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We consider a class of polling systems with stationary ergodic input flow such that the control in a system
obeys a certain regeneration property. For this class, necessary and sufficient conditions for the queue-length
process to be bounded in probability are found. Under these conditions, we prove that a stationary regime
exists and the queue-length process for a system that starts from the zero initial state converges to this regime.
In the proof, we use some monotonicity properties of the models considered and some dominance theorems
based on these properties.

1. Introduction

In the paper, we consider polling systems consisting of K message queues and one transmission device
(server) that moves from one queue to another along a random route. Messages entering the system form a
stationary ergodic input flow. The routing of the transmitter has a certain regeneration property. Namely,
in the sequence of transmitter transitions and queue-to-queue switching times, independent and identically
distributed parts can be selected. These parts are called cycles.

In one visit of the transmitter to the kth queue, fk(x) messages are transmitted, where x is the length
of this queue at the time instant of the transmitter arrival. The conditions imposed on the transmission
policy of fk messages are stated in Sec. 2; analogous conditions are also presented in [1, 2].

In the paper, some monotonicity properties of the models considered are proved. Based on them,
necessary and sufficient conditions for the queue-length process to be bounded in probability are proved.
Under these conditions, we prove that a stationary regime exists and the queue-length process for a system
that starts from the zero initial state converges to this regime.

Let λ be the intensity of the input flow, pk be the probability that an input message is sent to the kth
queue, σ be the mean time of the message transmission, Fk = lim

x→∞
fk(x), Ck be the mean number of visits

to the kth queue over a cycle, W be the mean total switching time over a cycle (for precise definitions, see
Sec. 2). Under the condition

λ

[
σ +max

k

pk
FkCk

W

]
< 1, (1)

we show the so-called coupling-convergence to the stationary regime of the queue-length process (see Sec. 6).
If, conversely, the traffic on the left-hand side of (1) is strictly greater than 1, the queue length in the system
infinitely grows in probability.

The study of ergodicity conditions for polling systems started quite recently. In almost all papers known
to us (except [2]), models with Poissonic input flow and i.i.d. times of message transmission and switching
are studied.
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For example, in [3–5], ergodicity of various polling models is studied, for which the server routing is
controlled by a matrix of transition probabilities, and transmission policies depend on a random variable.

Markovian polling systems for which the server routing does not depend on the system state (as in
the present paper) but the input calls are distributed on the unit circle according to a continuous law are
studied in [6–9].

In [10–14], various Markovian polling systems are studied, for which the server routing depends on the
system state and is determined by a “greedy” (“locally optimal”) strategy.

Properties of stationary polling systems are also discussed in [15, 16].
In [2], a polling system with stationary ergodic input flow is considered, for which the server routing

forms a Markov chain. The existence of a stationary regime is proved provided the condition below holds:

λ

[
σ +

K∑
k=1

pk
Fkπk

w

]
< 1,

where {πk, 1 ≤ k ≤ K} is the stationary distribution of the corresponding Markov chain, and w is the mean
station-to-station switching time in the stationary regime. One can easily see that the above condition is
sufficient, but not necessary, for the ergodicity.

In the present paper, we prove that the condition (1) is sufficient for the queue-length process to be
bounded in probability for a polling system with considerably more general conditions on the transmission
policy than those of [2].

In Sec. 2, basic definitions and statements are presented. In Sec. 3, for a determinate version of a polling
system, some monotonicity properties of system characteristics are established as functions of arrival times
of messages in the input flow. A determinate polling system can be considered as a realization of a stochastic
system described in Sec. 2 on one elementary event. The main result of Sec. 4 is the necessity and sufficiency
of the condition (1) for the exhausting time of the system and the queue length to be bounded. In the proof,
methods presented in [17] are used. The constants involved in (1) are computed in Sec. 5. Section 6 deals
with the proof of the existence of a stationary regime. Possible generalizations of the model are contained
in Sec. 7. In the Appendix, some auxiliary statements are presented; in particular, the result on “random
subadditive” subsequences that generalizes the results of [18, 19].

2. Description of systems and basic statements

We consider a polling system consisting of a finite number K of queues with an arbitrarily large number
of waiting positions in each queue and one transmission server. Messages enter the system in a common
input flow. The server moves from one queue to another according to a random route.

Input flow. A message with number n, n = 0,±1,±2, . . . , arrives at a time instant Tn = Tn−1 + τn,
T0 = 0, and is sent to the queue with number µn; σn is its transition time. Denote ξn = (τn, µn, σn),
n ∈ Z. The sequence {ξn} is assumed to be stationary and metric-transitive. Let Eτ1 = λ−1 <∞ and �= 0;

Eσ1 = σ <∞; P(µ1 = k) = pk > 0 for all k = 1, . . . ,K,
K∑
k=1

pk = 1.

