϕk =
K∑
l=0

ϕl,k, (3)

for all k = 1, . . . ,K . Thus, for a successfull route,

K+1∑
l=1

ϕk,l =
K∑
l=0

ϕl,k ∀k = 1, . . . ,K, (4)

and in addition
K+1∑
l=1

ϕ0,l =
K∑
l=0

ϕl,K+1 = 1. (5)

With a route r and node k ∈ {0, 1, . . . ,K}, we associate a {1, . . . ,K,K + 1}-valued sequence νk

which describes the successive switching decisions from node k and which is defined as follows:

• for k = 0, 1, . . . ,K + 1, if ϕk = 0, then νk = ∅ (i.e. νk is the empty sequence);

• for k = 0, 1, . . . ,K,K + 1, if ϕk > 0 then

– Consider the auxiliary sequence {qkn}
ϕk

n=1 giving the successive visit times to node k,
defined by qk1 = min{i ≥ 1 : ri = k} and for n = 1, . . . , ϕk − 1 by qkn+1 = min{i ≥ qkn + 1 :
ri = k};

– For n = 1, . . . , ϕk let νkn = rqk
n+1

.
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Then νk is the sequence νk = {νk1 , . . . , νkϕk}. We shall say that νk is the switching sequence of node

k generated by route r, and that ν = {νk}Kk=0 is the switching sequence generated by route r. This
switching sequence will be said to be simple because it is generated by a single route.

Conversely, define a switching sequence ν on nodes {0, 1, . . . ,K,K + 1} to be a family of finite
sequences {νkj }d

k

j=1 , k = 0, . . . ,K + 1, where νkj belongs to {1, . . . ,K + 1}. By definition, dK+1 = 0.
The switching sequence is simple if in addition d0 = 1. Consider the following procedure:

Procedure 1 Path (G, k)

l1 := k; mp := 0 ∀p = 0, . . . ,K + 1; t := 1;

while mlt < dlt do

begin

• mlt := mlt + 1;

• lt+1 := νltmlt
;

• t := t + 1;

end

By definition, the path originating from node k generated by the switching sequence ν is the
sequence l1, l2, . . . produced by this procedure. This path is a finite, non-necessarily admissible
route. We will say that it is exhaustive if the value of the variable mk when the procedure stops,
say Φk (not to be confused with ϕk) is equal to dk for all k. It may happen that the produced path
is not exhaustive.

Remark 1 If the switching sequence ν , with length dk on node k is that generated by a finite and
successful route r with parameter ϕk on node k, then the path generated by ν and originating
from 0 is also route r; this path is exhaustive, and thus Φk = dk = ϕk for all k.

However, we can consider more general switching sequences, non-necessarily generated by suc-
cessful routes. Let ν be such a general switching sequence with length dk on node k. For each
k = 0, 1, . . . ,K, l = 1, . . . ,K,K + 1 let

dk,l = ]{j : 1 ≤ j ≤ dk ; νkj = l}. (6)

We clearly have

dk =
K+1∑
l=1

dk,l, (7)

for all k = 0, . . . ,K . However the relations

K+1∑
l=1

dk,l =
K∑
l=0

dl,k ∀k = 1, . . . ,K (8)
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and
K+1∑
l=1

d0,l =
K∑
l=0

dl,K+1 (9)

do not hold in general.

Remark 2 Under what conditions is a general simple switching sequence generated by a suc-
cessful route? This question is clearly related to Euler graphs (we recall that a connected di-
rected graph is an Euler graph on a set of nodes if there exists a circuit on this set of nodes using
each arc of the graph exactly once), so that it is natural to call such a switching sequence a simple
Euler switching sequence.

The following theorem is well known (see Marshall [30] for instance): A directed graph is an
Euler graph if and only if, for each node, the number of ingoing arcs is equal to the number of
outgoing arcs.

A switching sequence ν on nodes {0, 1, . . . ,K,K + 1} is equivalent to the data of

• a directed graph on this set of nodes: take the set {νkj , j = 1, . . . , dk} as set of outgoing arcs
from k,

• and in addition a total order on the set of arcs out of each node.

If we just concentrate on conditions for the existence of a successful route on {0, 1, . . . ,K,K + 1}
using each arc of this directed graph exactly once, the question reduces to Euler’s problem by
merging nodesK + 1 and 0. Then it is immediately seen that if the switching sequences satisfy the
relations (8) and (9), then the desired property holds.

However, the question whether a simple switching sequence is Euler is asking for more. Restated
in graph theoretic terms, this question reads: given such a directed graph with a total order on
the arcs from each node, what are the conditions ensuring the existence of a successful route on
this set of nodes using each arc exactly once, and such that, for all node k, the order in which the
arcs from node k show up in this route is the same as the predefined total order on the arcs from
node k?

It should be clear that the conditions for the directed graph associated with a simple switching
sequence to be Euler are necessary but in no way sufficient for the switching sequence itself to be
Euler in the sense defined above.

2.2 Concatenation of Switching Sequences

Let N be a positive integer, and let ν(1), . . . , ν(N ) be a sequence of switching sequences on
{0, 1, . . . ,K,K + 1}. Let dk(n) denote the length of the sequence νk(n). By definition, the con-
catenation of ν(1), . . . , ν(N ) is the switching sequence ν[N ] ≡ {νk[N ]} defined by:

νk[N ] = {νk1 (1), . . . , νkdk (1)(1), . . . , ν
k
1 (N ), . . . , νkdk (N )(N )}, (10)

for all k = 0, 1, . . . ,K , where νk[N ] = ∅ if dk(1) = . . . = dk(N ) = 0. The notion of concatenation
will be used for other sequences later on with the same meaning.
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2.3 Ordered Directed Graphs

Consider a directed graph G = (N ,A), with set of nodes N = {0, 1, 2, . . . ,K + 1} and with set of
arcs A. For k = 0, 1, . . . ,K + 1, we denote Ik the set of input arcs into k and Ok the set of output
arcs from k. We assume that I0 = OK+1 = ∅. For k = 0, 1, . . . ,K,K + 1 let

ck = ]{Ik}, dk = ]{Ok} (11)

and

d =
K∑
k=1

dk. (12)

Definition 3 The directed graph G is an ordered directed graph (O.D.G.) if for each node, the
output arcs are labeled in a totally ordered way.

As already mentioned, an O.D.G. on N is equivalent to the data of a switching sequence ν on N
(by mapping the j-th arc from node k to the couple (k, νkj )). Thus, for an O.D.G. G, we can speak
of the path originating from node k = 0, . . . ,K, or of the sequence of arcs associated with this
path. If the switching sequence of the O.D.G. is generated by a route, we will also say that the
O.D.G. is generated by route r.

Definition 4 An O.D.G. G is called an Euler ordered directed graph (E.O.D.G.) if there ex-
ist an integer N ≥ 1 and a sequence of successful routes R = (r(1), . . . , r(N )), all on nodes
{0, 1, 2, . . . ,K,K + 1}, such that for all k, the switching sequence of this O.D.G is the concate-
nation νk[N ] of N simple Euler switching sequences ν(1), . . . , ν(N ), where ν(n) is generated by
r(n) for all n. In this case, we say that R is a generator of E.O.D.G. G. We will also say that the
switching sequence of the O.D.G. is Euler.

The following remarks are not difficult but they are crucial for a good understanding of the end
of the section.

Remark 3 A E.O.D.G. G may have several generators. However all generators should lead to
the same variables ck and dk . If R = (r(1), . . . , r(N )) is a generator of G, then N = cK+1 . So the
number N is the same for all generators.

Remark 4 Let (i1, . . . , iN ) be a permutation of (1, . . . , N ). If R = (r(1), . . . , r(N )) is a generator
of E.O.D.G G, then it is not true in general that R′ = (r(i1), . . . , r(iN )) is also a generator of G.

Remark 5 If R = (r(1), . . . , r(N )) is a generator of G, route r(1) is also the path originating from
node 0, and similarly, the path from node ν01 is also the route (r2(1), r3(1), . . . , rϕ(1)(1)). However,
the path originating from node ν0n is in general different from the route (r2(n), r3(n), . . . rϕ(n)(n)).

We now define two simple transformations of an O.D.G.
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Definition 5 (k-reduction) Let G be an O.D.G. on {0, . . . ,K + 1}, with νk1 = l 6= K + 1. The
k-reduction of G, k ≤ K , is the O.D.G. G′ on the same set of nodes, with the following character-
istics:

• for all p /∈ {k, l}, ν′p = νp;

• ν′k = {νl1, νk2 , νk3 , . . . , νkdk}, so that d′k = dk;

• ν′l = {νl2, νl3, . . . , νldl}, so that d′l = dl − 1 (note that we also have c′l = cl − 1 in view of the
preceding step).

In words, we replace the two arcs k → l and l→ ν1l by a single arc k → ν1l .

Definition 6 (k-permutation) Let G be an O.D.G. on {0, . . . ,K + 1}, and let σ be a permutation
of {1, 2, . . . , dk}. The (k, σ)-permutation of G is the O.D.G. G′ on the same set of nodes, with the
following characteristics:

• for all l 6= k, ν′l = νl;

• ν′k = {νkσ(1), νkσ(2), . . . , νkσ(dk )}, so that d
′k = dk;

Remark 6 Note that both k-transformations preserve the parameter dk .

Consider the following procedure, with input (G, k), where G is an O.D.G. and k one of its nodes:

Procedure 2 Sequential Reduction (G, k)

Gk1 := G; lk1 := k; t := 1;

while νk1 (G
k
t ) ∩ {1, . . . ,K} 6= ∅ do

begin

• lkt+1 := νk1 (Gkt );

• Gkt+1 := k-reduction of Gkt

• t := t + 1;

end

This procedure stops after a finite number of steps, say t∗. It produces a sequence of O.D.G’s
{Gk1 , Gk2 , . . . , GKt∗} and a sequence of nodes {lk1 , lk2 , . . . , lkt∗}. The O.D.G. Gkt , 1 ≤ t ≤ t∗ will be
called the (k, t)-sequential residual of G, and Gkt∗ will be called the k-sequential residual of G.
The sequence of nodes {lk1 , lk2 , . . . , lkt∗ ,K + 1} is simply the path from node k.

The following obvious theorem shows how to use this to reconstruct one of the generators of an
E.O.D.G. from the knowledge of the associated switching sequence:
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Theorem 1 Given an E.O.D.G. G on nodes {0, 1, . . . ,K,K + 1}, with generator (r(1), . . . , r(N )),
the sequential reduction of (G, 0) produces a path which coincides with route r(1). Let G̃ be the
O.D.G. obtained from G by merging nodes 0 and K + 1, then the sequential reduction of (G̃, 0)
produces a path which coincides with the sequence

{r1(1), . . . , rϕ(1)−1(1), r1(2), . . . rϕ(2)−1(2), . . . rϕ(N )−1(N )},

namely the concatenation of all generator’s routes in the natural order.

We conclude with two theorems on the above transformations, the first of which is obvious:

Theorem 2 If G is an E.O.D.G. with N routes, then its 0-reduction is also an E.O.D.G with N
routes.

The proof of the next theorem is more complex and is forwarded to Appendix 8.1.

Theorem 3 For each E.O.D.G. with N routes and for each permutation σ on {1, . . . , N}, the
(0, σ)-permutation of G is also an E.O.D.G. with N routes.

Another obvious property of Euler switching sequences is the following:

Theorem 4 If ν(0) and ν(1) are two Euler switching sequences, so is their concatenation. The
number of routes of the concatenation is the sum of the number of routes in ν(0) and ν(1).

2.4 Parallel Reduction

The aim of this section is to investigate other routes of an E.O.D.G. than those built in Theorem
1.

Definition 7 (reduction set) The reduction set of an O.D.G. G with respect to node k is the set of
nodes which belong to νk and not to {K + 1}:

Rk(G) ≡ {νk1 , . . . , νkdk} ∩ {1, . . . ,K} (13)

The O.D.G. G is said to be k-reducible if Rk(G) 6= ∅.

The following procedure admits as input (G, k), where G is an O.D.G. and k is one of its nodes;

Procedure 3 Parallel Reduction (G, k)

Gk1 := G; Xk
1 = k; t := 1;

while Rk(Gkt ) 6= ∅ do

begin

• choose Xk
t+1 any node in R

k(Gkt );
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• let σt be the permutation of {1, . . . , dk} such that νkσt(1) = X
k
t+1 ;

• G′t := σt-permutation of Gkt with respect to k;

• Gkt+1 := k-reduction of G′t

• t := t + 1;

end

Since the initial O.D.G. has a finite outdegree on each node, the procedure stops after a finite
number of steps t∗, which may depend on the choices that are made. It produces

• a sequence of O.D.G.’s {Gk1 , . . . , Gkt∗}, where Gk1 = G;

• a node reduction sequence {Xk
1 , . . . ,X

k
t∗}, where Xk

t belongs Rk(Gkt ) ⊂ {1, 2, . . . ,K + 1};

• a permutation reduction sequence {σ1, . . . , σt∗}.

Note that the data of the node reduction sequence is equivalent to that of the permutation reduc-
tion sequence in that the choice that is made for the permutation σt does not influence the (first
two) output sequences of the procedure as long as νkσt(1) = X

k
t+1 . We will call Gkt∗ the k-parallel

residual of K (which of course depends on the node reduction sequence X ).

Remark 7 This procedure is non-deterministic, because of the choice of reduction nodes Xk
t .

Thus, it may produce a large (although finite) number of output sequences. We will denote X k(G)
the set of all possible sequences of reduction nodes for G.

Remark 8 The parallel reduction procedure admits the sequential reduction procedure as a par-
ticular case: if one take Xk

t+1 = ν
k
1 (G

k
t ) for all t, then l

k
t = Xk

t for all t.

Theorem 5 Let G be an E.O.D.G. with N routes. Then, for all parallel reductions of (G, 0),
t∗ = d, where d was defined in (12); for each t < d, G0

t is a reducible E.O.D.G. with N routes and
G0
d is the non-reducible E.O.D.G. with N routes.

Proof The fact that for all t, G0
t is an E.O.D.G with N routes follows from Theorems 2-3 and an

immediate induction. Let dt = d(G0
t ). A E.O.D.G. G with N routes is reducible if and only iff

d(G) > N . Since d1 = d, either d = 0 and the theorem is true, or d > N and then, G0
t is reducible

and dt+1 = dt − 1. An immediate induction concludes the proof.

