# Stability of Polling Systems with State-Independent Routing 

Serguei Foss, ${ }^{*}$ Natalia Chernova ${ }^{\dagger}$ and Artyom Kovalevskii ${ }^{\ddagger}$


#### Abstract

This paper deals with the stability study of polling systems with either finite or infinite (countable) number of stations (queues) and with a finite number of servers that poll (visit) the stations along some random (state-independent) routes. First, we formulate "global" and "local" stability theorems for systems with a single server and with a general stationary ergodic input. Their proofs are based on certain monotone properties of underlying stochastic processes (see [15-17]). Second, we give a stability criterion for systems with several servers, with a finite number of stations and with i.i.d. driving sequences. The proof of the latter criterion (see [18]) is based on the fluid approximation approach.

Stability conditions for polling systems have undergone study rather recently (see, e.g., $[1-12]$ ) and all available papers deal with systems with finitely many stations and (except [2]) with either Poisson or renewal input.


Keywords: polling system, stability, stationarity, monotonicity, saturation rule, fluid approximation.

## §1. Systems with a Single Server: "Global" Stability

Our approach is based on ideas of the so-called saturation rule [13].
Introduce a polling system with $K \leq \infty$ stations. Let $\langle\Omega, \mathcal{F}, P\rangle$ be a probability space. All random variables below are considered on this space.

The input. By the input we mean a marked point process $T$ with points $T_{n}\left(T_{0}=0\right)$ and marks $\xi_{n}$. The sequence $\xi_{n}=\left(\tau_{n}, \mu_{n}, \sigma_{n}\right), n=0, \pm 1, \pm 2, \ldots$, is assumed stationary and ergodic. Here $\tau_{n}=T_{n}-T_{n-1}$ is the interarrival time between customer $(n-1)$ and customer $n, \mu_{n}$ is the number of the station to which customer $n$ is directed, and $\sigma_{n}$ is his service time.

Let $\mathbf{E} \tau_{1}=\lambda^{-1}$ be finite and positive; $\mathbf{E} \sigma_{1}=\sigma<\infty$; and $\mathbf{P}\left(\mu_{1}=k\right)=p_{k}>0$ for every $k=1,2 \ldots, \sum_{k=1}^{\infty} p_{k}=1$.

[^0]The server route. Assume to be given a sequence $\left\{\nu_{j}, w_{j}\right\}_{j=-\infty}^{\infty}$ of pairs of random variables, where the random variable $\nu_{j}$ takes values $1, \ldots, \infty$ and equals the number of the queue visited by the server $j$ th in succession and the random variable $w_{j} \geq 0$ is the walking time from queue $\nu_{j}$ to queue $\nu_{j+1}$. Suppose that the sequence $\left\{\nu_{j}, w_{j}\right\}$ can be partitioned into independent identically distributed (i.i.d.) segments of random length (cycles); i.e., there exists an increasing sequence of integer-valued random variables $\left\{j_{i}\right\}_{i=-\infty}^{\infty}$ such that the random vectors ("cycles of the route")

$$
\eta_{i}=\left(l_{i} ; \nu_{j_{i}+1}, \ldots, \nu_{j_{i+1}} ; w_{j_{i}+1}, \ldots, w_{j_{i+1}}\right), \quad i \in \mathbf{Z},
$$

are i.i.d. Here $l_{i}=j_{i+1}-j_{i}$ is the number of queues (stations) visited by the server in cycle $i$. Assume that the cycles start with visiting the same queue. For definiteness, let $\nu_{j_{i}+1}=1$ for all $i$. Denote by $c_{k}^{i}=I\left(\nu_{j_{i}+1}=k\right)+\ldots+I\left(\nu_{j_{i+1}}=k\right)$ the number of visits to queue $k$ in cycle $i$, where $\mathbf{P}\left(c_{k}^{1}>0\right)>0$ for all $k$, and denote by $\psi_{i}=w_{j_{i}+1}+\ldots+w_{j_{i+1}}$ the total walking time during the cycle.

Let $L=\mathbf{E} l_{1}<\infty, W=\mathbf{E} \psi_{1}<\infty$, and $C_{k}=\mathbf{E} c_{k}^{1}<\infty$ for all $k$. Assume the sequences $\left\{\eta_{i}\right\}$ and $\left\{\xi_{n}\right\}$ to be independent.