Server routing. We assume that a sequence of pairs of random variables {νj, wj}∞j=−∞ is given, where
the random variable νj takes the values 1, . . . ,K and equals the number of the queue visited jth by the
server, and wj ≥ 0 is the time required for the switching from the queue νj to the queue νj+1. We assume
that the sequence {νj , wj} can be divided into i.i.d. parts of random lengths (cycles); namely, there exists
an increasing sequence of integer random variables {ji}∞i=−∞ such that random vectors

ηi =
(
�i; νji+1, . . . , νji+1 ;wji+1, . . . , wji+1

)
, i ∈ Z,

are i.i.d. Here �i = ji+1 − ji is the number of queues visited by the server during the ith cycle. Without
loss of generality, we assume that the cycles start with the visit to a certain fixed queue, say, number 1,
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i.e., νji+1 = 1 a.s. Let ψi = wji+1 + . . .+ wji+1 , W = Eψ1 < ∞ be the mean switching time over a cycle,
Ck = E(I(νj1+1 = k) + . . . + I(νj2 = k)) < ∞ be the mean number of visits to the kth queue over a
“typical” cycle, k = 1, . . . ,K. We also assume the sequences {ηi} and {ξn} to be independent.

Note that the assumption on the “cyclic” character of the sequence {νj} is valid, e.g., if this sequence
forms a homogeneous Markov chain. As cycles, parts of the chain trajectory between sequential returns to
a fixed station can be considered.

Cycles can be formed in different ways, say, can be determinate.
Consider a marked point random process, the points of which are the starting instants of the cycles

and the distance between points of which equals the total switching time during the corresponding cycle.
We call this process the server route in the empty system. We denote by Ψ the marked point process with
points Ψi and marks ηi, i ∈ Z, for which Ψ0 = 0, Ψi = Ψi−1 + ψi is the end instant of the ith cycle if the
server moves in the empty system.

Consider also the stationary (in continuous time) version of the process Ψ (we denote it by Ψ(1)), i.e.,
the stationary point process with the same marks and same distances between points as those of Ψ. Assign
the number 0 to the first positive point of this process. Then Ψ(1) is a stationary ergodic point process
with marks ηi, i ∈ Z, with point numeration such that Ψ(1)

0 is the first positive point of this process (jump
over t = 0). Let Ψ(−n), n ≥ 0, be a stationary ergodic point process obtained from Ψ(1) by shifting each

point of it by the random variable
0∑

j=−n
σj to the left and then by renumbering it such that Ψ(−n)

0 is its

first positive point.
Remark 1. It is easily seen that the distributions of the processes Ψ(−n) (n ≥ −1) coincide and these

processes do not depend on the input flow. For shifting the points of the process by a constant, this follows
from the stationarity, and for shifting by a random variable independent of the process, one should consider
conditional distributions with respect to this random variable.

We say that the process Ψ (Ψ(−n)) controls the polling system if the server starts working at t = −∞,
and in the empty system it moves from one queue to another according to this routing, i.e., the ith cycle
ends at instant Ψi (Ψ

(−n)
i ). If, however, there are messages in the system which wait for the transmission,

then each cycle is extended by the total transmission time during this cycle. In Sec. 4, to each routing
introduced above we relate a polling system controlled by this routing.

Message transmission policy. If in the kth queue there are x messages waiting at the instant of the
server arrival, then fk(x) ≤ x of them are transmitted and then the server switches to another queue of its
route. The transmitted messages leave the system. The function fk : Z

+ → Z
+ satisfying the conditions

fk(0) = 0, 1 ≤ fk(x) ≤ x for all x ≥ 1, k = 1, . . . ,K, is called the message transmission policy of the
queue k. We consider the following three classes of message transmission policies:

Â =
{
f : lim

x→∞
f(x) = F ≤ ∞ exists

}
,

A =
{
f : lim

x→∞
f(x) = F ≤ ∞ exists, sup

x
f(x) = F

}
,

M =
{
f : f(x) ≤ f(x+ 1) ≤ f(x) + 1 for all x ∈ Z

+
}
.

The class M is called the class of monotone transmission policies. Obviously, M ⊂ A ⊂ Â.
Denote by Qn the total queue length at an instant Tn in the polling system controlled by Ψ with

a “cut-off” input flow, i.e., the messages with numbers 1, . . . , n only enter the system at time instants
T1 ≤ . . . ≤ Tn, respectively. Denote by Qk[−n,0](t) the queue length at the kth station at an instant t in the
system controlled by Ψ(−n), which is entered by messages with numbers −n, . . . , 0 only (at time instants
T−n ≤ . . . ≤ T0 = 0 respectively). Denote by W k

[−n,0](t) the residual time of the message transmission in
the kth queue at a time instant t (in the same system). Put W k

[−n,0](t) = 0 if at an instant t the messages
of the kth queue are not transmitted.

All above-mentioned processes are assumed to be continuous on the right. The initial conditions are
assumed to be zero, i.e., before the first message of the input flow arrives, the system considered is empty.
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Denote

Fk = lim
x→∞

fk(x) ≤ ∞, ρ = λ
[
σ + max

1≤k≤K

pk
FkCk

W

]
.

In the paper, the statements below are proved.
For systems with transmission policies from class Â:

Theorem 1. If ρ < 1, then Qn is bounded in probability, i.e.,

lim
x→∞

sup
n
P(Qn > x) = 0.

For systems with policies from class A:

Theorem 2. If ρ > 1, then Qn
P→ ∞.