Theorem 6 Consider an arbitrary O.D.G. If there exists a node reduction sequence X such that
the 0-parallel residual of G is the non-reducible E.O.D.G with N routes, then G is an E.O.D.G.
with N routes.
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Proof By assumption, there exists an integer t∗, a sequence of nodes X = {X1, . . . ,Xt∗}, and a
sequence of permutations σ = {σ1, . . . , σt∗}, such that when applying Procedure 3 to (G, 0), the
procedure stops after t∗ steps, we get X as permutation node sequence (or equivalently σ as as-
sociated permutation reduction sequence), and G0

t∗ is the non-reducible E.O.D.G. with N routes,
which will be denoted Go . Call (0, k)-expansion of an E.O.D.G. with N routes (r(1), . . . , r(N )
the E.O.D.G. with generator (r′(1), . . . , r(N ), where r′(1) = (0, k, r2(1), . . . , rϕ(1)(1)). Clearly, the
(0, k)-expansion of an E.O.D.G. with N routes is also an E.O.D.G. with N routes. Consider the
following procedure:

Procedure 4 Backward Construction (t∗,X, σ)

t := t∗; Ht := Go;

while t > 1 do

begin

• t := t− 1;

• H ′t = (0,Xt−1)-expansion of Ht−1 ;

• Ht = (0, σ−1t )-permutation of H ′t ;

end

An immediate induction shows that Ht is an E.O.D.G. with N routes for all t ≤ t∗; by construc-
tion, Ht = G0

t , for all t in this range, and so H1 = G0
1 is an E.O.D.G. with N routes.

3 Pathwise Construction of Open Jackson-Type Queueing Net-
works with Finite Input

3.1 Definitions and Notations

A network Σ with K ≥ 1 nodes is a quadruple

Σ = (N, T, σ, ν) ,

where N ≥ 1 is a possibly infinite integer,

T = (t(1), . . . , t(N )) (14)

is a sequence of finite real numbers such that t(1) ≤ . . . ≤ t(N ), which describes external arrival
epochs. For each k = 0, 1, . . . ,K ,

ν = {νkj }d
k

j=1 (15)

is switching sequence on {1, 2, . . . ,K} and

σ = {σkj }d
k

j=1 (16)
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is a sequence of real-valued non-negative numbers, representing service times. We assume that
σkj is finite for all k and j = 1, . . . , dk . Here, dk ∈ IN ∪ {∞} and d0 = N . Station k stops serving
customers once the first dk customers have been served there.

As we will se below, these data are sufficient for the pathwise description of an open queueing
network with K single-server stations, FCFS disciplines and with input sequence T , provided
the rules are as follows: at time t(1)−, the networks is empty. External customers, numbered
n = 1, 2, . . . , N , arrive at epochs t(1), . . . , t(N ), respectively. The n-th customer of the input is
sent to station ν0n (it leaves the network immediately if ν0n = K + 1) and is put at the end of the
queue on this station. The j-th service on station k (j = 1, 2, . . . ; k = 1, . . . ,K) takes σkj units of
time. In addition, when this service is completed, the leaving customer is immediately sent to
station νkj (it leaves the network if νkj = K + 1) and it is put at the end of the queue on this station.

Remark 9 Since we will only be interested in queue length processes and in view of our as-
sumptions on the way services are allocated, we could replace FCFS by any non-preemptive,
work-conserving discipline.

3.2 First-Order State Variables

Consider a network Σ. Let Ψkj be the epoch at which the j-th service is completed on station k.
The only aim of this section is to show that each of these variables is a function of the network
data (N,T, σ, ν). In the stochastic framework, this proves that the Ψ variables are indeed random
variables on the probability space which carries the network data (N,T, σ, ν).

Remark 10 The sequence {Ψkj }j is non-decreasing, and its growth rate will be characterized
by a first order ergodic theorem (a strong law of large numbers - see § 4). We will call these
variables first order state variables in what follows.

Theorem 7 For l = 0, . . . ,K and k = 1, . . . ,K , let ηl,k : IN → IN be the mapping

ηl,k(j) = inf{m ≥ 1 :

 m∑
p=1

I (νlp = k)

 = j}, j ≥ 1, (17)

with the convention that I (νlp = k) = 0 for all p ≥ dl and that ηl,k(j) = ∞ if
∑m
p=1 I (ν

l
p = k) < j .

In words, ηl,k(j) is the smallest integer m such that the m first switching decisions out of station
l produce j routings to station k. Define

Ψ0
j =

{
t(j) for 1 ≤ j ≤ N ;
∞ for j > N ,

(18)

and more generally, take Ψkj = ∞ if j > dk . Then the variables Ψkj , j = 1, . . . , dk can be recursively
computed from the following set of evolution equations:

Ψkj = σ
k
j +max

(
Ψkj−1, min

(j0,j1,...,jK )∈IN :j0+j1+...+jK=j

(
max

l=0,...,K
Ψlηl,k (jl)

))
, k = 1, . . . ,K, j = 1, . . . , dk,

(19)
with initial conditions Ψk0 = −∞, for k = 1, . . . ,K .

11



Proof See Baccelli, Cohen and Gaujal [4].

All other variables of interest to us can be obtained from these first order state variables:

• The j-th service completion time on station k, for which the customer is sent to station l,
which will be denoted Ψk,lj , k = 0, 1, . . . ,K , l = 1, . . . ,K,K + 1, is simply Ψkηk,l(j) .

• By assumption, Ψkj = ∞ for j > dk . By construction, we will also have Ψkj = ∞ if j ≤ dk ,
but less than j-th customers arrive to station k, so that the j-th service is never completed by
station k. So, if Φk denotes the total number of Ψk variables which are finite, then Φk ≤ dk

for all k, and this inequality may be strict for k = 1, . . . ,K (note that we nevertheless always
have Φ0 = d0 = N ). We will also use Φk,l to denote the total number of variables Ψk,l which
are finite, and Φ, which is defined as

Φ =
K∑
k=1

Φk. (20)

• Queue-length and service processes are also completely defined by the sequences {Ψk,lj } as
we will see in § 3.8 below.

Remark 11 We will also consider the case of delayed networks. A delayed network is a network
to which an extra sequence of real numbers {αkj }, k = 1, . . . ,K , j = 1, . . . , dk is added (thus such
a network is characterized by a 5-uple (N,T, σ, ν, α)). The rule is that the j-th service in station
k cannot start before time αkj . The state variables Ψ̆

k
j of the network Σ delayed with α are defined

through the recursive equation:

Ψ̆kj = σ
k
j + max

(
αkj , Ψ̆

k
j−1, min

(j0,j1,...,jK )∈IN :j0+j1+...+jK=j

(
max

l=0,...,K
Ψ̆lηl,k (jl)

))
, (21)

with the same conventions as above.

Remark 12 If we replace the arrival epochs {t(n)} by {t̂(n) ≡ t(n) + x} for some fixed x then the
corresponding epochs Ψ̂kj and Ψ̂

k,l
j satisfy the equations Ψ̂kj = Ψkj + x, Ψ̂

k,l
j = Ψk,lj + x for all j, k, l.

Remark 13 Assume that t(n− 1) < t(n) = t(n + r) < t(n + r + 1) for some n ≥ 1, r ≥ 1, n + r ≤
N . If we replace the sequence {νkj } by {ν̃kj }, where

• ν̃kj = νkj for k = 1, . . . ,K, j = 1, 2, . . .;

• ν̃0j = ν0j for j < n and for j > n + r;

• {ν̃0j , n ≤ j ≤ n + r} is an arbitrary permutation of {ν0j ; n ≤ j ≤ n + r} ,

then the sequences {Ψk,lj } do not change (the same is true in particular for the queue-length and
service processes).
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3.3 Simple Euler Networks

A network is a simple (Euler) network if its switching sequence is generated by a successful route
r(1). So, for a simple network, we necessarily have N = 1 and dk = ϕk(1) for all k, where the
variable ϕk(1) is that defined in (2), for route r(1). Thus the complete description of a simple
network involves a real number t(1) and service sequences {σkj (1), 1 ≤ j ≤ ϕk(1)}. For such
a network, we clearly have Φk = dk = ϕk(1) for all k (the path from 0 is exhaustive since the
switching sequence is generated by a successful route - see Remark 1).

Consider an arbitrary network with N = d0 = 1. If Φk = dk for all k, then this network is simple
in view of Theorem 6 (we actually only need a very special case of this theorem since the parallel
reduction of the O.D.G associated with ν involves no choices).

3.4 Euler Network

A network Σ = (N,T, σ, ν) is an Euler network if the O.D.G. associated with its switching se-
quence ν is an E.O.D.G. For an Euler network, there exists a sequence R = ((r(1), . . . , r(N )) of
successful routes which is a generator of (the O.D.G. associated with) its switching sequence ν .
So ν = ν[N ], where ν[N ] is the concatenation of the switching sequences ν(1), . . . , ν(N ), and
ν(n) is the simple switching sequence generated by route r(n).

Theorem 8 (Conservation rule) For an Euler network,

Φk = dk = ϕk(1) + · · · + ϕk(N ), (22)

for all k = 0, . . . ,K .

Proof Equation (22) is a direct corollary of Theorem 5.

So, in particular, Φk,l , Φk and Φ = Φ1 + ...ΦK do not depend on T and σ. This result is interesting
as it shows that as soon as the switching sequences of a network have the desired Euler property,
then the total number of arrivals to (resp. departures from) each station of the network, as given
by the recursive equation of Theorem 7, is independent of the timing information (i.e. the actual
values of T and σ).

Remark 14 If we have an infinite sequence of simple networks, say Σn , n ≥ 1, we can also
consider the network Σ[∞] = Σ1 + Σ2 + · · ·. Let Σ[N ] = Σ1 + Σ2 + · · · + ΣN . It is easily checked
that if Σ[∞] = (∞, T, σ, ν), then the queueing process (see below) in Σ[N ] coincides with that of
Σ′[∞] = (∞, T ′, σ, ν), where T ′ = (t(1), t(2), . . . , t(N ),∞,∞, . . .).

Consider a queueing network Σ = (N,T, σ, ν). The following result holds.

Theorem 9 If Φk = dk for all k = 0, 1, . . . ,K then Σ is an Euler network.

Proof This is a direct corollary of Theorem 6.
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3.5 Composition of Networks

Consider an Euler network. Let (r(1), . . . , r(N )) be a generator of its switching sequence. Let
F k(1) = 1 and F k(n + 1) = F k(n) + ϕk(n), k = 0, 1, . . . ,K , where ϕ(n) is the parameter associated
with route r(n). The sequence of service times σk of such a network can then be seen as the
concatenation σk[N ] = {σk(1), . . . , σk(N )} of N service subsequences, where

{σkj (n)}
ϕk (n)
j=1 = {σkFk (n), . . . , σ

k
Fk (n+1)−1}.

In that sense, an Euler network Σ = (N,T, σ, ν) can be seen as the composition of N simple Euler
networks Σ(1), . . . , Σ(N ), where the simple network Σ(n) is (1, t(n), ν(n), σ(n)). We shall then
write Σ = Σ1 + Σ2 + · · · + ΣN .

Remark 15 Using this terminology, we can then rephrase Theorem 9 as follows: if a network Σ
is such that Φk = dk for all k = 0, 1, . . . ,K , then there exist N simple networks Σ(n), n = 1, . . . , N ,
such that Σ = Σ(1) + Σ(2) + · · · + Σ(N ).

Let us make the notion of composition of networks more general and more precise: consider two
networks Σ1 = (N1, T1, σ1, ν1) and Σ2 = (N2, T2, σ2, ν2), where t1(N1) ≤ t1(2).

By definition, the composition of Σ1 and Σ2 is the network Σ = (N,T, σ, ν) defined by the following
relations: N = N1 + N2 ,

T = (t1(1), . . . , t1(N1), t2(1), . . . , t2(N2)), (23)

and

σkj =

{
σkj,1, for 1 ≤ j ≤ dk1 ;
σk
j−dk

1 ,2
, for j > dk1

and

νkj =

{
νkj,1 for 1 ≤ j ≤ dk1 ;
νk
j−dk

1 ,2
for j > dk1 .

In general, nothing can be said on the relation between Φ1 and Φ2 on one side and the Φ function
of the composition.

However, in the particular case where both Σ1 and Σ2 are (non-necessarily) simple Euler net-
works, then their composition is an Euler network in view of Theorem 4, so that Φk = dk = Φk1 +Φ

k
2

for all k. In this special case, what precedes shows that it makes sense to also note the composi-
tion of Σ1 and Σ2 as Σ1 + Σ2 since Σ is simply Σ1(1) + . . . + Σ1(N1) + Σ2(1) + . . . + Σ2(N2). In other
words, when restricted to the set of Euler networks, the composition rule is associative.

3.6 Monotonicity and Continuity Properties

For fixed K,N, ν and σ consider now two different input sequences: T = {t(n)}Nn=1 and T̃ =
{t̃(n)}Nn=1 , and the two queueing networks: Σ = (N,T, σ, ν) and Σ̃ = (N, T̃ , σ, ν). The main mono-
tonicity property is:

14



Theorem 10 If t(n) ≤ t̃(n) for each n = 1, . . . , N , then Ψkj ≤ Ψ̃kj and Ψ
k,l
j ≤ Ψ̃k,lj for all j, k, l.

Proof The first proofs of this result are that of Foss [18] and Shanthikumar and Yao [33]. The
proof and some extensions of this results which will be needed later on also follows from an
induction argument based on the evolution equations of Theorem 7 (see Baccelli, Cohen and
Gaujal [4]).

We now show a couple of corollaries of this result.

Corollary 1 If t(n) ≤ t̃(n) ≤ t(n) + x for all n = 1, . . . , N , and for some x > 0, then

Ψkj ≤ Ψ̃kj ≤ Ψkj + x (24)

and
Ψk,lj ≤ Ψ̃k,lj ≤ Ψk,lj + x (25)

for all j, k, l.

Proof Introduce a new network Σ̂ = (N, {t(n) + x}Nn=1, σ, ν). It follows from Theorem 10 that
Ψkj ≤ Ψ̃kj ≤ Ψ̂kj and from Remark 12 that Ψ̂kj = Ψkj + x (the same holds for {Ψk,lj }).

Corollary 2 Consider two networks: Σ = (N,T, σ, ν) and Σ̂ = (N,T, σ̂, ν) with the same input and
switching sequences but with different service times. If σ̂k0j0 = σk0j0 + x for some k0 ∈ {1, . . . ,K}
and x > 0, and σ̂kj = σkj for all (j, k) 6= (j0, k0), then

Ψkj ≤ Ψ̂kj ≤ Ψkj + x, ∀j, k

(the same property holds for {Ψk,lj }).

Proof The proof is similar to that of Corollary 1. Another simple proof can be obtained by an
induction based on the equations of Theorem 7.