By a route of the server in the empty system we mean a marked point random process whose points are the starting times of the cycles and the distance between points equals the total walking time during the corresponding cycle.

Denote by $\Psi=\left\{\Psi_{i}, \eta_{i}\right\}$ the point process with points $\Psi_{i}$ and marks $\eta_{i}, i \in \mathbf{Z}$, in which $\Psi_{0}=0$ and $\Psi_{i}=\Psi_{i-1}+\psi_{i}$ is the finish time of cycle $i$ if the server moves in the empty system.

Consider also a stationary version (in continuous time) of the process $\Psi$ which we denote by $\Psi^{(1)}=\left(\Psi_{i}^{(1)}, \eta_{i}^{(1)}\right)_{i=-\infty}^{\infty}$. Assign the number 0 to the first positive point of this process, so that $\Psi_{0}^{(1)}>0 \geq \Psi_{-1}^{(1)}$ a.s.

Denote by $\Psi^{(-n)}, n \geq 0$, the stationary ergodic point process that is obtained from the process $\Psi^{(1)}$ by shifting each point to the left by the random variable $\sum_{j=-n}^{0} \sigma_{j}$ and is renumbered so that $\Psi_{0}^{(-n)}$ is its first positive point.

Since $\Psi^{(1)}$ and $\left\{\xi_{k}\right\}_{k=-\infty}^{\infty}$ are independent, for every $n \geq-1$ the process $\Psi^{(-n)}$ is independent of the sequence $\left\{\xi_{k}\right\}_{k=-\infty}^{\infty}$ and its distribution coincides with the distribution of $\Psi^{(1)}$.

The service policies. If the server, on visiting station $k$ at time $j$, finds $x$ customers in a queue, then it serves, without interruption, $f_{k}^{j}(x) \equiv f_{k}\left(x, D_{k}^{j}\right) \leq x$ customers in the FIFO order, and then moves to the next station of the route. Upon service completion, customers leave the system. Here (for every $k$ ) the random variables $D_{k}^{j}, j=0, \pm 1, \pm 2, \ldots$, are i.i.d. Suppose that the service policies satisfy the conditions $\mathbf{P}\left(f_{k}^{j}(1)=1\right)=\delta_{k}>0$ and $f_{k}^{j}(x) \leq x$ a.s. for all $x \in \mathbf{Z}^{+}, k=1, \ldots, K$, and belong to the class $M=\left\{f: f(x, y) \leq f(x+1, y) \leq f(x, y)+1\right.$ for all $\left.x \in \mathbf{Z}^{+}, y \in \mathbf{R}\right\}$. We call the class $M$ the class of monotone service policies. For the service policies in $M$, there always exists a (finite or infinite) limit

$$
F_{k}=\mathbf{E} \lim _{x \rightarrow \infty} f_{k}\left(x, D_{k}^{j}\right)=\mathbf{E} F_{k}\left(D_{k}^{j}\right) \leq \infty .
$$

Henceforth the number $[m, n]$ and the arguments $\Psi$ and $T=\left\{T_{k}\right\}$ in some characteristic of the system (queue length, exhaustion time, etc.) signify that the characteristic is
considered in the system that is governed by the route $\Psi$ of the server and to which only the customers with numbers $m \leq \ldots \leq n$ are submitted at respective times $T_{m} \leq \ldots \leq T_{n}$. By a nonempty cycle we mean a cycle during which there are customers in the system.

Denote by $X_{[m, n]}=X_{[m, n]}(T, \Psi)$ and $\widetilde{X}_{[-k, l]}=X_{[-k, l]}\left(T, \Psi^{(-k)}\right)$ the finish times of the last nonempty cycles in the corresponding systems.

Given two systems of the above-described type with (possibly) different arrival times of customers and the service policies, we shall write $T \leq T^{\prime}$ a.s., provided that $T_{n} \leq T_{n}^{\prime}$ a.s. for all $n$, and write $f \geq f^{\prime}$ a.s., provided that $f_{k}^{j}(x) \geq f^{\prime \prime}{ }_{k}(x)$ a.s. for all $k=1,2 \ldots$, $j=1,2, \ldots ; x \in \mathbf{Z}^{+}$.