Finally, for systems with policies from class M :
Theorem 3. If ρ < 1, then a process {Qk(t),W k(t); k = 1, . . . ,K; t ≥ 0} and a.s. finite random

variables N, t0 exist such that
1. Qk[−n,0](t),W

k
[−n,0](t)}

a.s.= {Qk(t),W k(t)} for all n ≥ N , k = 1, . . . ,K, t ≥ 0;
2. Qk[−n,0](t) =W

k
[−n,0](t) = Q

k(t) =W k(t) = 0 a.s. for all k = 1, . . . ,K, t ≥ t0, n ≥ 0.

If ρ > 1, then Q[−n,0](0) =
K∑
k=1

Qk[−n,0](0)
P→ ∞.

Thus, for the polling systems under consideration with policies from class A, the condition ρ < 1 is
necessary and sufficient (up to the equality) for the total queue length to be bounded in probability. For
systems with policies from M , this condition ensures that a stationary regime exists and the queue-length
process converges to it.

Remark 2. The above statements can be naturally extended to the class of models for which
(1) the messages arrive in batches;
(2) transmission policies depend on a random variable;
(3) some (in particular, all) transmission policies have “exhaustive” character.
In more detail, these extensions are discussed in Sec. 7.

In Sec. 3, monotonicity properties of a determinate polling system are obtained. We also show that the
class M is in a certain sense “dense” in A; namely, any function from A can be pointwise upper and lower
bounded by functions from M with the same limit as x→ ∞. The proof of Theorems 1 and 2 is presented
in Sec. 4. We show that these statements hold for a system with a monotone transmission policy; here the
“density” of M in A is used. Theorem 3 is proved in Sec. 6.

3. Monotonicity properties

In this section, we consider the determinate case of a polling system, where all control sequences are
nonrandom. We assume that the input flow is “cut off,” i.e., only N messages enter the system. Assume
that the server starts working with the queue ν1 at a time instant t0. Assume also that, starting from t0,
the server switches between queues even if there are no messages in the system.

A message transmission policy is assumed to be a set of K sequences of functions f = {f(k), k =
1, . . . ,K}, where a sequence f(k) = {f jk}∞j=1 determines the (message transmission) policy in the queue k.
If the server, arriving at the queue k for the jth time, finds x messages in the queue, it transmits f jk(x) ≥ 0
messages in the FIFO order and then switches to the next queue of the route. The transmission of a message
being completed, the message leaves the system.

Remark 3. In this section, we admit that the policies in one queue may depend on the number of the
server visit to this queue (see Sec. 7).

Let for all k ∈ {1, . . . ,K}, j = 1, 2, . . . , the following conditions hold:
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(M1) If x ≤ y for x, y ∈ Z
+, then f jk(x) ≤ f

j
k(y);

(M2) If x ≤ y for x, y ∈ Z
+, then x− f jk(x) ≤ y − f

j
k(y).

The conditions (M1) and (M2) are presented in [1, 2] and are equivalent to the condition f jk(x) ≤
f jk(x+ 1) ≤ f jk(x) + 1 that determines the class M of monotone policies. The conditions (M1)–(M2) hold,
for example, for the following functions: f jk(x) ≡ x, f

j
k(x) = min(x, �j) for some �j ∈ N.

We assume that messages enter the system at time instants T1 ≤ . . . ≤ TN . Before T1 the system is
empty. The message with number n arrives at instant Tn, is sent to the queue with number µn, and has
the transmission time σn.

Put ν = {νj}∞j=1, w = {wj}∞j=1, µ = {µn}Nn=1, σ = {σn}Nn=1, T = {Tn}Nn=1. Denote such a system by
Σ = (N,T, µ, ν, w, σ, f).

Let Σ̃ = (N, T̃ , µ, ν, w, σ, f̃) be a polling system differing from Σ by instants of message arrivals and
message transmission policies only.

Monotonicity properties. For a system Σ, introduce the following notations: Uj is the instant of
the server arrival at the queue νj ; Vj is the instant where the transmission of messages from the queue νj
is completed and switching to the queue νj+1 starts, Uj+1 = Vj +wj , j = 1, 2, . . . ; Xk(u) is the number of
input-flow messages that have entered the queue k by a time instant u; W (u) is the total switching time
of the server over the time interval (t0, u); Rk(u) is the total working time of the server at the kth queue

over the same time interval, R(u) =
K∑
k=1

Rk(u); Sk(u) is the number of messages from the kth queue which

have been completely transmitted by a time instant u, S(u) =
K∑
k=1

Sk(u).

The corresponding parameters for the system Σ̃ are denoted by Ũj , etc. The parameters introduced

have the following properties: U1 = Ũ1 = t0, W (u) + R(u) = u − t0, W (Uj) = W̃ (Ũj) =
j−1∑
i=1

wi, and if

Sk(Vi) ≥ S̃k(Ṽj) for some i, j, k, then Rk(Vi) ≥ R̃k(Ṽj) since the messages are transmitted in the FIFO
order. Furthermore, W (u) and Rk(u) do not decrease in u.

Let τ (τ̃ ) be the end instant of the transmission of the last of N messages that entered the system Σ (Σ̃),
i.e., τ = inf(u : S(u) = N).

We use the notation T ≤ T̃ if Tn ≤ T̃n for all 1 ≤ n ≤ N , and f ≥ f̃ if f jk(x) ≥ f̃
j
k(x) for all k = 1, . . . ,K,

j = 1, 2, . . . ; x ∈ Z
+. The following statement is valid.