Consider now two Euler networks Σ = (N,T, σ, ν) and Σ̃ = (N, T̃ , σ̃, ν) with the same switching
sequences, with parameters dk , k = 0, . . . ,K .

Corollary 3 If t(n) ≤ t̃(n) for all n = 1, . . . , N and σkj ≤ σ̃kj for all k = 1, . . . ,K, j = 1, . . . ,Φk,
then

Ψkj ≤ Ψ̃kj ≤ Ψkj + max
1≤n≤N

(t̃(n) − t(n)) +
K∑
l=1

dl∑
i=1

(σ̃li − σli) (26)

for all j, k ( the same holds true for Ψk,lj ).

Proof This result follows immediately from Corollaries 1-2 and from induction arguments.
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Remark 16 (Continuation of Remark 11) It is easy to check that if αkj (1) ≤ αkj (2) for all j and
k, then the network Σ, when delayed with α(1) and α(2) respectively, leads to state variables that
satisfy the relation

Ψ̆kj (1) ≤ Ψ̆kj (2), ∀j, k.

In particular, a delayed network is always a majorant of the non-delayed network in the sense
mentioned above.

Fix now K,N and an Euler switching sequence with N routes ν , and consider a set of sequences
{tε(n)}Nn=1 and {σkj,ε}d

k

j=1 , for k = 1, . . . ,K, where ε > 0.

Corollary 4 (Continuity property) Assume that

tε(n) → t(n), σkj,ε → σkj (27)

as ε→ 0 for all n = 1, . . . , N, k = 1, . . . ,K, j = 1, . . . , dk . Then

Ψkj,ε → Ψkj (28)

for each k = 1, . . . ,K, j = 1, . . . , dk (the same holds true for Ψk,lj,ε ).

Proof The proof follows immediately from Corollary 3.

Corollary 5 Let Σ be the composition of the Euler networks Σ1 and Σ2 . Then

Ψkj+dk
1
≥ Ψkj,2 (29)

and
Ψki ≤ Ψki,1 (30)

for each k = 1, . . . ,K, j = 1, 2, . . . , i = 1, . . . , dk (the same holds for Ψk,lj ).

Proof We prove (29) only (the proof of (30) is similar). We construct an auxiliary network Σ̃
with driving sequences ({t̃(n)}Nn=1, {σ̃kj }, {ν̃kj }) obtained by shifting the sequence T of Σ to the
left in such a way that the two networks Σ1 and Σ2 separate, namely the last departure from the
customers of the first network takes place before the first arrival of the second network of the
composition. More precisely let

∆ = max
0≤l≤N1

{Ψldl
1,1
− t1(1)}. (31)

We take

• σ̃kj = σkj and ν̃
k
j = νkj for all j, k;

• t̃(2) = min{t1(1), t2(1)− ∆}, t̃(n + 1) = t̃(n) + t1(n + 1)− t1(n), for n ≤ N1 and t̃(n) = t(n) for
n > N1 .
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Since t̃(n) ≤ t(n) for all n ≥ 1, Theorem 10 implies that

Ψ̃kj ≤ Ψkj (32)

for all j, k. But since the last customer of Σ̃1 leaves the network before the arrival of the first
customer of Σ2 (it is in that sense that the networks are separated), then

Ψ̃kj+dk
1
= Ψkj,2

for all j, k.

Remark 17 The notion of separation of the composition of two networks which is introduced in
the proof of the preceding corollary is quite crucial and will be used at several occasions later
on.

3.7 The Space D0
+

Let f : [0,∞) → {0, 1, 2, . . .} be a right-continuous non-increasing function with compact sup-
port, i.e.

b(f ) ≡ sup{x : f (x) > 0} <∞ (33)

and D0
+ ≡ D0

+[0,∞) be the space of such functions. For f ∈ D0
+ , let a(f ) = f (0).

As we shall see in the next section, this space contains the second-order variables associated with
a network. We show below that D0

+ is actually a separable metric space, endowed with a natural
partial order.

Let H be the set of continuous and strictly increasing functions h : [0,∞) → [0,∞) such that
h(0) = 0, h(∞) = ∞. For f, g ∈ D0

+ , consider the (Skorohod) distance

d(f, g) = inf
h∈H
{sup
x≥0
|h(x) − x| + sup

x>0
|f (h(x)) − g(x)|}. (34)

The space (D0
+, d) is separable (see Gihman-Skorohod [23], Chapter 9, §5) and possesses the fol-

lowing properties:

• It admits the partial order ≤ defined by f ≤ g if f (x) ≤ g(x) for all x ≥ 0.

• If the sequence {fn}, fn ∈ D0
+ is Cauchy (w.r. to d), then there exists a function g ∈ D0

+ such
that g ≥ fn, for all n ≥ 0.

• If the sequence {fn}, fn ∈ D0
+ is monotone increasing (non-decreasing) and if limna(fn) <

∞ and limnb(fn) <∞, then limnfn ≡ f belongs to D0
+ , and d(fn, f ) → 0.

Remark 18 Letm and k be fixed; for each pair of functions F 1 and F 2 of the form: F l =
∑m
i=1 f

l
i−∑k

j=1 g
l
j , where all f

l
i and g

l
j belong to D

0
+ , l = 1, 2, let

d(F 1, F 2) =
m∑
i=1

d(f 1i , f
2
i ) +

k∑
j=1

d(g1j , g
2
j ).

If fni ∈ D0
+ converges monotonically to fi ∈ D0

+ for each i = 1, . . . ,m, and gnj ∈ D0
+ converges

monotonically to gj ∈ D0
+ for each j = 1, . . . , k , then the functions Fn ≡

∑m
i=1 f

n
i −

∑k
j=1 g

n
j

converge to the function F ≡
∑m
i=1 fi −

∑k
j=1 gj pointwise and with respect to distance d.
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3.8 Second-Order State Variables

Consider an Euler network with parameter N . For each k, l, consider the processes

Γ̄k,l(t) = Φk,l −
Φk,l∑
j=1

I (Ψk,lj ≤ t) (35)

Γ̄k(t) ≡
K+1∑
l=1

Γ̄k,l(t) = Φk −
Φk∑
j=1

I (Ψkj ≤ t) (36)

Γ̄(t) ≡
K∑
k=1

Γ̄k(t), (37)

(where Φ0 = N and Ψ0
j = t(j)), which count the number of departures from station k to station l

(resp. from station k or from all stations) taking place after time t.

The processes Γ̄k,l(t) and Γ̄k(t) are right-continuous and belong to D0
+ .

We will also need the following second-order processes:

• Q̄k(t) is the queue-length on station k at time t (including the customer in service);

• χ̄k(t) is the residual service time of the customer in service at time t+ in station k (0 if
Q̄k(t) = 0).

These processes are defined from the Γ̄ functions through the following relations:

Q̄k(t) = Γ̄k(t) −
K∑
l=0

Γ̄l,k(t); (38)

Q̄(t) ≡
K∑
k=1

Q̄k(t) =
K∑
k=1

Γ̄k(t) −
K∑
k=1

K∑
l=0

Γ̄l,k(t)

=
K∑
k=1

Γ̄k,K+1(t) −
K∑
k=1

Γ̄0,k(t); (39)

χ̄k(t) = inf{v > t : Γ̄k(v) < Γ̄k(t)} − t, (40)

where the last relation assumes that Q̄k(t) > 0. We call these variables second-order variables
because they are defines as differences (of counting measures) of first order ones. ¿From Theorem
10 and its corollaries, we get:

Lemma 1 Consider two networks: Σ1 = (N,T1, σ1, ν1}) and Σ2 = (N,T2, σ2, ν2}). If t1(n) ≤ t2(n),
σkj,1 ≤ σkj,2 and νkj,1 = νkj,2 , for all n = 1, . . . , N, k = 1, . . . ,K, j = 1, 2, . . ., then

Γ̄k,l1 (t) ≤ Γ̄k,l2 (t) (41)

for all k, l and for all −∞ < t <∞.
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We will also need the functions describing the residual departure processes and the residual queue
length processes. Let

Γk,l(t) = Γ̄k,l(t + t(N )), t ≥ 0 (42)

and
Γk(t) = Γ̄k(t + t(N )), t ≥ 0. (43)

Note that

Γk(t) =
K+1∑
l=1

Γk,l(t), t ≥ 0. (44)

Remark 19 The processes Γk,l(t) do not depend on the values t(1), . . . , t(N ) but only on their
increments t(n + 1) − t(n), n = 1, . . . , N − 1. This means, in particular, that if we consider two
networks Σ and Σ̂ with the same service times and switching decisions and with inputs {t(n)} and
{t̂(n)} satisfying the equations t̂(n) = t(n) + C for some C ≥ 0 and for all n, then Γk,l(t) = Γ̂k,l(t)
for all t, k, l (the same is true for Γk(t)).

Let τ (n) = t(n + 1) − t(n), n = 1, . . . , N − 1.

Lemma 2 (Monotonicity property) Consider two networks Σ1 = (N,T1, σ1, ν1) and Σ2 = (N,T2,
σ2, ν2). If τ1(n) ≥ τ2(n), σkj,1 ≤ σkj,2 and ν

k
j,1 = νkj,2 for all n = 1, . . . , N − 1, k = 1, . . . ,K, j =

1, 2, . . ., then
Γk,l1 (t) ≤ Γk,l2 (t) (45)

for all k, l, t.

Proof The processes to be compared involve different epochs: t+t1(N ) and t+t2(N ), respectively.
For connecting these two epochs, introduce two new networks:

Σ̃1 = (N, t̃1, {σkj,1}, {νkj,2}) (46)

and
Σ̃2 = (N, t̃2, {σkj,2}, {νkj,2}), (47)

where t̃1(n) = C −
∑N−1
j=n τ1(j), for n < N , t̃1(N ) = C , t̃2(n) = C −

∑N−1
j=n τ2(j), for n < N ,

t̃2(N ) = C and C = max(t1(N ), t2(N )).

¿From Remark 19,
Γ̃k,l1 (t) = Γk,l1 (t) and Γ̃k,l2 (t) = Γk,l2 (t), (48)

for all k, l, t. Since t̃1(n) ≤ t̃2(n) for each n, then Γ̃k,l1 (t) ≤ Γ̃k,l2 (t) for all k, l, t.

Similarly, the residual queue-length processes and the residual service-time processes are defined
by the relations:

Qk(t) = Q̄k(t + t(N )), Q(t) = Q̄(t + t(N )), (49)

χk(t) = χ̄k(t + t(N )), t ≥ 0. (50)

We have

Qk(t) = Γk(t) −
K∑
l=1

Γl,k(t) ≡
K+1∑
i=1

Γk,i(t) −
K∑
l=1

Γl,k(t), (51)
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χk(t) = inf{v > t : Γk(v) < Γk(t)} − t (52)

if Qk(t) > 0 ( χk(t) = 0 if Qk(t) = 0 ), and

Q(t) =
K∑
k=1

Γk,K+1(t) (53)

for k = 1, . . . ,K, t ≥ 0. This last formula gives the following corollary:

Corollary 6 Under the conditions of Lemma 2,

Q1(t) ≤ Q2(t) (54)

for all t ≥ 0.

Returning now to the composition of networks (see § 3.5), we can formulate the following imme-
diate corollary of Lemma 2:

Corollary 7 If the network Σ is the composition of two Euler networks Σ1 and Σ2 , then

Γk,l(t) ≥ Γk,l2 (t), Q(t) ≥ Q2(t) (55)

for all k, l, t.

Associated with any network Σ, we introduce the new variable:

Z = inf{t ≥ 0 : max
1≤k≤K

Γk(t) = 0}, (56)

which represents the time to empty the system, measured from the last external arrival.

Lemma 3 If Σ is the composition of the Euler networks Σ1 and Σ2 , then

(Z − x− y)+ ≤ (Z1 − x)+ + (Z2 − y)+, (57)

for all x ≥ 0, y ≥ 0.

Proof It is enough to consider the case x = y = 0 only. If z ≡ t2(1) − t1(N0) ≥ Z1 , then the two
networks are separated and Z = Z2 ≤ Z1 + Z2 . If z < Z1 , let Σ̂ be the composition of the networks
Σ1 and Σ̂2 , where

Σ̂2 = ({t̂2(n)}N2
n=1, {σ

k
j,2}, {νkj,2})

with t̂2(n) = t2(n) + (Z1 − z), n = 1, . . . , N2 . By construction, Ẑ = Z2 . Lemma 1 implies that
Z + t2(N2) ≤ Ẑ + t2(N2) + Z1 − z. So Z ≤ Z2 + Z1 − z ≤ Z2 + Z1 (z is non-negative by definition).

Remark 20 The same monotonicity and sub-additive properties hold true for networks with multi-
server stations (with FCFS disciplines), provided we still associate service times and switching
decisions with stations. More precisely, we have to assume that, on each station k, the j-th ser-
vice takes σkj units of time (regardless of the server to which the customer is allocated), and

that after this service, the customer is sent to station νkj (see Shanthikumar and Yao [33] for the
monotonicity property).

20



4 First-Order Ergodic Properties

4.1 Basic Definitions and Notations

Consider a sequence of simple Euler networks, say {Σ(n)}∞n=−∞, where Σ(n) = (1, t(n), σ(n), ν(n))
and where the switching decision sequence ν(n) is that generated by the route r(n) = (r1(n), r2(n), . . . , rφ(n)(n)).
We assume that t(n) ≤ t(n+1) for all n and we denote τ (n) the difference t(n+1)−t(n). Associated
with the sequence {Σ(n)}, we define the following basic sequences u(n) and {Sk(n)}

• u(0) = 0 and u(n + 1) − u(n) = τ (n) for all n;

• Sk(n) =
∑dk (n)
j=1 σkj (n) and S(n) = S

1(n) + · · · + SK (n) for all −∞ < n <∞, k = 1, . . . ,K ;

Similarly, we define {σkj } and {νkj } to be the following infinite concatenation of the {σkj (n)} and
{νkj (n)} sequences:

• Let F k(n) = ϕk(1) + · · · + ϕk(n) for n ≥ 1 and F k(n) = ϕk(n) + · · · + ϕk(0) for n ≤ 0;

• ν0j = r1(j), for −∞ < j <∞;

• for k = 1, . . . ,K ,

– for 0 < j ≤ ϕk(1), σkj = σkj (1) and ν
k
j = νkj (1);

– for n ≥ 1, F k(n) < j ≤ F k(n + 1), σkj = σkj−Fk (n)(n + 1) and νkj = νkj−Fk (n)(n + 1);

– for −ϕk(0) < j ≤ 0 σkj = σkj+ϕk (0)(0) and ν
k
j = νkj+ϕk (0)(0);

– for n ≥ 0, −F k(−n− 1) < j ≤ −F k(−n), σkj = σkj+Fk (−n−1)(−n − 1) and νkj =

νkj+Fk (−n−1)(−n− 1).