The above objects enjoy the monotonicity property:
If $T \leq T^{\prime}$ and $f \geq f^{\prime}$ a.s. then

$$
X_{[m, n]}(T) \leq X_{[m, n]}\left(T^{\prime}\right), \quad \widetilde{X}_{[-k, l]}(T) \leq \widetilde{X}_{[-k, l]}\left(T^{\prime}\right)
$$

Introduce the following notations:

$$
\begin{gathered}
Z_{[m, n]}(T)=X_{[m, n]}(T)-T_{n}, \quad \widetilde{Z}_{[-n, m]}(T)=\widetilde{X}_{[-n, m]}(T)-T_{m}, \\
X_{1}(T)=X_{[1,1]}(T), \quad Z_{1}(T)=Z_{[1,1]}(T) .
\end{gathered}
$$

Assume the following condition to be satisfied:
$\left(A_{1}\right) \mathbf{E} X_{1}(T)<\infty$.
The condition $\left(A_{1}\right)$ is always valid for systems with finite number of stations.
Under condition $\left(A_{1}\right)$, we have
Lemma 1 (Law of Large Numbers). There exists a finite constant $\gamma \geq 0$ such that

$$
\begin{array}{cl}
\frac{Z_{[1, n]}}{n} \xrightarrow{\mathrm{p}} \gamma, & \lim _{n \rightarrow \infty} \frac{\mathbf{E} Z_{[1, n]}}{n}=\gamma ; \\
\frac{Z_{[-n,-1]}}{n} \xrightarrow{\mathrm{p}} \gamma, & \lim _{n \rightarrow \infty} \frac{\mathbf{E} Z_{[-n,-1]}}{n}=\gamma .
\end{array}
$$

Given an arbitrary $0 \leq c<\infty$, denote by $c T$ the process that consists of the points $\left\{c T_{i}\right\}, i \in \mathbf{Z}$, and the marks $\left(c \tau_{i}, \mu_{i}, \sigma_{i}\right)$. The monotonicity property and $\left(A_{1}\right)$ imply

Lemma 2 . For every $c \geq 0$, there exists a nonnegative constant $\gamma(c)$ such that

$$
\frac{Z_{[1, n]}(c T)}{n} \xrightarrow{\mathrm{p}} \gamma(c) ;
$$

moreover, $\gamma(c)$ decreases in $c$, whereas $\gamma(c)+c \lambda^{-1}$ increases in $c$.
Denote

$$
\gamma(0)=\lim _{c \searrow 0} \gamma(c)=\lim _{n} \frac{Z_{[1, n]}(0 \cdot T)}{n}
$$

Theorem 1. 1. $\gamma(0)=\sigma+\sup _{k} \frac{p_{k}}{F_{k} C_{k}} W$.
2. There exists $\lim _{n} \widetilde{X}_{[-n, 0]}$ in the sense of convergence a.s.
3. The event $\left\{\lim _{n} \widetilde{X}_{[-n, 0]}<\infty\right\}$ has probability 0 or 1 .
4. Let condition $\left(A_{1}\right)$ hold. If $\lim \widetilde{X}_{[-n, 0]}(T)=\infty$ a.s. then $\rho \equiv \lambda \gamma(0) \geq 1$. If $\rho>1$ then $\lim \widetilde{X}_{[-n, 0]}(T)=\infty$ a.s.

For the system governed by the process $\Psi^{(-n)}$, let $Q_{[-n, m]}^{k}(t)$ stand for the queue length at station $k$ at time $t ; \chi_{[-n, m]}^{k}(t)$, the residual service time at station $k$ at time $t ; \chi_{[-n, m]}^{0}(t)$, the residual interarrival time; $\eta_{[-n, m]}(t)$, the cycle of the route in which the server is at time $t$ (the random vector composed of the numbers of stations and the walking times between them); and $\varphi_{[-n, m]}(t)$, the residual (total) walking time of the server in the cycle $\eta_{[-n, m]}(t)$.