Theorem 4. If T ≤ T̃ , f ≥ f̃ , and the transmission policies f and f̃ satisfy the conditions (M1)–(M2),
then

1. Uj ≥ Ũj, Vj ≥ Ṽj , j = 1, 2, . . . ;
2. Sk(Uj) ≥ S̃k(Ũj), k = 1, . . . ,K, j ∈ N;
3. Sk(Vj) ≥ S̃k(Ṽj), k = 1, . . . ,K, j ∈ N;
4. τ ≤ τ̃ .
The proof of the statements 1–3 of the theorem is performed by induction on j.
Let j = 1. Denote νi = �. Since U1 = Ũ1 = t0, the queue lengths satisfy the inequality

x = X
(U1)
def=

N∑
n=1

I(Tn ≤ U1)I(µn = �) ≥
N∑
n=1

I(T̃n ≤ U1)I(µn = �) = X̃
(Ũ1) = y.

By (M1),

S
(V1)
def= f1


 (x) ≥ f̃1

 (x) ≥ f̃1


 (y)
def= S̃
(Ṽ1).

Therefore, R
(V1) ≥ R̃
(Ṽ1), and for the end time instants of the transmission of the first group of messages,
the relations

V1 = U1 +R
(V1) ≥ Ũ1 + R̃
(Ṽ1) = Ṽ1
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hold. For i �= �, evidently, Si(V1) = S̃i(Ṽ1) = 0.
Next, assume that the statements 1–3 of Theorem 4 are valid for the start and end time instants of the

server visit to the queue νj−1, j ≥ 2. Let us show their validity for the instants Uj , Vj . We have

Uj = Vj−1 + wj−1 ≥ Ṽj−1 + wj−1 = Ũj ,

Sk(Uj) = Sk(Vj−1) ≥ S̃k(Ṽj−1) = S̃k(Ũj).

Denote νj = �. If S
(Uj) = 0, then, repeating the arguments of the induction basis, we obtain the desired
statement. Consider the case S
(Uj) > 0 and assume that the server visits the queue � for the mth time,
m > 1.

Denote by x = X
(Uj)− S
(Uj) and y = X̃
(Ũj)− S̃
(Ũj) the lengths of the queue νj = � at the instant
of the server visit to this queue in corresponding systems. Note that X
(Uj) ≥ X̃
(Ũj) since Uj ≥ Ũj. Two
cases are possible, x ≥ y and x < y.

In the first case, fm
 (x) ≥ fm
 (y) ≥ f̃m
 (y). Therefore, we also have

S
(Vj) = S
(Uj) + fm
 (x) ≥ S̃
(Ũj) + f̃m
 (y) = S̃
(Ṽj).

In the second case, x < y implies that

z
def= S
(Uj)− S̃
(Ũj) ≥ y − x > 0.

But, according to (M2), fm
 (y)− fm
 (x) ≤ y − x ≤ z, i.e., fm
 (x) ≥ fm
 (y)− z ≥ f̃m
 (y)− z. Finally,

S
(Vj) = S
(Uj) + fm
 (x) ≥ S̃
(Ũj) + z + f̃m
 (y)− z = S̃
(Ṽj),

i.e., in both cases S
(Vj) ≥ S̃
(Ṽj) and, hence, R
(Vj) ≥ R̃
(Ṽj). Then

Vj = t0 +W (Uj) +R(Vj) = t0 +W (Uj) +
∑
i�=

Ri(Uj) +R
(Vj)

≥ t0 + W̃ (Ũj) +
∑
i�=

R̃i(Ũj) + R̃
(Ṽj)

def= Ṽj .

The last inequality completes the induction step, and it remains to show that τ̃ ≥ τ . Let τ = Vj ≥ Ṽj for
some j, S(Vj) = N = S̃(τ̃ ), R̃(τ̃ ) = R(Vj). Then

τ̃ = t0 +W. (τ̃ ) + R̃(τ̃ ) ≥ t0 + W̃ (Ṽj) + R̃(τ̃ ) = t0 +W (Vj) +R(Vj) = τ. 

Corollary 1. If, under the conditions of Theorem 4, for any k, j, only one of two functions f jk , f̃
j
k obeys

the monotonicity properties (M1) and (M2), i.e., belongs to M, then the assertion of Theorem 4 remains
valid.

Proof. It suffices to show that two inequalities hold:
(a) if x ≥ y, then f jk(x) ≥ f̃

j
k(y);

(b) if x < y, then f̃ jk(y)− f
j
k(x) ≤ y − x.

Indeed, let, say, f̃kj ∈ M . Then, in case (a), f jk(x) ≥ f̃ jk(x) ≥ f̃ jk(y); in case (b), f̃ jk(y) − f
j
k(x) ≤

f̃ jk(y)− f̃
j
k(x) ≤ y − x. 