Assume that we have a probability space (Ω,F , P), endowed with an ergodic measure-preserving
shift θ. The symbols θn, n ≥ 0, will denote the iterations of this transformation (so that θ1 = θ,
while θ0 is the identity), and the symbol θ−n stands for the transformation inverse to θn, n =
1, 2, . . .. The same symbol θ will also be used for the measure-preserving shift on the events of F .
Let

ξ(n) = {τ (n), {σ(n)}, {ν(n)}}. (58)

Our stochastic assumptions will be as follows:

• the variables t(n), {σ(n)}, {ν(n)} are random variables defined on (Ω,F , P );

• the random variables ξ(n) satisfy the relation ξ(n) = ξ(0) ◦ θn for all n, which implies that
{ξ(n)}∞n=−∞ is stationary and ergodic;

• all the expectations Eϕk(0), ESk(0) = bk, Eτ (0) = λ−1 are finite.

Without loss of generality, we can assume that ESk(0) > 0 for all k.
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For m ≤ n let
Σ[m,n] = Σ(m) + · · · + Σ(n),

where + is the composition rule introduced in § 3.4. We have in particular Σ[n,n] = Σ(n). The
composition assumption implies that for each m < l ≤ n,

Σ[m,n] = Σ[m,l−1] + Σ[l,n].

Let X[m,n] be the time to empty the system measured from time t(0):

X[m,n] = t(n) − t(0) + Z[m,n], (59)

where Z[m,n] represents the variable defined in (56) for the network Σ[m,n] , for−∞ < m ≤ n <∞.
We shall also use the notation

Xn = X[0,n]. (60)

4.2 First-Order Ergodic Theorem

The variableXn, which can be seen as the maximum over all j and k of the Ψkj variables in network
Σ[0,n] measured from t(0) (and equivalently the variables Z[0,n] or Z[−n,0]) satisfy a SLLN:

Theorem 11 Under the above conditions, there exists a finite non-negative constant γ such that

lim
Z[−n,0]

n
= lim

Z[−n,−1]

n
= lim

EZ[−n,0]

n
= lim

EZ[−n,−1]

n
= γ (61)

a.s. as n→∞.

Proof It follows from Lemma 3 that

Z[−n,−1] ≤ Z[−n,−l−1] + Z[−l,−1] (62)

for all 1 ≤ l < n. Since Z[−n,−l−1] = Z[−n+l,−1] ◦ θ−l and 0 ≤ EZ[0,0] ≤ ES(0) < ∞, Kingman’s
subadditive ergodic theorem allows us to complete the proof.

Corollary 8 Under the above conditions

lim
Z[1,n]

n
= lim

EZ[1,n]

n
= γ (63)

and

lim
Xn

n
= lim

EXn

n
= γ + λ−1 (64)

a.s. as n tends to∞.

Remark 21 Consider the more general situation when the sequence {ξ(n)}∞n=0 couples with a sta-
tionary sequence. If the stationary sequence under consideration satisfies the above assumptions,
then

lim
Z[1,n]

n
= γ, lim

Xn

n
= γ + λ−1 (65)

a.s. as n → ∞. If, in addition, all the expectations Eϕk(n), ESk(n), Eτ (n) are finite and the
coupling time is integrable, then the statement of Corollary 8 is still true.
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4.3 Finiteness of Second-Order Variables

The monotonicity property of Corollary (7) implies that Z[−n−1,0] ≥ Z[−n,0] a.s. for all non-
negative n. So there exists an a.s. limit limZ[−n,0] as n tends to∞ (which may be either finite or
infinite).

In relation with the network Σ[−n,0] and for k, 1, . . . ,K, and t ≥ 0, we also introduce the processes
Γk,l[−n,0](t), Γ

k
[−n,0](t), Γ[−n,0](t), Qk[−n,0](t) and Q[−n,0](t), which are defined as in § 3.8. Let

Γk[−n,0] = Γk[−n,0](0); (66)

and

Dk
[−n,0] =

Γk
[−n,0]−1∑
j=0

σk−j , Ek[−n,0] =

Γk
[−n,0]−2∑
j=0

σk−j (67)

(here
∑−1

0 =
∑−2

0 ≡ 0). The monotonicity property also implies that Γk,l[−n,0](t), Γ
k
[−n,0](t),

Q[−n,0](t), Γk[−n,0] , D
k
[−n,0] and E

k
[−n,0] are non-decreasing in n. It follows from the definitions

that

max
1≤k≤K

Ek[−n,0] ≤ Z[−n,0] ≤
K∑
k=1

Dk
[−n,0] (68)

for all n. So Z[−n,0] → ∞ as n → ∞ iff there exists a.s. k ∈ {1, . . . ,K} such that Γk[−n,0] → ∞ as
n→∞ (this is true because we assume ESk(0) to be positive for all k).

Let A be the event
A = {limn→∞Z[−n,0] = ∞}. (69)

Theorem 12 Under the conditions of § 4.1, either P(A) = 1 or P(A) = 0.

Proof We shall prove that a.s. if Z[−n,0] →∞ then Z[−n,1] →∞ as n tends to∞ . If it is so, then
θA ⊇ A . But the shift θ is measure-preserving, so P(θA − A) = 0. Since θ is ergodic, the last
equality implies P(A) ∈ {0, 1}.

It follows from (68) that it is enough to prove that P(Γk[−n,0] →∞) ∈ {0, 1}. For this it is sufficient
to show that a.s. if Γk[−n,0] →∞, then Γk[−n,1] →∞.

For each N >> 1 we can a.s. choose l ≡ lN such that
∑N+l
j=N+1 σ

k
−j ≥ τ (0) . Since Γk[−n,0] → ∞,

there exists nN such that Γk[−n,0] > N + l for all n ≥ nN . Therefore Γk[−n,1] ≥ N for all n ≥ nN .

Corollary 9 If P (A) = 0 then the random variables Z[−n,0] converge monotonically a.s. to a
finite random variable Z(0), and if we define

Z(m) = Z(0) ◦ θm

then
Z[−n+m,m] ≡ Z[−n,0] ◦ θm ≤ Z(m) a.s. (70)

for all 0 ≤ m,n <∞.
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It follows from Theorem 12 and from its proof that similar results hold true for the processes
Γk,l[−n,0](t), Γ

k
[−n,0](t), Γ[−n,0](t) and Q[−n,0](t):

Corollary 10 If P(A) = 0 then the processes Γk,l[−n,0](t), Γ
k
[−n,0](t), Γ[−n,0](t) and Q[−n,0](t) con-

verge monotonically a.s. to finite processes Γk,l(t) ∈ D+
0 , Γ

k(t) ∈ D+
0 , Γ(t) ∈ D+

0 and Q(t) ∈ D+
0 ,

respectively.

Denote by Qk[−n,0] ≡ Qk[−n,0](0) the queue-length and by χk[−n,0] ≡ χk[−n,0](0) the residual service
time on station k in the network Σ[−n,0] at time t(0) (where χk[−n,0] = 0 if Qk[−n,0] = 0).

Corollary 11 If P(A) = 0, then the r.v.’s Qk[−n,0] and χ
k
[−n,0] converge weakly to some a.s. finite

r.v.’s Qk and χk , respectively, as n→∞.

More results are available on these first-order ergodic theorems. One of the most interesting is
the solidarity property of Corollary 22, Appendix C.

4.4 Scaling

In what follows, it will be useful to consider various scalings of the arrival processes: for each
scaling factor 0 ≤ C <∞, −∞ < m ≤ n <∞, consider the sequences

ξ(n,C) = {Cτ (n), {σkj (n)}, {νkj (n)}}, (71)

the simple networks
Σ(m,C) = {1, Ct(n), {σkj (n)}, {νkj (n)}} (72)

and the Euler networks Σ[m,n](C) = Σ(m,C) + · · · + Σ(n,C). Let

γ(C) = lim
n→∞

Z[−n,0](C)
n

(73)

(here γ(1) = γ). For instance, for a G/G/1 queue (with obvious notations)

γ(C) =

(
1
µ
− C

λ

)+

.

Lemma 4 γ(C) is a continuous and non-increasing function.

Proof For each n ≥ 0, C ≥ 0, ε ≥ 0

Z[−n,0](C + ε) ≤ Z[−n,0](C) ≤ Z[−n,0](C + ε) + ε(−t(−n)), a.s.

So
γ(C + ε) ≤ γ(C) ≤ γ(C + ε) + ελ−1.
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5 Stability Conditions

5.1 Main Ergodic Theorems

For −∞ < m ≤ n <∞, let
Y[m,n] = Z[m,n](0) (74)

and
ρ = λγ(0), (75)

where the notations are those of the end of § 4.3. The random variable Y[m,n] simply represents the
time to empty the system, measured from time t(m) on, when a bulk of m − n customers arrives
at time t(m). We know that

γ(0) = lim
n→∞

Y[−n,0]
n

= lim
n→∞

Y[−n,−1]
n

a.s.

= lim
n→∞

EY[−n,0]
n

= lim
n→∞

EY[−n,−1]
n

.

Theorem 13 If ρ < 1, then P(A) = 0.

Proof For each l ≥ 0, let Nl be the random variable

Nl = min{n ≥ 0 : Z[−n,0] ≥ u(l)}. (76)

If P(A) = 1 then Nl <∞ a.s. for each l. By definition (see (59)), for all n, l ≥ 0, the equalities

X[−n,l] = t(l) − t(0) + Z[−n,l] = u(l) + Z[0,n+l] ◦ θ−n (77)

hold. Consider the network Σ̂[−n,l] obtained by composing the simple networks Σ̂(−n),. . . , Σ̂(l),
where Σ̂(j) has the same service times and switching decisions as Σ(j) but an arrival epoch t̂(j)
defined as follows:

t̂(j) =

{
t(j) for −n ≤ j ≤ 0,
Z[−n,0] for 1 ≤ j ≤ l, (78)

For n ≥ Nl , t(j) ≤ t̂(j) for all −n ≤ j ≤ l, so that

u(l) + Z[−n,l] ≤ Z[−n,0] + Y[1,l],

as a direct consequence of the monotonicity property of Lemma 2. Therefore, if n ≥ Nl ,

u(l) + Z[−n−l,0] ◦ θl ≤ Z[−n,0] + Y[−l+1,0] ◦ θl, (79)

Consider now the network Σ̃[−n,l] defined as above with

t̃(j) =

{
t(j) for −n ≤ j ≤ 0,
t(j) + Z[−n,0] + S[1,j−1] for 1 ≤ j ≤ l, (80)

(where
∑0
i=1 = 0). By definition, in network Σ̃[−n,l] , all external arrivals taking place later than

(and including at) t̃(1) find an empty system. So, in particular,

Z̃[−n,l] ≤ S(l). (81)
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The monotonicity property of Lemma 2 also implies that

X[−n,l] = u(l) + Z[−n−l,0] ◦ θl
≤ X̃[−n,l] = ũ(l) + Z̃[−n,l]
= Z[−n,0] + u(l) + S[1,l].

So
θlZ[−n−l,0] − Z[−n,0] ≤ S[1,l] (82)

for all n, l ≥ 1. Combining (82) and (79), we get the inequalities

θlZ[−n−l,0] − Z[−n,0] ≤ (θlY[−l+1,0] − u(l))I (n ≥ Nl) + S[1,l]I (n < Nl), a.s. (83)

All of random variables in the last inequality are integrable. So

E(θlZ[−n−l,0] − Z[−n,0]) ≤ E{(θlY[−l+1,0] − u(l))I (n ≥ Nl)} + E{S[1,l]I (n < Nl)}.

But

E(θlZ[−n−l,0] − Z[−n,0]) = E(θlZ[−n−l,0]) − E(Z[−n,0])

= E(Z[−n−l,0]) − E(Z[−n,0]) = E(Z[−n−l,0] − Z[−n,0]) ≥ 0,

because Z[−n,0] is a non-decreasing sequence. We have

E{(θlY[−l+1,0] − u(l))I (n ≥ Nl) = E(θlY[−l+1,0] − u(l))
−E{(θlY[−l+1,0] − u(l))I (n < Nl)}.

But
E(θlY[−l+1,0] − u(l)) = E(Y[−l+1,0]) − lλ−1

and since Z[−n,0] →∞ a.s.,

lim
n→∞

E{(θlY[−l+1,0] − u(l))I (n < Nl)} = 0

and
lim
n→∞

E{S[1,l]I (n < Nl)} = 0.

Since
0 ≤ E{(θlY[−l+1,0] − u(l))I (n ≥ Nl)} + E{S[1,l]I (n < Nl)}

for all n, l and since the right-hand side converges to EY[−l+1,0] − lλ−1 , we get

EY[−l+1,0] − lλ−1 ≥ 0 (84)

Therefore λ−1 ≤ EY[−l+1,0]/l for all l ≥ 1 and λ−1 ≤ liml→∞ EY[−l+1,0]/l ≡ γ(0).

Theorem 14 If ρ > 1, then γ(C) > 0 for all 1 ≥ C > 0. In particular, if ρ > 1 then Z[−n,0] ≡
Z[−n,0](1) →∞ a.s. as n tends to∞ (in other words P(A) = 1).
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Proof The monotonicity properties imply

Z[−n,0](C) ≥ Z[−n,0] ≥ Y[−n,0] + u(−n)

a.s. for all n ≥ 0 and C ∈ [0, 1]. So

lim
n→∞

Z[−n,0](C)
n

≥ γ(0) − λ−1 > 0, a.s.

For C ≥ 0, let
δ(C) = lim

n→∞
Xn(C)n. (85)

¿From the definition,
δ(C) = γ(C) + Cλ−1. (86)

The monotonicity properties and Lemma 4 imply that δ(C) is a continuous and non-decreasing
function of C .

Remark 22 The results of Theorems 13-14 and of Theorems 15-17 below are still true for the
networks with multi-server stations (see Remark 20).

5.2 Computation of γ(0)

Let
b = max

1≤k≤K
bk, (87)

where
bk = E[Sk(0)]. (88)

Lemma 5 In the case K = 1, for all C ≥ 0

δ(C) = max(b, Cλ−1) ≡ max(b1, Cλ−1). (89)

Proof For K = 1, the network boils down to a single-server queue with feedback. Since the
service times and the switching decisions are associated with stations, the workload in this model
is equivalent to that of a single-server queue without feedback and with service times S1(n), n ≥
1.