Set the corresponding quantities equal to zero if their values at time $t$ are not defined. All above characteristics are assumed right continuous. Put

$$
Y_{[-n, m]}=\left\{\left\{Q_{[-n, m]}^{k}(t)\right\}_{k=1}^{\infty},\left\{\chi_{[-n, m]}^{k}(t)\right\}_{k=0}^{\infty}, \eta_{[-n, m]}(t), \varphi_{[-n, m]}(t), 0 \leq t \leq T_{m}\right\} .
$$

Given random variables $X$ and $Y$ on the probability space $\langle\Omega, \mathcal{F}, P\rangle$, we call $X$ a copy of $Y$ if there exits a one-to-one measure-preserving $\mathcal{F}$-measurable shift transformation $\theta$ on $\Omega$ such that $X(\omega)=Y(\theta \omega)$ for all $\omega$.

We say that the process $\breve{X}(t)$ is Palm-stationary (with respect to the nested times $\left\{T_{n}\right\}$, where $\left.T_{0}=0\right)$ if for every $n$ the process $\left\{\breve{X}^{n}(t)=\breve{X}\left(t+T_{n}\right), t \geq 0\right\}$ is a copy of the process $\{\breve{X}(t), t \geq 0\}$.

For the process $\{\breve{X}(t), \infty \leq t \leq \infty\}$ and for any $m=1,2, \ldots$, put $\breve{Y}^{m}=\{\breve{X}(t), 0 \leq$ $\left.t \leq T_{m}\right\}$.

Denote by $Q_{n}^{k}=Q_{[1, n]}^{k}\left(T_{n}\right)$ the queue length at station $k$ at time $T_{n}$ in the polling system governed by the process $\Psi$, set $\vec{Q}_{n}=\left\{Q_{n}^{k} ; k=1,2, \ldots\right\}$. Let $Q_{n}=\sum_{k=1}^{\infty} Q_{n}^{k}$ stand for the total queue length.

Theorem 2 . Assume that condition $\left(A_{1}\right)$ holds.

1. If $\rho<1$ then, on the probability space $\langle\Omega, \mathcal{F}, P\rangle$, there exists a Palm-stationary process $\{\breve{X}(t), \infty \leq t \leq \infty\}$ such that for every $m=1,2, \ldots$ there is a sequence $\left\{\breve{Y}^{n, m}\right\}_{n=1}^{\infty}$ of copies of the process $\breve{Y}^{m}$ for which

$$
\mathbf{P}\left(Y_{[-n, m]} \neq \breve{Y}^{n, m}\right) \rightarrow 0 \quad \text { as } \quad \mathrm{n} \rightarrow \infty
$$

In particular, there exists s stationary sequence $\left\{\vec{Q}^{(n)} ; \infty<n<\infty\right\}$ such that

$$
\mathbf{P}\left(\vec{Q}_{n}=\vec{Q}^{(n)}\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
2. If $\rho>1$ then there exists $k<\infty$ such that $\sum_{j=1}^{k} Q_{n}^{j} \rightarrow \infty$ a.s. as $n \rightarrow \infty$.

Remark 1. It is noteworthy that the existence of the Palm version of a stationary process implies the existence of a stationary process in continuous time (and vice
versa) and some formulas are known that connect the distributions of these marked point processes (see, for instance, [14]).

Remark 2. Extend the class of the service policies under consideration as follows: Let $\widehat{B}=\left\{f\right.$ : for every $y$ there is $\left.\lim _{x \rightarrow \infty} f(x, y)=F(y) \leq \infty\right\}$ and $B=\{f$ : for every $y$ there is $\lim _{x \rightarrow \infty} f(x, y)=F(y) \leq \infty, f(x, y) \leq F(y)$ for all $\left.y \in \mathbf{R}, x \in \mathbf{Z}^{+}\right\}$.

It is easy to see that $M \subset B \subset \widehat{B}$. For the service policies in the class $\widehat{B}$, there exists

$$
F_{k}=\mathbf{E} \lim _{x \rightarrow \infty} f_{k}\left(x, D_{k}^{j}\right)=\mathbf{E} F_{k}\left(D_{k}^{j}\right) \leq \infty .
$$

Theorem 3 Consider a system with service policies in the class $\widehat{B}$. If $\rho<1$ then $Q_{n}$ is bounded in probability; i.e.,

$$
\lim _{x \rightarrow \infty} \sup _{n} \mathbf{P}\left(Q_{n}>x\right)=0
$$

Theorem 4 Consider a system with policies in the class B. If $\rho>1$ then there exists $k<\infty$ such that $\sum_{j=1}^{k} Q_{n}^{j} \xrightarrow{\mathrm{p}} \infty$ as $n \rightarrow \infty$.