Consider three polling systems (with the same input flow and server route) Σf , Σg, Σh which differ in
the sets of message transmission policies only, where for all k, j, x,

f jk(x) ≤ g
j
k(x) ≤ h

j
k(x),

and the sets of functions f and h satisfy the monotonicity properties (M1) and (M2). Under these conditions,
Theorem 4 and Corollary 1 imply the statement below.
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Corollary 2. Time instants of exhausting of the systems Σf ,Σg,Σh satisfy the inequality τf ≥ τg ≥ τh.
The validity of Corollary 2 is obvious due to Theorem 4 and Corollary 1. A direct proof can also be

found in [1].
Corollary 3. If, in the system Σg, for any k, j, one has gjk ∈ A, then functions f jk , h

j
k ∈ M can be

found such that
(a) f jk(x) ≤ g

j
k(x) ≤ h

j
k(x),

(b) Gjk = lim gjk(x) = lim f jk(x) = limhjk(x) as x→ ∞,
and for the systems Σf ,Σg,Σh with the same input flow and server route, Corollary 2 holds.

Proof. It suffices to prove that for any function g ∈ A there exist two functions f, h ∈ M with the
same limit G = lim g(x) = lim f(x) = limh(x) at infinity such that f(x) ≤ g(x) ≤ h(x) for all x ≥ 0.
As these “bounds,” one can take, for instance, h(x) = min{x,G} and f recursively constructed, f(1) = 1,
f(x+ 1) = min

{
f(x) + 1, inf

y≥x+1
g(y)

}
. 

Corollary 3 asserts that the exhausting time of the system Σg with all transmission policies from the
class A can be upper and lower “constrained” by the corresponding times for Σf and Σh with monotone
policies that have the same limits at infinity as those of Σg.

Remark 4. If, under the conditions of Corollary 3, gjk ∈ Â, then Corollary 3 remains valid if one
replaces (b) by (b′) as follows:

(b′) Gjk = lim gjk(x) = lim f jk(x) ≤ limhjk(x) as x→ ∞.

As a function hjk(x) ∈M , one can take min
{
x, sup

y
gjk(y)

}
.

4. Stochastic polling system

In this section, we study the behavior of polling systems under the assumptions and notations of Sec. 2.
The plan of reasoning and proofs is close to [17] with, however, certain significant distinctions. Thus, for
instance, the homogeneity property (Property 3 below) in [17] is assumed to hold a.s.

Let T = {Tn}∞n=−∞ be the input flow of a system, T0 = 0. We assume that message transmission
policies of each queue belong to the class M . For each server route Ψ, Ψ(1), Ψ(−n) (n ≥ 0) introduced in
Sec. 2, consider a polling system controlled by this route. We call a cycle nonempty if at least one message
is transmitted during it.

Introduce the following notations: X[m,n](T ) is the end instant of the last nonempty cycle in the system
controlled by Ψ with a cut-off flow, i.e., messages with numbers m, . . . , n only enter the system at time
instants Tm ≤ . . . ≤ Tn respectively; X̂[m,n](T ) is the end instant of the last nonempty cycle for the system
controlled by Ψ(1) with the same input flow; X̃[−k,
](T ) is the same moment for the system controlled by
Ψ(−k) (k ≥ 0) which is entered by messages with numbers −k,−k + 1, . . . , � only.

The parameters introduced have the following properties.
Property 1 (causality). For all m ≤ n, −k ≤ �, the inequalities below hold a.s.

X[m,n](T ) ≥ Tn, X̂[m,n](T ) ≥ Tn, X̃[−k,
](T ) ≥ T
.

Property 2 (outer monotonicity). If T ≤ T ′ a.s., then

X[m,n](T ) ≤ X[m,n](T ′), X̂[m,n](T ) ≤ X̂[m,n](T ′), X̃[−k,
](T ) ≤ X̃[−k,
](T ′).

The proof of Property 2 follows directly from Theorem 4, under the conditions of which we now find
ourselves. Let us prove, for example, the first inequality. Consider a realization of all control sequences of
random variables on one elementary event.

Let τ and τ ′ be the instants of the end of transmission of all messages that have arrived in the systems
under comparison (Σ and Σ′). By Theorem 4, τ ≤ τ ′. Assume that τ belongs to the ith cycle in the server
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operation in the system Σ and τ ′ belongs to the i′th cycle in Σ′. Note that the server routes in Σ and Σ′

coincide up to the instant Tm, and also after τ ′ since the same service R = σm + . . .+ σn is made, i.e., in
both systems the i′th cycle ends at the instant Ψi′ + R, and the ith cycle Σ ends at Ψi + R. Therefore,
i ≤ i′. Then, evidently, τ ≤ Ψi +R

def= X[m,n](T ) ≤ Ψi′ +R
def= X[m,n](T ′). 

Property 3 (homogeneity). For all c ∈ R, m ≤ n, −k ≤ �,

X̂[m,n](c+ T )
D= X̂[m,n](T ) + c, X̃[−k,
](c+ T )

D= X̃[−k,
](T ) + c

(equal in distribution).

Proof. It suffices to note that the distributions of processes Ψ(1) and Ψ(1) − c coincide. 
Property 4 (separability). If X̃[−k,−k+m](T ) ≤ T−k+m+1 a.s. for some k,m, l such that −k +m ≤ 0,

−k +m < �, then
X̃[−k,
](T ) = X̃[−k+m+1,
](T ).