Lemma 6 For all C ≥ 0, for each fixed K ≥ 1

δ(C) ≥ max(b, Ca). (90)
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Proof Let k be such that bk = b . Consider an auxiliary sequence of networks Σ̃[m,n] with the same
interarrival times and the same switching decisions, and with service times

σ̃kj = σkj (91)

for −∞ < j <∞ and
σ̃ij = 0 (92)

for i = 1, . . . ,K, i 6= k and −∞ < j <∞.

This boils down to a sequence of single-server queues, and the equality

δ̃(C) = max(b, Ca) (93)

follows from Lemma 5. The monotonicity properties imply

δ(C) ≥ δ̃(C) = max(b, Ca). (94)

Corollary 12 γ(0) ≡ δ(0) ≥ b.

Theorem 15 For all Euler network
γ(0) = δ(0) = b. (95)

Proof The proof is given in § 5.3. As it happens, it is simpler to prove a more general result, and
we shall in fact prove Theorem 15 for the networks with bulk arrivals.

Corollary 13 If ρ ≡ bλ−1 < 1 then for each k ∈ {1, . . . ,K}; l ∈ {1, . . . ,K,K + 1}, the process
{Γk,l[−n,0](t), t ≥ 0} converges (monotonically increasing) to some finite limit {Γk,l(t), t ≥ 0} a.s.

5.3 Networks with Bulk Arrivals

For each −∞ < n <∞, let
Σ(n) ≡ {N (n), T (n), σ(n), ν(n)} (96)

be the composition of N (n) simple networks, where N (n) is a random variable and where T (n) =
(t(n, 1), . . . , t(n,N (n))). We will denote dk,l(n) the total number of events from station k to l in this
Euler network. For all m ≤ n, the network Σ(m,n) is defined as the composition Σ(m) + . . . + Σ(n).
Our notations will parallel those of Σ[m,n] for the composition of simple networks (e.g. Z(m,n)

will be the time to empty the system, measured from time t(n, 1) etc.).

Such a sequence of networks will be said to satisfy bulk arrival assumptions if the sequence

Ξ(n) ≡ {N (n), τ (n), µ(n), σ(n), ν(n)}, (97)
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(where τ (n) = t(n+1, 1)−t(n, 1) and µ(n) = (t(n, 2)−t(n, 1), . . . , t(n,N (n))−t(n, 1))) is stationary
and ergodic. Note that bulk arrival statistical assumptions include the statistical assumptions of
the previous sections as a special case (by taking N (n) = 1 for all n). Assume that

τ (n), dk(n), Sk(n) ≡
dk (n)∑
j=1

σkj (n), (98)

have finite first moments. Let bk = ESk(1) and b = maxkbk . Using the monotonicity and ergodicity
properties of the previous sections, we obtain as above that there exist constants γ and γ(C) such
that

γ = lim
n

Z(−n,0)

n
, γ(C) = lim

n

Z(−n,0)(C)

n
, γ(0) = lim

n

Y(−n,0)
n

, a.s.

Arguments similar to those of the preceding sections also imply that whenever λγ(0) = E[τ (n)]−1γ(0) <
1, then the increasing sequence Z(−n,0) a.s. converges to a finite limit as n goes to∞.

Theorem 16 The statement of Theorem 15 holds true for networks with bulk arrivals.

For the proof, we will assume that Ed0,K (1) > 0 (if this is not true, the stations should be renum-
bered) and that bk > 0 for all k = 1, . . . ,K (otherwise we have a model which is equivalent to a
network with less than K stations).

Consider the network Σ(1,n)(0). For an arbitrary fixed d > 0, introduce new sequences of service
times:

σ̂Kj (l) =
(b + d)σKj (l)

bK
, σ̂kj (l) =

bσkj (l)

bk
, k = 1, . . . ,K − 1, l = 1, 2, . . . , j = 1, 2, . . . , dk(l).

Let Σ̂(1,n)(0) be the same network as Σ(1,n)(0) but with service times {σ̂kj (i)} rather than {σkj (i)}.
The monotonicity property implies that γ(0) ≤ γ̂(0). So if we prove the inequality γ̂(0) ≤ b + d,
this together with Corollary 12 will complete the proof of the statement of Theorem 16, since
d > 0 is arbitrary. Till the end of the present subsection, we will work on the networks Σ̂(1,n)(0)
rather than Σ(1,n)(0). For sake of notational simplicity, we will drop the ‘ˆ’ in what follows,
which is tantamount to saying that our reference networks Σ(n) are such that bK = b + d and
bk = b for k = 1, . . . ,K − 1. For n fixed, we will use the following notations for the net-
work Σ(1,n)(0) ≡ (N,T, σ, ν), where N ≡ Nn = N (1) + · · · + N (n), σk is the concatenation of
σk(1), . . . , σk(n) and νk is the concatenation of νk(1), . . . , νk(n).
We will denote Ψk,li the first order variables of this network; we will also use the following nota-
tions:

F k,l(n) =
n∑
i=1

dk,l(i), F k(n) =
K+1∑
l=1

F k,l(n), (99)

for n ≥ 1, with F k,l(0) = 0, and

v(n) =
n∑
i=1

SK (i), (100)

for n ≥ 1, with v(0) = 0.

The proof is based on the construction of an auxiliary network and two delayed networks, all
associated with {Σ(n)}. The auxiliary network is obtained by considering nodes {1, . . . ,K − 1}
as a first subnetwork and node K as a second one, and by replacing the transitions from one
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subnetwork to the other by external arrivals. The epochs at which the arrivals take place are
described in the following formal definition:

Auxiliary network

Let Σ̃(n) = (Ñ (n), T̃ (n), σ̃(n), ν̃(n)) be the Euler network with the following characteristics:

• Ñ (n) =
∑K
k=1 d

0,k(n) +
∑K−1
k=1 dk,K (n) +

∑K+1
k=1 d

K,k(n) (Ñ (n) is the number of original exter-
nal arrivals, plus that of all internal transitions to station K , plus the number of departures
from station K). Note that Ñ (n) = dK (n) + p(n), where p(n) ≡

∑K−1
k=1 (d0,k(n) + dK,k(n)) +

dK,K+1(n) =
∑K
k=1 d

0,k(n) +
∑K−1
k=1 dk,K (n);

• T̃ (n) = (v(n − 1), . . . , v(n − 1), s(1, n), . . . , s(dK (n), n)), with v(n − 1) occurring p(n) times
and with s(j, n) = v(n− 1) +

∑j
i=1 σ

K
i (n), 1 ≤ j ≤ dK (n), so that s(dK (n), n) = v(n);

• σ̃(n) = σ(n);

• – ν̃Kj (n) = K + 1, for all j = 1, . . . , dK (n);

– ν̃kj (n) = ν
k
j (n) if ν

k
j (n) 6= K and ν̃kj (n) = K + 1 if νkj (n) = K , for k = 1, . . . ,K − 1, j =

1, . . . , dk(n).

– ∗ ν̃0j (n) = K for 1 ≤ j ≤ d0,K (n) +
∑K−1
k=1 dk,K (n);

∗ for 1 ≤ k ≤ K − 1, ν̃0j (n) = k, for all d
0,K (n) +

∑K−1
k=1 dk,K (n) +

∑k−1
l=1 d0,l(n) < j ≤

d0,K (n) +
∑K−1
k=1 dK,k(n) +

∑k
l=1 d

0,l(n);

∗ ν̃0p(n)+j (n) = νKj (n), for 1 ≤ j ≤ dK (n).

So in Σ̃(n), a bulk of size p(n) arrives at time v(n − 1), which brings d0,K (n) +
∑K−1
k=1 dk,K (n)

customers to station K , and d0,k(n) customers to station k, k = 1, . . . ,K − 1; the remaining dK (n)
external arrivals form a point process on the time interval (v(n−1), v(n)], which is the same (both
in terms of epochs and switching) as the output point process from station K when saturated.

The auxiliary network, Σ̃(1,n) ≡ (Ñ , T̃ , σ̃, ν̃), is defined as the composition Σ̃(1,n) = Σ̃(1)+ . . .+ Σ̃(n).

Remark 23 Using the assumption that Σ(n) is Euler and considering the N (n) routes which gen-
erate its switching sequences, it is easy to check that Σ̃(n) is indeed an Euler network with Ñ (n)
routes and that

d̃k(n) = dk(n), ∀k. (101)

So Σ̃(1,n) is Euler.

Remark 24 In Σ̃(1,n) , the routes originating from station K , which only involve node K , are
completely disjoint from those originating from k ∈ {1, . . . ,K − 1}, which never involve node
K . So the network Σ̃(1,n) can be seen as the juxtaposition of two disconnected Euler bulk arrival
(i.e. each of them satisfies the stationarity and ergodicity assumptions of (97)-(98)): subnetworks
{Σ̃′(1,n)} and {Σ̃′′(1,n)}
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• Subnetwork Σ̃′(1,n) , withK−1 stations, with bulk interarrival times τ̃ ′(i) = SK (i) (with mean
value bK = b + d), with µ̃′(i) = (0, . . . , 0, s(1, n) − v(n − 1), . . . , s(dK (n), n) − v(n − 1)), and
with service parameters

b′
k
= E(

d̃k (1)∑
j=1

σkj ) = E(
dk (1)∑
j=1

σkj ) = b
k = b, k = 1, . . . ,K − 1,

where we used (101) to obtain the second equality.

• Subnetwork Σ̃′′(1,n) with one station K (i.e. a single-server queue with bulk arrivals). Note

that this station is never empty in this network (indeed, when the d0,K (n) +
∑K−1
k=1 dk,K (n)

customers which arrive at time v(n − 1) have completed their services, there are dK,K (n)
more customers waiting in queue K; in addition, d0,K (n) +

∑K
k=1 d

k,K (n) = dK (n)).

Before defining the delayed networks, we return to the reference network Σ(1,n)(0) for a few more
definitions. Let

an = F 0,K (n) =
n∑
i=1

d0,K (i) (102)

and
mn = max{m ≥ 1 : FK (m) ≤ an/2}, (103)

where mn = 0 if dK (1) > an/2. Note that during the time interval (0, v(mn)), station K is never
empty in the network Σ(1,n)(0).

Remark 25 In Σ(1,n)(0), all external arrivals take place at time 0. Thus, in view of Remark 13,
replacing ν0 by an arbitrary permutation of this sequence leads to the same Γ process.

First delayed network

Let Σ̇(1,n) be the network which only differs from Σ(1,n)(0), through the T and ν0 variables:

• Tn = (0, . . . , 0) is replaced by Ṫn = (0, . . . , 0, v(0), . . . , v(0), v(1), . . . , v(1), . . . , v(mn−1), . . . , v(mn−1), v(mn), . . . , v(mn)),
where v was defined in (100); the multiplicity of 0 is an and that of v(j) is

∑K−1
k=1 d0,k(j + 1)

for j < mn and
∑n
l=mn+1

∑K−1
k=1 d0,k(l) for j = mn.

• ν0 is replaced by ν̇0 , where ν̇0j = K for 1 ≤ j ≤ an and {ν̇0j }
F 0 (n)
j=an+1 is the subsequence of ν

0

obtained by ‘removing’ the an K’s of this sequence.

So an customers arrive in stationK at time 0 and for j ≤ v(mn), d0,k(j) customers arrive in station
k at time v(j − 1).

Remark 26 The network Σ̇(1,n) is also such that stationK never empties in (0, v(mn)). Therefore,
on this time interval, for all k = 1, . . . ,K − 1, the superposition of the (departure) point process
from station K to station k and of the point process from station 0 to station k in Σ̇(1,n) coincides
with the point process from station 0 to station k in Σ̃(1,n) . But σ̇k = σ̃k for all k and similarly,
if one merges nodes K and 0, ν̇k = ν̃k for all k = 1, . . . ,K − 1. Therefore, on the time interval
(0, v(mn)), the Γ̄k(t) processes of Σ̇(1,n) and Σ̃(1,n) coincide for all k = 1, . . . ,K − 1.
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Remark 27 In Σ̃(1,n) , the total number of services completed on station k at time (v(mn)−) cannot
exceed

∑mn

i=1 d̃
k(i) =

∑mn

i=1 d
k(i) = F k(mn) (see (101)). This and the preceding remark imply

that the total number of services completed in Σ̇(1,n) at time (v(mn)−) cannot exceed F k(mn).
Therefore, necessarily Ψ̇kFk (mn)+1

≥ v(mn) for all k = 1, . . . ,K .

Second delayed network

Our second delayed network Σ̈(1,n) is the network obtained by delaying (see Remark 11) the net-
work Σ̇(1,n) with the sequence {αkj }, j = 1, . . . , F k(n), which is defined as follows:

• for k = 1, . . . ,K

– for j ≤ F k(mn), αkj = −∞;

– for j > F k(mn), αkj = U , where U is some variable larger than v(mn), to be determined
later.

• for k = 0

– α0
j = 0 if Ψ̇0

j < v(mn);

– α0
j = U if Ψ̇0

j ≥ v(mn);

Remark 28 Consider two Euler networks Σ and Σ′ having the same number of events on each
station. We will say that Σ′ is a majorant of Σ if the j-th event on station k takes place later in Σ′

than in Σ. Network Σ̇(1,n) is a majorant of Σ(1,n)(0) (this follows from the monotonicity property
and Remark 25); similarly Σ̈(1,n) is a majorant of Σ̇(1,n) (see Remark 16). Therefore Σ̈(1,n) is a
majorant of Σ(1,n)(0).

The variables Ψ̈kFk (mn)
associated with network Σ̈(1,n) clearly depend on U . The following prop-

erty holds:

Lemma 7 If we take U ≥ X̃(1,mn) , (i.e. the time to empty the network Σ̃(1,mn)), then

max
k=1,...,K

Ψ̈kFk (mn)
≤ U. (104)

Proof It follows from Remark 27 that delaying the j-th event on station k for all j ≥ F k(mn + 1)
of U such that U ≥ v(mn) has no effect on the events in the time interval (0, v(mn)). Therefore
for any U ≥ v(mn), Σ̈(1,mn) is such that stationK is never empty in (0, v(mn)) and always inactive
in (v(mn), U ). The rest of the proof is similar to the argument used in Remark 26:

• for all k = 1, . . . ,K − 1, the point process from {0,K} to k in Σ̈(1,n) and the point process
from 0 to k in Σ̃(1,mn) coincide;
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• when merging 0 and K , for all k 6= K , the prefix ν̈kj , j = 1, . . . , F k(mn) of the switching

sequence used in Σ̈(1,n) coincides with the sequence ν̃kj , j = 1, . . . , F k(mn) used in Σ̃(1,mn) .