The claim of Theorem 4 fails (in general) for systems with policies in the class $\widehat{B}$.

## §2. Systems with a Single Server: "Local" Stability

Consider a model with $K<\infty$ stations. Assume that $\rho>1$, i.e. the "global" system is unstable. The problem is: do some stable station still exist? We give a positive answer on this question, but under slightly more restrictive assumptions on distributions of driving sequences.

Assume that service time at each station $k$ form a stationary ergodic sequence $\left\{\sigma_{n}(k)\right\}$ with finite mean $\sigma(k)$, all these sequences are mutually independent and do not depend on the sequence $\left\{\left(\tau_{n}, \mu_{n}\right)\right\}$. Put $a_{k}=\frac{p_{k}}{F_{k} c_{k}} \geq 0$ and permit stations in such an order that

$$
a_{1} \leq a_{2} \leq \ldots \leq a_{K}
$$

For $k=1, \ldots, K$, set

$$
\rho_{k}=\lambda\left(\sum_{j=1}^{k} \sigma(j) p_{j}+a_{k}\left(W+\sum_{j=k+1}^{K} \sigma_{j} p_{j} F_{j} C_{j}\right)\right)
$$

(here $0 \times \infty=0$ ). Note that $\rho_{k} \leq \rho_{k+1}$ for all $k$, and $\rho_{K}=\rho$.
Theorem 5 If $\rho_{k}<1$ for some $k=1, \ldots, K$, then there exists a stationary $k$ dimensional sequence $\left\{\vec{Q}^{(n)}(k)\right\}$ such that

$$
\mathbf{P}\left(\left(Q_{n}^{1}, \ldots, Q_{n}^{k}\right)=\vec{Q}^{(n)}(k)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Under assumption $\left(A_{1}\right)$, a similar result takes place for systems with infinite number of stations. One can formulate natural analogs of Theorem 1-4 also.

## §3. Systems with Finite Number of Stations and with Several Servers

Consider a model with $K<\infty$ stations. Assume that interarrival times $\left\{\tau_{n}\right\}$ form an i.i.d. sequence with mean $\lambda^{-1}$, each customer (independently of everything else) is sent to station $k=1, \ldots, K$ with probability $p_{k}$. Each server has its own regenerative routing mechanism and service policies. All service policies are assumed to be limited: $F_{k}^{(m)}<\infty$ for any server $m$ and for any station $k$. Within one cycle, a server $m$ visits any station $k$ a random number of times with finite mean $C_{k}^{(m)}$, and its mean cycle walking time is $W^{(m)}$.

Theorem 6 Assume interarrival times to have an unbounded distribution. Then the model is stable if and only if $\tilde{\rho}<1$.

The "unboundedness" assumption may be weakened variously. Here $\tilde{\rho}=\lambda \sum_{r=1}^{R} \beta^{(r)}$, and $R$ and $\beta^{(r)}, r=1, \ldots, R$ are defined by the following recursive procedure.

For $1 \leq i, j \leq K, 1 \leq m \leq M$, put

$$
\varphi_{i, j}=\sum_{m=1}^{M} \frac{F_{i}^{(m)} C_{i}^{(m)}}{W^{(m)}+\sum_{1}^{j} \sigma_{k}^{(j)} F_{k}^{(j)} C_{k}^{(j)}} .
$$

Set

$$
p_{i}^{(1)}=p_{i} ; \varphi_{1}^{(i)}=\varphi_{i, K} ; \alpha_{i}^{(1)}=\frac{p_{i}^{(1)}}{\varphi_{i}^{(1)}} ; \beta^{(1)}=\min _{1 \leq i \leq K} \alpha_{i}^{(1)}
$$

Take $K(1)=K$. Assume that, for some $k \geq 1$, we have previously defined $K(1)>$ $K(2)>\ldots>K(r) \geq 1$ and, for $1 \leq k \leq r, 1 \leq i \leq K(k)$, we know the values of $p_{i}^{(k)}, \varphi_{i}^{(k)}, \alpha_{i}^{(k)}$ and $\beta^{(k)}=\min _{i} \alpha_{i}^{(k)}$.