Proof. Note that after the instant X̃[−k,−k+m](T ) the server moves in both systems according to the
route

Ψ(−k) +
−k+m−1∑
j=−k

σj
def= Ψ(−k+m),

and, starting from this instant, both systems operate a.s. identically. 
In what follows, the numbers 1–4 over equalities and inequalities denote references to the properties

proved above.
Introduce the notations Z[m,n](T )

def= X[m,n](T ) − Tn, Ẑ[m,n](T )
def= X̂[m,n](T ) − Tn, Z̃−k,
(T )

def=
X̃[−k,
](T )− T
.

Lemma 1 (inner monotonicity of X̃ and Z̃). For all integer −k ≤ �,

X̃[−k−1,
](T ) ≥ X̃[−k,
](T ) a.s .,

Z̃[−k−1,
](T ) ≥ Z̃[−k,
](T ) a.s .

Proof. Consider the input flow T ′ with points

T ′
j =
{
Tj − Z̃−k−1(T ) for j ≤ −k − 1,
Tj for j ≥ −k.

It is clear that X̃[−k,
](T ′) = X̃[−k,
](T ) since the instants of message arrivals for these systems are the

same. Furthermore, X̃[−k−1,
](T ′) 4= X̃[−k,
](T ′), and X̃[−k−1,
](T ′)
2
≤ X̃[−k−1,
](T ) a.s. 

Define the shift transformations acting on functions that are measurable with respect to σ-algebras
generated by the input flow and the server route Ψ. As in Sec. 2, a random vector ηi characterizes the
server route during the ith cycle for the process Ψ, ψi = Ψi −Ψi−1, Ψ0 = 0. If

S = h(. . . , ξn, ξn+1, . . . ; . . . , ηm, ηm+1, . . .),

then

θξ ◦ S def= h(. . . , ξn+1, ξn+2, . . . ; . . . , ηm, ηm+1, . . .),

θΨ ◦ S def= h(. . . , ξn, ξn+1, . . . ; . . . , ηm+1, ηm+2, . . .).

Let θnξ , θ
n
Ψ be iterations of transformations θξ, θΨ.
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Lemma 2 (subadditivity property for X and Z). For arbitrary m ≤ � < n, for any T , inequalities

X[m,n](T ) ≤ X[m,
](T ) + θ
ξ ◦ θ
ρ[m,
]
Ψ ◦X[1,n−
](T ),

Z[m,n](T ) ≤ Z[m,
](T ) + θ
ξ ◦ θ
ρ[m,
]
Ψ ◦ Z[1,n−
](T )

hold a.s., where ρ[m, �] = min
{
k : Ψk ≥ X[m,
](T )−


∑
j=m

σj

}
.

Proof. Consider the input flow T 1 = {T 1
j },

T 1
j =

{
Tj for j ≤ �,
Tj + Z[m,
](T ) for j > �.

Then
X[m,n](T )

2
≤ X[m,n](T 1) = X[m,
](T ) + θ
ξ ◦ θ

ρ[m,
]
Ψ ◦X[1,n−
](T ). (2)

The subadditivity property for Z follows from (2). 
Lemma 3 (subadditivity property for X̂ and Ẑ). For arbitrary m ≤ � < n, for any T , inequalities

X̂[m,n](T ) ≤ X̂[m,
](T ) + θ
ξ ◦ θ
ρ̂[m,
]
Ψ ◦X[1,n−
](T ),

Ẑ[m,n](T ) ≤ Ẑ[m,
](T ) + θ
ξ ◦ θ
ρ̂[m,
]
Ψ ◦ Z[1,n−
](T )

hold a.s., where ρ̂[m, �] = min
{
k : Ψ(1)

k ≥ X̂[m,
](T )−

∑

j=m

σj

}
.

The proof of this statement is similar to that of Lemma 2.
Lemma 4 (the law of large numbers). A finite constant γ ≥ 0 exists such that

Z[1,n]

n

P→ γ,
EZ[1,n]

n
→ γ,

Z[−n,−1]

n

P→ γ,
EZ[−n,−1]

n
→ γ,

Ẑ[1,n]

n

P→ γ,
Ẑ[−n,−1]

n

P→ γ

as n→ ∞.
Proof. The statement of the lemma for the process Z follows from the results presented in the Appendix

(on random subadditive subsequences). Let us prove that the lemma is valid for Ẑ. Let us show that

lim
n→∞

P

(∣∣∣∣∣ Ẑ[1,n+M ](T )
n

− γ
∣∣∣∣∣ ≥ ε

)
= 0

for some constant M and an arbitrary ε > 0.
(a) By the subadditivity property,

Ẑ[1,M+n](T ) ≤ Ẑ[1,M ](T ) + θMξ ◦ θρ̂[1,M ]
Ψ ◦ Z[1,n](T ).

Therefore, for any ε > 0 and δ < ε,

P

(
Ẑ[1,n+M ](T )

n
≥ γ + ε

)
≤ P

(
Ẑ[1,M ](T )

n
≥ δ
)
+P

(
Z[1,n](T )

n
≥ γ + ε− δ

)
→ 0

since Ẑ[1,M ](T ) has nonsingular distribution and Z obeys the law of large numbers (LLN).
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(b) To prove the second part of the statement, we have to ascertain some property of “solidarity” of
processes Z and Ẑ.
Lemma 5. For any x > 0, x0 < x, and any M ∈ N, an event AM and a random variable φM with

nonsingular distribution exist such that

P
(
Z[1,n+1] ≥ x

)
≤ P

(
AM

)
+P

(
Ẑ[1,M+n] ≥ x− x0

)
+P

(
φM ≥ x0

)
,

P
(
AM

)
→ 0 as M → ∞.