Since, in addition, the service sequences coincide, for all t ∈ (0, U ), the Γ̄(t) processes of Σ̈(1,n)

and Σ̃(1,mn) coincide for all k = 1, . . . ,K − 1. Therefore, if we take U ≥ X̃(1,mn) , Equation (104)
holds since

max
k=1,...,K

Ψ̈kFk (mn)
= max
k=1,...,K

Ψ̃kFk (mn)
= X̃(1,mn) ≤ U. (105)

Remark 29 It is easy to check that the number of customers present in station k at time U ≥
X(1,mn) in Σ̈(1,n) is exactly F 0,k(n)−F 0,k(mn): indeed, the number of services completed in queue
l at time U− is F l(mn) for all l = 1, . . . ,K; in addition, the number of arrivals in station k by
time U is F 0,k(n) +

∑K
l=1 F

l,k(mn); thus the number of customers present in station k at time

U is F 0,k(n) +
∑K
l=1 F

l,k(mn) − F k(mn), which is equal to F 0,k(n) − F 0,k(mn) since F k(mn) =∑K
l=0 F

l,k(mn). This and the preceding lemma show that for U ≥ X̃(1,mn) , the network Σ̈(1,n) is
actually the composition of the two separated Euler networks:

Σ̈(1,n) = Σ̈′ + Σ̈′′, (106)

where Σ̈′′ is the same Euler network as Σ(mn+1,n)(0), but with all arrivals taking place at time U
rather than 0.

Key relationship between the three networks

We summarize the basic relations between these networks below:

• Σ̈(1,n) is a majorant of Σ(1,n)(0) (Remark 28), so that

Y(1,n) ≤ Ẍ(1,n). (107)

• For U = X̃(1,mn) , Σ̈(1,n) = Σ̈′ + Σ̈′′ , where these two networks are separated; in addition, Σ̈′′

and Σ(mn+1,n)(0) have the same Y process (Remark 29). Therefore

Ẍ(1,n) = X̃(1,mn) + Y(mn+1,n). (108)

Thus we get from (107)-(108) that

Y(1,n) ≤ X̃(1,mn) + Y(mn+1,n) ≤ v(mn) + Z̃(1,mn) + Y(mn+1,n) a.s. (109)

Proof of Theorem 16
The proof is by induction onK . ForK = 1, the result is that of Lemma 5. Assume that the theorem
holds for networks with K − 1 stations. Thus, we can apply the induction assumption to network

Σ̃′(1,n) defined in Remark 24; since λ̃′
−1

= Eτ̃1 = (b + d)−1 is such that ρ̃′ ≡ λ̃′ × max1≤k≤K−1 b̃k =

(b+d)−1b < 1, we obtain from this that Z̃ ′(1,n) is bounded from above by a finite stationary sequence
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(Corollary 9). This and the fact that the second network Σ̃′′(1,n) is such that Z̃ ′′(1,n) = S
K (n) allow

us to state that there exists an a.s. finite stationary sequence {Z̃ (n), n ≥ 1} such that

Z̃(1,n) ≤ Z̃ (n), n = 1, 2, . . . (110)

The CLLN implies the relations:

an
n
→ E(d0,K (1)) > 0, and mn →∞, a.s.

as n→∞. Similarly,

m

FK (m)
→ 1

EdK (1)
<∞, m

F k(m + 1)
→ 1

EdK (1)
, a.s.

as m→∞. Since
mn

FK (mn)
≥ mn

an/2
≥ mn

FK (mn + 1)
,

then
mn

n
=

mn

an/2
an/2
n
→ Ed0,K (1)

2EdK (1)
≡ c (111)

a.s., where 0 < c ≤ 1/2.

We have
v(mn)
n

→ (b + d)c a.s.

In addition, we get from the relation Y(mn+1,n)/n = (Y(mn+1,n)/(n−mn)) × ((n−mn)/n) that

Y(mn+1,n)/n→ (1 − c)γ(0)

in probability (see Appendix 8.3). Finally,

Z̃(1,mn)

n
→ 0

in probability as n→∞ (see Appendix 8.3). Therefore (109) implies the inequality:

γ(0) ≡ limn
Y(1,n)
n
≤ (b + d)c + (1 − c)γ(0)

for some 0 < c ≤ 1/2. Therefore
γ(0) ≤ b + d. (112)

6 Second Order Ergodic Results

6.1 Stochastic Recurrences

Now we are ready to write down a recurrence for constructing the (second-order) state of the
Euler network Σ[−n,m+1] from that of Σ[−n,m] for each fixed n. More concretely, we want to get a
representation of the form

W[−n,m+1] = f (W[−n,m], η(m + 1)), (113)
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where the function f is fixed (i.e. non-random and independent of n and m), {η(m)} is some
stationary ergodic sequence and W[−n,m] is the ‘state’ of network Σ[−n,m] . Such a representation
is often referred to as a stochastic recursive sequence (see Borovkov and Foss [12] or Baccelli
and Brémaud [3]). There are several such representations and we will focus on one of them only.

Consider the space

D0
+(K) ≡ D0

+ ×D0
+ × · · · ×D0

+, (K(K + 1) times), (114)

endowed with the coordinate partial order ≤ (see § 3.7 for the partial order on D0
+), and let

W[−n,m] = {(Γ1,1
[−n,m](t), . . . , Γ

1,K+1
[−n,m](t), Γ

2,1
[−n,m](t), . . . , Γ

K,K+1
[−n,m](t)), t ≥ 0} ∈ D0

+(K) (115)

and
η(n) = ξ(n), (116)

where ξ(n) is defined in (58). The data ofW[−n,m] completely defines the (residual) service times
and the switching decisions of Σ[−n,m] after time t(m), as shown by the following construction.

6.2 Construction of a Network fromW

LetW ≡ {Γ1,1(t), . . . , ΓK,K+1(t), t ≥ 0} ∈ D0
+(K). We will use the following notations:

Γk(t) =
K+1∑
i=1

Γk,i(t), Qk(t) = Γk(t) −
K∑
l=1

Γl,k(t), k = 1, . . . ,K, t ≥ 0

(already introduced in § 3.8), and

Γk,l ≡ Γk,l(0), Γk ≡ Γk(0), Qk ≡ Qk(0), k, l = 1, . . . ,K + 1. (117)

Associated withW , we also define

P k,lj = inf{t ≥ 0 : Γk,l(t) < j}, 1 ≤ k ≤ K, 1 ≤ l ≤ K + 1, (118)

and
P k,l ≡ {P k,lj , 1 ≤ j ≤ Γk,l}. (119)

The main difficulty for reconstructing the sequence of service times and switching decisions from
W comes from the possibility of simultaneous departures from a station (in case of zero-valued
service times on this station). For t > 0, let

H (t) = {(k, l, j) : P k,lj = t} (120)

and
J (t) = #(H (t)). (121)

For t > 0 such that J (t) > 1, we take an arbitrary numbering {(kr, lr, jr), 1 ≤ r ≤ J (t)} of the
elements of H (t) satisfying the following constraints: if kr1 = kr2 and r1 < r2 , then jr1 < jr2 . For
such a numbering, let {Qkr (t), k = 1, . . . ,K, r = 0, . . . , J (t)} be the sequence defined by:

Qk0 (t) = Qk(t−),
Qkr (t) = Qkr−1(t) + I{lr=k} − I{kr=k}, for r = 1, . . . , J (t). (122)

Note that QkJ (t)(t) = Q
k(t) for all k.
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Definition 8 We say thatW ∈ D0
+(K) is admissible, if for each t ≥ 0, k = 1, . . . ,K ,

(i) Qk(t) ≥ 0,

(ii) for each t > 0 with J (t) > 1, there exists a numbering of the elements of H (t) satisfying the
above constraints and such that Qkr−1(t) ≥ I{kr=k} for all k = 1, . . . ,K , r = 1, . . . , J (t).

We will denote D̂ ⊆ D0
+(K) the admissible subspace of D0

+(K).

If the function W is that associated with an Euler network Σ as in (115), then W is in D̂; so, in
what follows, we will restrict ourselves to the case when W is admissible. For 1 ≤ k ≤ K and
t > 0, let

jk(t) = Γk − Γk(t−),
a(t) = sup{0 ≤ u < t : Γk(u) < Γk(u−)},
b(t) = sup{0 ≤ u < t : Qk(u) = 0}

(here a(t) = 0 and b(t) = 0 if these sets are empty). With W as above, we associate a network
Σ(W ) = (N,T, σ, ν) with finite number of customers N =

∑
kQ

k , with zero-valued arrival epochs

T = (0, . . . , 0); its sequences σ and ν , with ν0 = {ν0i }Ni=1 , νk = {νki }Γ
k

i=1 and σk = {σki }Γ
k

i=1 , k =
1, . . . ,K , are defined as follows:

• ν0i = k for
∑k−1
l=1 Ql < i ≤

∑k
l=1Q

l , k = 1, . . . ,K ;

• If for some t > 0 and k = 1, . . . ,K , there exists only one l = 1, . . . ,K + 1 and one i ≥ 1 such
that P k,li = t (i.e. Γk,l(t) = Γk,l(t−) − 1), then νkjk (t)+1 = l and σ

k
jk (t)+1

= t− max(a(t), b(t));

• If for some t > 0 and k = 1, . . . ,K , there exist q ≥ 2 numbers l1, . . . , lq such that P k,l1i1
=

t, . . . , P
k,lq
iq

= t, for some i1, . . . , iq with ip = i1 + p− 1 (i.e. if Γk(t) = Γk(t−)− q). SinceW is
admissible, we can assume that the chosen numbering is such that (ii) is satisfied. We then
take σkjk (t)+1 = t−max(a(t), b(t)), σkjk (t)+d = 0 for d = 2, . . . , q and νkjk (t)+1 = l1, . . . , ν

k
jk (t)+q

= lq .

By this construction, we associate a family of networks (depending on the choice of admissible
numbering that is made) with W ; all these networks are equivalent in that they share the same
Γ-processes.

Definition 9 We will denote ≺ the partial order defined on the space D̂ byW ≺ W̃ if there exists
a pair of networks Σ ≡ Σ(W ) and Σ̃ ≡ Σ(W̃ ), associated with W and W̃ , respectively, and such
that

• Γk,l ≤ Γ̃k,l for all k, l;

• νkΓk−j = ν̃
k
Γ̃k−j for all k = 1, . . . .K , 0 ≤ j < Γk;

• σkΓk−j ≤ σ̃
k
Γ̃k−j for all k = 1, . . . ,K , 0 ≤ j < Γk .

Lemma 8 IfW ≺ W̃ in D̂, thenW ≤ W̃ , i.e. Γk,l(t) ≤ Γ̃k,l(t) for all k, l, t.

36



Proof Let Σ′ be the network with the same data as Σ(W̃ ), but for the service times, which are
replaced by σ′kj = 0 for j = 1, . . . , Γ̃k − Γk-1, and σ′kj = σkj for j = Γ̃k − Γk, . . . , Γ̃k . Using

the monotonicity property of Lemma 2, we obtain that Γ′l,k(t) ≤ Γ̃l,k(t) for all l, k, t. The proof
is concluded when observing that Γ′l,k(t) = Γl,k(t) for all t > 0, and that Γk,l(0) ≤ Γ̃k,l(0) by
assumption.

Lemma 9 Let {W (m)} be a≺-increasing sequence of D̂ such that the pointwise limitW ≡ limmW
(m)

belongs to D0
+(K). ThenW belongs to D̂ andW (m) ≺W for all m.

Proof For each t, Γk,l(t) ≡ limm Γ(m),k,l(t) < ∞, and all these functions are piecewise constant
and integer-valued. Therefore, there exists a finite number L(t) such that Γk,l(t) = Γ(m),k,l(t) for
all m ≥ L(t) and for each k, l. Therefore Qk(t) ≥ 0 for each k and t. The property (ii) follows
from the fact that we can choose a family of networks Σ(W (m)) and a network Σ(W ) such that
ν (m),k,l
j = νk,lj for all m ≥ L(0) and for each k, l and j = 1, . . . , Γk,l .

6.3 Main Second-Order Ergodic Theorems

So, for each W ∈ D̂ and for each ξ ∈ Ξ, where Ξ is the set of vectors of the form (58), we
can define f (W, ξ) as the vector of Γ-processes of the composition of the networks Σ(W ) and Σ′,
where Σ′ is the simple network associated with ξ. It follows from the monotonicity property that
the function f : D̂ × Ξ → D̂, defined in (113), is monotone in its first argument, with respect to
≺: if W ≺ W̃ , then f (W, ξ) ≺ f (W̃ , ξ). The monotonicity properties, Theorem 13 and Corollary
10 imply the following result:

Theorem 17 If ρ < 1, then for each integer −∞ < m < ∞, the sequence W[−n,m] converges ≺-
monotonically and almost surely (as n→∞) to a finite random variableW (m) ∈ D̂, and {W (m)}
is a stationary ergodic sequence such that

W (m) = W (0) ◦ θm (123)

and
W (m + 1) = f (W (m), ξ(m + 1)), (124)

for all m. Moreover {W (m)} is the minimal stationary solution of the equation (124): if W̃ (m +
1) = f (W̃ (m), ξ(m + 1)) is another stationary solution, then W (m) ≺ W̃ (m) ∀m a.s. so that in
particularW (m) ≤ W̃ (m) ∀m a.s. (where ≤ is the coordinate partial order on D0

+(K)).

Proof The main thing to prove is (124), as the last assertion follows by monotonicity. Observe
first that

W[−n,m+1] ≺ f (limlW[−l,m], ξ(m + 1)) (125)

for all n. Therefore

W (m + 1) ≡ limnW[−n,m+1] ≺ f (W (m), ξ(m + 1)) (126)
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Since Γk,l[−n,m] ≡ Γk,l[−n,m](0) are integer-valued, there exists an a.s. finite random number L such
that

Γk,l[−n,m] = Γk,l[−n−1,m] (127)

for all n > L and for each k, l. Therefore the inequality

W (m + 1) ≺ f (W (m), ξ(m + 1)) (128)

follows immediately from the continuity property (see Corollary 4).

Let Γk,l(m, t), t ≥ 0 be the coordinates of the random variable W (m) and, for each m, k, let
{Qk(m, t), t ≥ 0} be the associated residual queueing process,Q(m, t) be the process (Q1(m, t), . . . , QK (m, t))
and {χk(m, t), t ≥ 0, k = 1, . . . ,K} be the residual service-time process.

Corollary 14 If ρ < 1, then for each m, k, the processes {Qk[−n,m](t), t ≥ 0} converge a.s. (w.r.
to the metric d) to the process {Qk(m, t), t ≥ 0} as n→∞.

Corollary 15 If ρ < 1 then for each −∞ < m <∞, t ≥ 0, the vectors

(Q1
[−n,m](t), . . . Q

K
[−n,m](t), χ

1
[−n,m](t), . . . , χ

K
[−n,m](t))

converge weakly to the vector

(Q1(m, t), . . . , QK (m, t), χ1(m, t), . . . , χK (m, t))

as n→∞.