Permit a sequence $\{1,2, \ldots, K(r)\}$ in such a way that (after permutation)

$$
\alpha_{1}^{(r)} \geq \alpha_{2}^{(r)} \geq \ldots \geq \alpha_{K(r)}^{(r)}
$$

If $\alpha_{1}^{(r)}=\alpha_{K(r)}^{(r)}$, then stop with the procedure and put $R=r$. Otherwise, set

$$
K(r+1)=\max \left\{l: \quad \alpha_{l}^{(r)}>\alpha_{l+1}^{(r)}\right\}
$$

and, for any $1 \leq i \leq K(r+1)$, put

$$
\begin{array}{r}
p_{i}^{(r+1)}=\varphi_{i}^{(r)}\left(\alpha_{i}^{(r)}-\alpha_{K(r)}^{(r)}\right) ; \varphi_{i}^{(r+1)}=\varphi_{i, K(r+1)} ; \\
\alpha_{i}^{(r+1)}=\frac{p_{i}^{(r+1)}}{\varphi_{i}^{(r+1)}} ; \beta^{(r+1)}=\min _{i} \alpha_{i}^{(r+1)} .
\end{array}
$$

## References

[1] H. Lévy, M. Sidi, and O. J. Boxma, "Dominance relations in polling systems," Queueing Systems, 6, 155-171 (1990).
[2] L. Massoulie, "Stability of nonmarkovian polling systems," in: Abstracts: Proc. Conf. Appl. Probab., Paris, 1993. (Submitted to Queueing Systems.)
[3] A. A. Borovkov and R. Schassberger, "Ergodicity of a polling network," Stochastic Process Appl., 50, 253-262 (1994).
[4] S. Foss and G. Last, "On the stability of greedy polling systems with exhaustive service policies," in: Technical Report 18/94, Technical University Braunschweig, 1994. (To appear in Ann. Appl. Probab.)
[5] S. Foss and G. Last, "On the stability of greedy polling systems with general service policies," in: Technical Report 6/95, Technical University Braunschweig, 1995.
[6] C. Fricker and M. R. Jaibi, "Monotonicity and stability of periodic polling models," Queueing Systems, 15, 211-238 (1994).
[7] L. Georgiadis and W. Szpankowski, "Stability of token passing rings," Queueing Systems, 11, 7-34 (1992).
[8] D. P. Kroese and V. Schmidt, "A continuous polling system with general service times," Ann. Appl. Probab., 2, 906-927 (1992).
[9] D. P. Kroese and V. Schmidt, "Single-server queues with spatially distributed arrivals," Queueing Systems, 17, 317-345 (1994).
[10] R. Schassberger, "Stability of polling networks with state-dependent server routing," in: Technical Report 12/93, Technical University Braunschweig, 1993.
[11] V. Sharma, "Stability and continuity of polling systems," Queueing Systems, 16, 115-137 (1994).
[12] H. Takagi, Queueing Analysis of Polling Systems in: Stochastic Analysis of Computer and Communications System, Hideaki Takagi (ed.), Elsevier Science Pub. HorthHolland (1990).
[13] F. Baccelli and S. Foss, "On the saturation rule for the stability of queues," J. Appl. Probab., 32, No. 2, 494-507 (1995).
[14] F. Baccelli and P. Bremaud, Elements of Queueing Theory, Springer, Berlin (1994).
[15] S. Foss and N. Chernova, "Comparison theorems and ergodic properties of polling systems," Preprint No. 6, Institute of Mathematics, Novosibirsk (1995) - to appear in Problems of Information Transmission (1996).
[16] S. Foss and N. Chernova, "On polling systems with infinitely many stations," Siberian Math. J., 37, 940-956 (1996).
[17] S. Foss and N. Chernova, "On a local stability in polling models" (in preparation).
[18] A. Kovalevskii and S. Foss, "Stability of polling models with many servers" (in preparation).


[^0]:    *ColoState University and Novosibirsk State University, foss@stat.colostate.edu and foss@math.nsc.ru
    ${ }^{\dagger}$ Novosibirsk State University, root@cher.nsu.ru
    ${ }^{\ddagger}$ Novosibirsk State University, artyom@math.nsc.ru