Indeed, let M > 1 be an arbitrary fixed number, T 1 be the input flow with points

T 1
j =

{
−∞ for j ≤M − 1,
Tj for j > M .

Let us supply, for convenience, all processes with an additional argument to indicate the server route that
controls the system. We have

X̂[1,M+n](T,Ψ(1))
2
≥ X̂[1,M+n](T 1,Ψ(1)) D= X̂[M,M+n]

(
T 1,Ψ(1) −

M−1∑
j=1

σj

)
.

Let Ψ̃ = Ψ(1) −
M−1∑
j=1

σj , Ψ̃0 be the first positive point of this process, the event AM =
{
Ψ̃0 < TM−1}.

Denote by T 2 the input flow with points T 2
j = Ψ̃0 + Tj − TM−1. Then

X̂[M,M+n]

(
T 1, Ψ̃

)
I
{
AM
} 2
≥ X̂[M,M+n]

(
T 2, Ψ̃

)
I
{
AM
} D=

(
Ψ̃0 + θM−1

ξ ◦X[1,n+1](T )
)
I
{
AM
}
.

Denoting φM = TM−1 − Ψ̃0, we obtain(
Z[1,n+1](T )− φM

)
I
{
AM
} D
≤ Ẑ[1,M+n](T )I

{
AM
}
. (3)

By (3), we conclude that for any x, x0 < x,

P
(
Z[1,n+1] ≥ x

)
≤ P

(
AM

)
+P

(
Z[1,n+1] × I

{
AM
}
≥ x
)

≤ P
(
AM

)
+P

(
Ẑ[1,M+n] ≥ x− x0

)
+P

(
φM ≥ x0

)
,

which completes the proof of Lemma 5.
Using Lemma 5, we conclude that for any ε, ε1, n,M ,

P
(
Z[1,n+1]

n
≥ γ − ε

)
≤ P

(
AM

)
+P

(
Ẑ[1,M+n]

n
≥ γ − ε− ε1

)
+P

(
φM
n

≥ ε1
)
.

Since Ψ̃0 and φM are random variables with nonsingular distribution and TM−1 infinitely grows with M ,
then for any δ > 0 there exist M = M(δ), ε1 = ε1(δ) > 0 such that P

(
AM

)
< δ and, for all n sufficiently

large, P(ΦM/n ≥ ε1) < δ. Then

lim inf
n

P

(
Ẑ[1,M+n]

n
≥ γ − ε− ε1

)
≥ lim inf

n
P
(
Z[1,n+1]

n
≥ γ − ε

)
− 2δ = 1− 2δ,

which, together with (a), completes the proof of the LLN. 
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Corollary 4. Let γ be the constant introduced in Lemma 4. Then

X[1,n]/n
P→ γ + λ−1, X̂[1,n]/n

P→ γ + λ−1.

Let A be the following event:

A =
{
lim
n
Z̃[−n,0] <∞

}
=
{
X̃ = lim

n
X̃[−n,0] <∞

}
(the limits are considered in the sense of a.s. convergence, and the existence of limits is guaranteed by
Lemma 1).
Theorem 5 (the law of 0 and 1). The probability of A equals either 0 or 1.
Proof. Consider a polling system where entering messages have numbers −n,−n+1, . . . , 0, 1, and the

server moves along the route Ψ(−n,1) def= Ψ(−n) − σ1. Denote the end instant of the last nonempty cycle in
such system by X0

[−n,1](T ). Consider the auxiliary input flow T 1 with points

T 1
j =

{
Tj for j ≤ 0,
max

{
T1, X̃

}
for j ≥ 1.

Then X̃[−n,1](T 1) = X̃[−n,0](T ) + X̂[1,1](T 1) − max{T1, X̃}, since Ψ(−n) +
0∑

j=−n
σj

def= Ψ(1), i.e., starting

from the instant X̃[−n,0](T ) ≤ X̃ , the server moves identically in the systems with routes Ψ(−n) and Ψ(1).
Denote φ = X̂[1,1](T 1)−max{T1, X̃}. Then a.s.

X̃[−n,0](T ) = X̃[−n,1](T 1)− φ ≥ X̃[n,1](T )− φ ≥ X̃[−n,1](T − σ1)− φ = X0
[−n,1](T )− σ1 − φ. (4)

The shift
θξ ◦Ψ(−n) ≡ Ψ(−n+1,1) ≡ Ψ(−n) + σ−n − σ1

is ergodic (see, e.g., [20, Chapter 1, Sec. 7]), and

θξ ◦ X̃[−n−1,0](T ) = X0
[−n,1](T ).

The inequality (4) implies that A ⊆ θξ ◦A. Since the shift θξ is ergodic, the event A has probability either 0
or 1. 
Scaling. For any 0 ≤ c < ∞, denote by cT the sequence consisting of the points {cTi}, i ∈ Z. It is

obvious that, for all n, Z[−n,−1](cT ) decreases in c and X[1,n](cT ) increases in c a.s. Therefore, the lemma
below is valid.
Lemma 6. For any c ≥ 0, a nonnegative constant γ(c) exists such that Z[−n,−1](cT )/n

P→ γ(c) and
γ(c) decreases in c, whereas γ(c) + cλ−1 increases in c.