Consider the network Σ = Σ(1) + Σ(2) + . . ., with infinite input sequence t(1), t(2), . . . Let

Q̄(t) ≡ {Q̄1(t), . . . , Q̄K (t), t ≥ 0}

be the queue-length process for this network, and for each n ≥ 1, let

{Qn(t) ≡ Q(t + t(n)), t ≥ 0}

be the residual queue-length process. Define now the process

Q(0)(t) =

{
Q(0, t) for 0 ≤ t < t(1),
Q(l, t− t(l)) for t(l) ≤ t < t(l + 1), l = 1, 2, . . .

(129)

We also define the processes

{Q(n)(t) = Q(0)(t + t(n)), t ≥ 0}, n = 1, 2, . . . . (130)

It follows from Corollary 19 that the sequence {Q(n)(t), t ≥ 0}∞n=0 is stationary and ergodic (in n).

Corollary 16 If ρ < 1, then
0 ≤ Qn(t) ≤ Q(n)(t) (131)

a.s. for all n ≥ 0, t ≥ 0 and the processes {Qn(t) ◦ θ−n, t ≥ 0} converge monotonically a.s. to
the process Q(0)(t).

38



Proof The proof is similar to that of Corollary 9.

Note that the ergodicity stationarity properties imply the existence of the following limits:

lim
t

1
t

∫ t

x=0
I{Q(0)(x) ∈ .}dx = lim

t

1
t

∫ t

x=0
P{Q(0)(x) ∈ .}dx

=
E{
∫ u(1)
x=0 I{Q

(0)(x) ∈ .}dx}
Eu(1)

a.s. (132)

(where 0/0 means 0, by convention).

Corollary 17 If ρ < 1, then

lim
1
t

∫ t

x=0
I{θ−n ◦Qn(x) ∈ .}dx =

E{
∫ u(1)
x=0 I{Q

(0)(x) ∈ .}}
Eu(1)

a.s. (133)

as n→∞.

For each scaling factor C > 0, consider the network Σ[−n,m](C) . It follows from Theorem 17 that
for each C > bλ, there exists a stationary ergodic sequenceW (m,C) such that

W (m + 1, C) = f (W (m,C), ξ(m + 1, C)). (134)

In addition, {W (m,C)} is the minimal solution of (134).

Theorem 18 If ρ < 1, then for each m

W (m,C) ↗W (m) ≡W (m, 1) (135)

a.s. as C ↘ 1.

Proof The proof is similar to that of Theorem 17.

6.4 General Initial Conditions

The notations are those of § 2.1; we will assume that t(0) = 0. Consider an arbitrary network
V with a.s. finite input sequence and finite number of services on each station, and such that all
arrival epochs are non-positive. For any integer n ≥ 1, and for any positive real number C , let
V Σ[1,n](C) be the network

V Σ[1,n](C) = V + Σ[1,n](C).

We shall say that V is an initial condition for Σ[1,n](C) and call the customers of network V initial
customers. We shall use the following notations:

• V Σ[1,n] ≡ V Σ[1,n](1);

• V Γ
k,l
[1,n](C)(t), VW[1,n](C) etc. for the characteristics of V Σ[1,n](C);
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• V Γ
k,l
[1,n](t), VW[1,n] etc. for the characteristics of V Σ[1,n] .

Lemma 10 If ρ < 1 then for all random initial conditions V and for all real number C such that
bλ < C < 1, one can define an a.s. finite random variable β ≡ λ(C, V ), such that, for all n ≥ 1,

VW[1,n] ≤W (n,C), a.s. (136)

on the event {β ≤ n}, whereW (n,C) is the r.v. defined in (134).

Proof Let BV be the first non-negative time when network V is empty, and let

β = min{n ≥ 1 : (1 − C)tn ≥ BV } <∞ a.s. (137)

For each n ≥ 1, consider the network

V Σ̃[1,n](C) = V + Σ̃1 + . . . + Σ̃n,

where Σ̃n is the same as Σn but with arrival epoch

t̃i = Cti + (1 − C)tn, i = 1, . . . , n. (138)

The monotonicity property implies that V Σ̃[1,n](C) is a majorant of V Σ[1,n] . Note that for n ≥ β V
and Σ̃[1,n] are separated in V Σ̃[1,n](C) and, therefore,

VW[1,n] ≤ V W̃[1,n](C) = W[1,n](C) ≤W (n,C) (139)

a.s. on the event β ≤ n.

Corollary 18 If ρ < 1, then for each initial condition V

(i) the sequence {V Z[1,n]} is bounded in probability;

(ii) for each ε > 0, there exists an element f ≡ f (ε) ∈ D0
+ such that

P(V Γ
k
[1,n] ≤ f ) ≥ 1 − ε (140)

for all n ≥ 1, k = 1, . . . ,K .

Proof It is enough to prove (i) only. Property (i) follows from the inequality:

sup
n

P(V Z[1,n] > x) ≤ max
1≤n≤N

P(V Z[1,n] > x) + P(ζ > N ) + P(Z(1, C) > x), (141)

for all x ≥ 0, N ≥ 1 and λb < C < 1.

Remark 30 (Maximal solution) It is not difficult to see that if ρ < 1, then the sequence {W̃ (m)}
defined by

• W̃ (m) is right-continuous a.s.;

• dK (W̃ (m), limC↗1W (m,C)) = 0

forms a maximal stationary solution of (124) (here dK is a metric in the space D0
+(K) ). In

particular, W̃ (m) ≤W (m,C) a.s. for all C such that λb < C < 1.
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7 Coupling-Convergence

Without loss of generality, we can assume that for each n and k, the random variables νkj (n) and
σkj (n) are defined for all j = 1, 2, . . .. Let

ζ(n) = {τ (n), {σkj (n)}∞j=1, k = 1, . . . ,K}. (142)

Consider now the following set of assumptions (referred to as (I ) in what follows):

1. {ζ(n)}∞n=−∞ is a stationary and ergodic sequence;

2. the sequences {{νkj (n)}j≥1, k = 0, 1, . . . ,K, −∞ < n < ∞} are mutually independent and
independent of the sequence {ζ(n)}∞n=−∞;

3. {νkj (n)}∞j≥1 is an i.i.d. sequence, for all k = 0, 1, . . . ,K ;−∞ < n <∞ .

Remark 31 Let pk,1, pk,2, . . . , pk,K+1 be the law of νk1 , k = 0, . . . ,K . It is easy to check that if the
routing Markov chain P = {pk,l} on {0, 1, . . . ,K,K + 1}, is ‘without capture’ (i.e. for all k such
that p0,k > 0, there exists a sequence 0 = k0, k1, . . . , kn, kn+1 = K + 1 such that pki,ki+1 > 0, for
all i = 0, . . . ,K), then the i.i.d. sequences {νkj }∞j=1 are Euler in the following sense: there exist

sequences of integers dk(1) ≤ dk(2) ≤ . . . which tends to∞ and such that if F k(n) ≡
∑n
i=1 d

k(i),

then for all n, the switching sub- sequence {νkj }
Fk (n)
j=1 is Euler. So the above assumptions fall in

the framework of §4.1.

Remark 32 Note that under condition (I)

bk = E[
ϕk (1)∑
i=1

σki (1)] =
∞∑
i=1

E[σki ]P[ϕ
k(1) ≥ i]. (143)

Theorem 19 Assume that ρ < 1. Then, under condition (I),

(i) the sequence {W (n)} is the unique solution of (124);

(ii) one can define all the driving sequences on some probability space in such a way that the
sequence {VW[1,n]} coupling-converges to the sequence {W (n)}, for each initial condition V ,
i.e.

P[VW[1,l] = W (l), l = n, n + 1, . . .] → 1 (144)

as n→∞.

Proof Note that (ii) implies (i). Indeed, if W̃ (n) is another stationary sequence, then we can
consider the initial condition V = W̃ (0) (by this concise notation, we mean any network with
the same Γ process as the one generating W̃ (0)) and apply (ii). Then P[W̃ (l) = W (l), l = n, n +
1, . . .] → 1 as n→∞. But both of the sequences are stationary, so W̃ (n) = W (n) a.s.
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So the only property to prove is (ii). Let

pk,l = P(νk1 (1) = l), k, l = 0, . . . ,K,K + 1, (145)

where p0,0 = 0, pK+1,K+1 = 1 and pK+1,k = 0, for k ≤ K . Consider a discrete-time Markov
chain {R(m),m ≥ 0}, with state space {0, 1, . . . ,K,K + 1}, with initial value R(0) = 0 and with
transition matrix {pk,l}. Let

µk = ]{n ≥ 1 : R(n) = k} (146)

and
πk = Eµk. (147)

Note that the random variables µk and ϕk(1) have the same distribution, so πk < ∞ for all k =
1, . . . ,K .

In Foss [19]-[20], the following result is proved: for a given transition matrix {pk,l}, one can
define a matrix {p̃k,l} and a renumbering of the state space such that

1. p̃k,l = 0, for all 0 ≤ l ≤ k ≤ K + 1;

2. for all k, l if p̃k,l > 0 then pk,l > 0;

3. if R̃(n) is a Markov chain with initial value R̃(0) = 0 and with transition probabilities {p̃k,l},
then

P(µ̃k ≥ n) ≤ P(µk ≥ n), (148)

for all k = 1, . . . ,K and n = 1, 2, . . ..

For all k = 0, 1, . . . ,K define the constant

Ck = sup{0 ≤ C ≤ 1 : pk,l ≥ Cp̃k,l ∀l = 0, . . . ,K}. (149)

The above results imply that Ck is positive for all k. Finally, for each k, let hk be a positive
number such that hk < Ck .

We now return to our network. Our aim is to construct the sequence ν on a specific probability
space which is based on the above results. We first construct a sequence of mutually independent
r.v.’s

{ν̃kj (n), ν̄kj (n), βkj (n), k = 0, . . . ,K, j = 1, 2, . . . , n = 1, 2, . . .}

with the following law:

P(ν̃kj (n) = l) = p̃k,l;

P(βkj (n) = 1) = 1 − P(βkj (n) = 0) = hk ;

P(ν̄kj (n) = l) =
pk,l − hkp̃k,l

1 − hk
.

We assume this new sequence to be independent of {ζ(n)}. We now choose:

νkj (n) = β
k
j (n)ν̃

k
j (n) + (1 − βkj (n))ν̄kj (n).

For n = 1, 2, . . ., consider the network Σ̃[1,n] with driving sequence ξ̃(i) ≡ {ζ(i), {ν̃kj (i)}} and let

V Σ̃[1,n] = V + Σ̃[1,n],
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where V is supposed to be such that VW ≤W (0, C) a.s. Since non-initial customers have acyclic
routes and since the traffic intensity is less than 1, then (see Foss [19]) there exists an a.s. finite,
positive integer-valued r.v. ζ such that, for all n

W̃[1,n] = V W̃[1,n] = W (0,C)W̃[1,n] a.s. (150)

on the event {n ≥ ζ}. Let
L = min{n ≥ 1 : P(ζ = n) > 0}.

Then the event

A ≡ {ζ = L}
⋂
{βkj (i) = 1, i = 1, . . . , L, k = 0, . . . ,K, j = 1, . . . , ϕ̃k(i)}

has a positive probability. Therefore the events {{ζ ≤ n}
⋂
{θnA}, n = 1, 2, . . .} form a se-

quence of renovating events for the sequence {VW[1,n]}, and the statement of the theorem follows
from Theorem 3 of Borovkov and Foss [12] or of Foss [19].

8 Appendix

8.1 Appendix A: The Geometry of Routes

Case N = 1

Lemma 11 Let r = (r1, . . . , rϕ−1,K +1) be a successful route and G be the E.O.D.G. generated by
r. Choose k ∈ {1, . . . ,K} such that dk > 0. Consider the path r̃ starting from k, r̃ = (r̃1, . . . , r̃m).
Then r̃ is an admissible route.

Proof The path from node k is also the sequence of nodes produced by Procedure 2 with input
(G, k) (because G has a single route); we will refer to an object associated with Gkt in this proce-
dure by adding the subscript t. For all t and l ∈ {1, . . . ,K}, clt = dlt (see Remark 6). Assume that
the path originating from k ends in node l 6= K + 1. This means that there exists an integer t such
that dlt = 1 and clt = 1, while dlt+1 = 0 and clt+1 = 0, which is only possible via a k-reduction if l = k.

Lemma 11 shows that there are actually only two types of paths: circuits and routes ending in
K + 1. We shall study their structure in each case, in Lemmas 12 to 15 below. In what follows,
we will denote Ĝk the k-sequential residual of G (the k superscript will be omitted when non-
ambiguous) .

Lemma 12 If the path r̃ of Lemma 11 is a simple circuit of length m (i.e. r̃i 6= r̃j for all 1 ≤ i, j <
m, i 6= j and r̃m = r̃1), then we can find l ∈ {1, . . . ,K} such that r̃i = l for some i ∈ {1, . . . ,m− 1}
(i.e. l belongs to the path r̃), and such that the route r can be represented under the form:

r = (r1, . . . , ra, . . . , rb, . . . , rϕ,K + 1)

where ra = rb = l and (ra, . . . , rb) is a cyclic permutation of r̃:

(ra, . . . , rb) = (r̃i, r̃i+1, . . . , r̃m−1, r̃1, . . . , r̃i−1, r̃i).
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Proof Let A be the set of nodes in the sequence {r̃i}m−1i=1 . Let a = min{n : rn ∈ A} and l = ra = r̃i.
¿From the definition of a path, ra+j = r̃i+j , for 0 ≤ j ≤ m − 1 − i, and ra+j = r̃1+i−m for m − i ≤
j ≤ m− 1.

Corollary 19 The k-sequential residual Ĝ is an E.O.D.G. generated by the successful route

r̂ = (r1, . . . , ra, rb+1, . . . , rϕ−1,K + 1).

Lemma 13 If the path r̃ in Lemma 11 is such that r̃i 6= r̃j for all 1 ≤ i, j, < m and r̃m = K + 1, then
we can find an integer a such that

r̃ = (ra, ra+1, . . . , rϕ−1,K + 1).

In addition, the k-sequential residual Ĝ is an O.D.G. generated by the route

r̂ = (r1, . . . , ra),

which is a circuit.

Proof Define A, a and l as in the proof of Lemma 12. From the definition of the path, ra+j = r̃i+j
for 0 ≤ j ≤ m− i. In particular, ra+m−i = r̃m = K + 1. But ϕk > 0. So l = k and r̃1 = ra . The fact
that r̂ is a circuit follows from Lemma 11.

Lemma 14 If r̃ is a general circuit (i.e. a path such that r̃m = r̃1), then we can find finite integers
l ≥ 1 and

a1 < b1 ≤ a2 < b2 ≤ . . . ≤ al < bl < ϕ

such that rai = rbi and such that the associated k-sequential residual Ĝ is an E.O.D.G. generated
by the successful route

r̂ ≡ (r1, . . . , ra1 , rb1+1, . . . , ra2 , rb2+1, . . . , ral
, rbl+1, . . . , rϕ−1,K + 1). (151)

Proof The proof is by induction on the length m of the path. For m = 2, the statement is clear,
because circuits of length 2 are necessarily simple. Assume we proved the property for allm0 with
1 ≤ m0 < m. If r̃ is a simple circuit, then the statement is true from Lemma 12 and Corollary 19.
Otherwise let α and β be the smallest integers such that 1 ≤ α < β and such that (r̃α, r̃α+1, . . . , r̃β )
is a simple circuit; the circuit r̃′ ≡ (r̃α, r̃α+1, . . . , r̃β ) is necessarily the prefix of a path of G. Let
Ĝ′ be the (r̃α, (β − α + 1))-sequential residual of G. Using the same arguments as in Lemma 12,
we obtain that Ĝ′ is an E.O.D.G. generated by a route of the form

r̂′ = (r1, . . . , ra, rb+1, . . . , rϕ−1,K + 1) ≡ (r′1, . . . , r
′
ϕ′−1,K + 1), (152)

where (ra, . . . , rb) is a cyclic permutation of (r̃α, . . . , r̃β ) and ra = rb. Corollary 19 also implies
that r̃′′ ≡ (r̃1, . . . , r̃α, r̃β+1, . . . , r̃m) is a path of length m′′ < m for the E.O.D.G. Ĝ′. ¿From the
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induction assumption, the r̃1-sequential residual of Ĝ′ is an E.O.D.G. generated by a route r̂′′ of
the form given in (151), namely.

r̂′′ ≡ (r′1, . . . , r
′
a′1
, r′b′1+1

, . . . , r′a′2
, r′b′2+1

, . . . , r′a′
l
, r′b′

l
+1, . . . , r

′
ϕ′−1,K + 1), (153)

where r′a′
i
= r′b′

i
for all i. Equations (152)-(153) show that the property holds for all circuits of

length m.

Lemma 15 If r̃ is such that r̃m = K + 1, then we can find finite integers l ≥ 1 and ai, bi , i = 1, . . . , l
such that

rai
= rbi

∀i = 1, . . . , l − 1,

and such that the residual graph Ĝ is an O.D.G. generated by the route

r̂ ≡ (r1, . . . , ra1 , rb1+1, . . . , ra2 , rb2+1, . . . , ral
).

In general, this route is not admissible.

Proof The proof follows from Lemmas 13-14 and from induction arguments.

Case N = 2

Lemma 16 Theorem 3 holds true for N = 2.

Proof Let G be an E.O.D.G. with a two route generator R = (r(1), r(2)), where r2(1) = l1 and
r2(2) = l2 . Let G′ be the 0, σ-permutation of G, with σ(1) = 2, σ(2) = 1. We show that G′ is
an E.O.D.G. by constructing the two routes r̃(1) and r̃(2) which generate G′. If l1 = l2 , then we
take r̃(1) = r(1) and r̃(2) = r(2). Otherwise let L = (L1, . . . , Lm) be the path of G originating
from node L1 = l2 . Let d′

k and c′k count the number of arcs from and to node k = 1, . . . ,K + 1,
excluding those coming from node 0. We have d′k = c′k for all k /∈ {l1, l2}, and d′k = c′k + 1 for
k ∈ {l1, l2}; so Lm = K + 1 necessarily. We take r̃(1) = L. In order to define r̃(2), consider the last
arc (Lm−1, Lm) of L. There are two possibilities:

• (a) This arc belongs to the route r(2).
If the arc (L1, L2) belongs to r(1), Lemma 12 implies that we can find an integer q ≥ 2 such
that Lq = L1 and all the arcs (L1, L2), (L2, L3), . . . , (Lq−1, Lq ) belong to r(1), and (Lq, Lq+1)
belongs to r(2).
If for some p ≥ 2, (Lp−1, Lp) belongs to r(2) and (Lp, Lp+1) belongs to r(1), then we can also
find an integer q ≥ p + 1 such that the arcs (Lp, Lp+1), (Lp+1, Lp+2), . . . , (Lq−1, Lq) all belong
to r(1) and Lp = Lq , while (Lq, Lq+1) belongs to r(2).

So, whatever the initial arc of L, the sequence of arcs of path L is composed of circuits
which all belong to r(1) and of certain sequences of arcs belonging to r(2).

We now prove that in fact all the arcs belonging to r(2) also belong to L. Consider the first
arc of r(2) (remember that this arc originates in L1). If it does not belong to the sequence
of arcs of L, what precedes implies that the path L has to return to L1 infinitely often; since
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ϕ(1) is finite, this is not possible. Thus, the first arc of r(2) belongs to L. The same argument
is applicable (by induction) to all arcs belonging to r(2).

Let Ĝ be the 0-sequential residual of G′ . Thus the set of arcs of Ĝ consists of all arcs
of route r(1) but for a finite number of circuits. It follows from Lemma 14 and from an
immediate induction argument that Ĝ is an E.O.D.G. generated by some successful route
r̃(2) originating from node l1 .

• (b) This arc belongs to route r(1).
If the path L only consists of arcs which belong to r(1), then L is a path from l2 to K + 1,
and we prove from Lemma 15 that the 0-sequential residual of G′ is then a successful route
r̃(2) made of the concatenation of two paths: (i) a set of arcs, all belonging to r(1), starting
with nodes 0 and l1 , and ending in node l2 ; (ii) route r(2).

Assume now that there exists an integer q ≥ 2 such that (Lq−1, Lq ) belongs to r(2) and
(Lq+i, Lq+i+1) to r(1), for all i ≥ 0; i < m − q. For the same reasons as in (a), the arcs
(Lj−1, Lj ), j ≤ q, which belong to r(1), form a finite number of circuits. We prove as
above that the set of the arcs which belong to r(1) and not to L is generated by some route
r̆(1) ≡ (r̆1(1), . . . , r̆n(1)), the form of which is given by Lemma 15. We have in particular
r̆1(1) = l1 and r̆n(1) = Lq .

Concerning the arcs of L which belong to r(2), as in case (a), simple induction arguments
show that we can find a number p such that all the arcs (r1(2), r2(2)), . . . , (rp−1(2), rp(2))
(and only these arcs of r(2) ) belong to L. Moreover, rp(2) has to be equal to Lq .

We take r̃(2) = (r̆1(1), . . . , r̆n(1), rp+1(2), . . . , rϕ(2)−1(2),K + 1).

Proof of Theorem 3

Fix n ∈ {1, . . . , N}. We shall show that if there exists a generator R = (r(1), . . . , r(N )) for G, then
there exists a generator R̃ = (r̃(1), . . . , r̃(N )) for the (0, σ)-permutation of G, where σ(1) = n. The
statement of Theorem 3 follows by induction. We define R̃ as follows:

• take r̃(j) = r(j) for all j 6= n, j 6= n− 1;

• consider the E.O.D.G. G′ with generator (r(n− 1), r(n)) and use Lemma 16.

8.2 Appendix B: More on First-Order Ergodic Theorems

For j = −F k(−n) + 1, . . . , 0 let
ψkj,[−n,0] (154)

be the epoch of the completion of the j-th service on station k in Σ[−n,0] and let

Zk[−n,0] = ψ
k
0,[−n,0] − t(0) (155)
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be the moment of the completion of the last service on station k in Σ[−n,0] (with the convention
that = −∞ if F k[−n,0] = 0); similarly, for l ≤ n, let

Zk−l,[−n,0] = ψ
k
−Fk
−l
,[−n,0] − t(0) (156)

(= −∞ if F k(−n) = F k(−l)),
Z−l,[−n,0] = max

1≤k≤K
Zk−l,[−n,0] (157)

and

S[m,n] =
n∑
j=m

S(j). (158)

Note that
Z[−n,0] = max

1≤k≤K
(Zk[−n,0])

+

and that
(Z−l,[−n,0])

+ ≤ Z[−n,0].

Lemma 17 For all 0 ≤ l ≤ n

Z[−n,0] ≤ (Z−l,[−n,0])
+ + S[−l,0] (159)

Proof The case Z[−n,0] = 0 is trivial. Assume that Z[−n,0] > 0. At each instant of the time
interval (0, Z[−n,0]) at least one customer is being served. In addition, from time (Z−l,[−n,0])+ on,
the services completed on station k have an index larger than (−F k(−l) + 1), for all k = 1 . . . ,K .
Since (Z−l,[−n,0])+ ≥ 0, Z[−n,0] − (Z−l,[−n,0])+ is bounded from above by S[−l,0] .

Corollary 20 If P(A) = 1 then, for all fixed l ≤ n, Z−l,[−n,0] →∞ a.s. as n tends to∞.

Proof Let β = min{n ≥ 0 : Z−l,[−n,0] ≥ 0}. Then (Z[−n,0] − Z−l,[−n,0])I (n ≥ β) ≤ S[−l,0] a.s.. In
particular,

Z[−n,0] − Z−l,[−n,0]
g(n)

→ 0 (160)

a.s. as n→∞ for any function g(n) such that lim g(n) = ∞.

Corollary 21 Let l = l(n) be some non-decreasing (possibly random) integer-valued function of
n such that l(n)/g(n) → 0 (a.s.) as n→∞, for g as above. Then

(Z[−n,0] − Z−l(n),[−n,0])I (Z−l(n),[−n,0] ≥ 0)I (l(n) ≤ n)/g(n) → 0 (161)

a.s. as n tends to ∞. In particular, if l(n) = l with l random, then P(A) = 1 implies that
Z−l,[−n,0] →∞ a.s. and in addition,

lim sup(Z[−n,0] − Z−l,[−n,0]) ≤ S[−l,0] (162)

a.s. as n tends to∞.
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Proof If l(∞) ≡ limnl(n) is finite, then the result follows from Corollary 20 and from monotonic-
ity properties. If l(∞) = ∞, then write

S[−l(n),0]
g(n)

=
S[−l(n),0]/l(n)

g(n)/l(n)
(163)

and since
S[−l(n),0]/l(n) → ES(0)

a.s. on the event {l(∞) = ∞}, we have

0 ≤ (Z[−n,0] − Z[−n,−l(n),0])I (Z[−n,−l(n),0] ≥ 0)I (l(n) ≤ n)

≤
(S[−l(n),0]/l(n))

g(n)/l(n))
I (l(n) ≤ n) → 0

a.s. as n tends to∞.

Assume now that
Eϕk,i(0) > 0 (164)

for all 1 ≤ k, i ≤ K . This property should be understood as some strong connectedness property
of the routing mechanism. For m ≥ 0, let

βi,k(m) = min{j > m : ϕi,k(−j) > 0} (165)

and
βk(m) = max

i
βi,k(m). (166)

Corollary 22 (Solidarity property) Under the condition (164), for each 1 ≤ k ≤ K, n ≥ m ≥ 0

(Z[−n,0] − Zk−m,[−n,0])I (βk(m) ≤ n)I (Z−βk (m),[−n,0] ≥ 0) ≤ S[−βk (m),0] (167)

a.s. In particular, if P(A) = 1 then

lim sup(Z[−n,0] − Zk−m,[−n,0]) ≤ S[−βk (m),0] (168)

a.s. as n→∞ for all m ≥ 0 and k = 1, . . . ,K and

(Z[−n,0] − Zk−m,[−n,0])/g(n) → 0 (169)

for all g(n) such that g(n) →∞. In particular,

lim
n
Zk−m,[−n,0]/n = γ a.s. (170)

for all k and m, where γ is the constant defined in Theorem 11.

Proof The result follows from the inequality

(Z−βk (m),[−n,0] − Zk−m,[−n,0])I (βk(m) ≤ n) ≤ 0.
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8.3 Appendix C

Proof of

Y(mn+1,n)

n−mn
→ γ(0) in probability.

For 0 < δ < c, let

xn = [(c− δ)n]; yn = [(c + δ)n] + 1,

where [x] denotes the integer part of x. Let Hn = Y(mn+1,n)/(n−mn) − γ(0). For all ε > 0

P(|Hn| > ε) = P(Hn > ε) + P(Hn < −ε)

and for all 0 < δ < ε(1 − c)/(2γ(0) + ε)

P(Hn > ε) ≤ P(|mn

n
− c| > δ) + P(

Y(xn,n)

n− yn
> γ(0) + ε).

The last expression tends to 0 as n goes to∞, as it can be seen from the following relations:

Y(0,n−xn)

n− xn
→ γ(0);

n− xn
n− yn

→ 1 − c + δ
1 − c− δ

;

γ(0)
1 − c + δ
1 − c− δ

= γ(0)
1 + 2δ

1 − c− δ
< γ(0)(1 +

ε

γ(0)
) = γ(0) + ε.

P(Hn < −ε) → 0, by similar arguments.

Proof of

Z̃(1,mn)/n→ 0 in probability.

Note that Z̃(1,m) ≤ Z̃(m) a.s. for each m (see (110) and

Z̃(1,m+l) ≤ Z̃(1,m) + Z̃(m+1,m+l) ≤ Z̃(m) +
∑m+l

j=m+1
Z̃(j),

where Z̃(j) is a stationary and ergodic sequence with finite first moment EZ̃(1) ≡ h.

Therefore for all ε > 0, 0 < δ < min(c, ε/4h)

P(Z̃(1,mn)/n > ε) ≤ P(|mn/n− c| > δ) + P(maxxn≤l≤ynZ̃(1,l)/n > ε)

≤ P(|mn/n− c| > δ) + P({Z̃(xn) +
∑yn

j=xn+1
Z̃(j)}/n > ε)

≤ P(|mn/n− c| > δ) + P(Z̃(xn) > ε/2) + P(
∑yn−xn

j=1
Z̃(j) > ε/2).

The last expression tends to 0 as n goes to∞ because

P(Z̃(xn) > ε/2) = P(Z̃(1) > nε/2) → 0;

(
∑yn−xn

j=1
Z̃(j))/(yn − xn) → h;

yn − xn
n

→ 2δ < ε/2h.
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Future Work
The consequences of the construction that is proposed here will be investigated in a companion
paper which will primarily focus on the i.i.d case. We would also like to mention that these tech-
niques extend almost directly to the class of Petri nets defined in Baccelli, Cohen, Olsder and
Quadrat [5] (see Baccelli and Foss [7]).
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