Theorem 6. If lim X̃[−n,0](T ) = ∞ a.s., then λγ(0) ≥ 1. If λγ(0) > 1, then lim X̃[−n,0](T ) = ∞ a.s.
Proof. First, let us prove the second assertion. Let Q be a point process whose points are all zero,

Q = 0× T . For a fixed n, denote by T n the point process with points T nj = T−n for any j. Then

X̃[−n,0](T )
2
≥ X̃[−n,0](T n) = Y[−n,0](Q) + T−n,

where Y[−n,0](Q) is the end instant of the last nonempty cycle in the system with n + 1 messages and
server route Ψ(−n) −T−n. This route is also stationary and does not depend on an input flow, and random
variables Y[−n,0](Q) and X̂[−n,0](Q) are identically distributed. Hence,

lim inf
X̃[−n,0](T )

n
≥ γ(0)− λ−1 > 0,
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which completes the proof of the second assertion of the lemma.
Let us prove the first one. Let � ≥ 1 be a fixed integer number. Consider the events

An,
 =
{
X̃[−n,0](T ) ≥ T


}
, Bn,
 =

{
X̂[−n,0](T ) ≥ T


}
.

By the condition of the theorem, P(An,
) → 1 as n → ∞ and, since the random variables X̃[−n,0](T ) and
X̂[−n,0](T ) are identically distributed, we also have

P
(
Bn,


)
→ 1, P

(
Bn,


)
→ 0. (5)

By the subadditivity property, for any integer n > 0,

X̂[−n,
](T ) ≤ X̂[−n,0](T ) + θ
ρ[−n,0]
Ψ ◦


∑
i=1

Xi a.s., (6)

where X1 = X[1,1], . . . , Xi = θξ ◦ θΨ ◦Xi−1 are integrable and identically distributed.
Introduce the process T n with points

T nj =
{
Tj for j ≤ 0,
X̂[−n,0](T ) for j ≥ 1.

Then
X̂[−n,
](T )I(Bn,
) ≤ X̂[−n,
](T n)I(Bn,
) =

(
X̂[−n,0](T ) + Y[1,
](Q)

)
I(Bn,
) a.s., (7)

where Y[1,
](Q) = θ
ρ[−n,0]
Ψ ◦X[1,
](Q)

D= X[1,
](Q). From (6) and (7), we obtain (a.s.)

Ẑ[−n,
](T )− Ẑ[−n,0](T ) ≤ θρ[−n,0]Ψ ◦

∑
i=1

Xi × I
(
Bn,


)
+ Y[1,
](Q)I(Bn,
)− T
 ≡ I1 + I2, (8)

E(I1) +E(I2) <∞. Due to the stationarity of the server routing,

Z̃[−n,
](T )− Z̃[−n,0](T )
D= Ẑ[−n,
](T )− Ẑ[−n,0](T )

a.s.
≤ I1 + I2. (9)

Due to the stationarity of the input flow and the property of inner monotonicity,

Z̃[−n,
](T )− Z̃[−n,0](T )
D= Z̃[−n−
,0](T )− Z̃[−n−
,−
](T )

a.s.
≥ Z̃[−n−
,0](T )− Z̃[−n−2
,−
](T )

def= φ1. (10)

Inequalities (9) and (10) imply that Φ1

D
≤ I1 + I2, hence, E(Φ+

1 ) <∞.
Next, note that random variables

Z̃[−n−
,0](T ), Z̃[−n−2
,−
](T ), Z̃[−n−3
,−2
](T ), . . .

are identically distributed and form a stationary sequence. By Lemma 10 (see Appendix), E|φ1| < ∞,
Eφ1 = 0. Then

0 = Eφ1 ≤ I1 + I2 = �E
(
X[1,1]I

(
Bn,


))
+E
(
Y[1,
](Q)I(Bn,
)

)
− �λ−1. (11)

Letting n tend to infinity and using (5), we obtain that the first component on the right-hand side of (11)
tends to zero, and

0 ≤ E
(
Y[1,
](Q)

)
− �λ−1.

Dividing both sides of this inequality by �, and letting � tend to infinity, we obtain 0 ≤ γ(0)− λ−1. 
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Boundedness of the queue-length process.
Property 5. The conditions below are equivalent:
(a) sup

n
P
(
Ẑ[1,n] > x

)
= sup

n
P
(
Z̃[−n,0] > x

)
→ 0 as x→ ∞,

(b) sup
n
P
(
Z[1,n] > x

)
→ 0 as x→ ∞.

Indeed, (b) implies (a) by Lemma 3; the converse holds by Lemma 5.
Let us show that boundedness in probability of the process Z[1,n](T ) is equivalent to boundedness in

probability of the total queue length Qn = Qn(T ) in the system at instant Tn. Let Qn = Q1
n + . . .+Q

K
n ,

σk,j be the transmission time of the jth message in the kth queue, i.e., if

m1 = min{i ≥ 1 : I(µi = k) = 1},
mj = min{i > mj−1 : I(µi = k) = 1},

then σk,j = σmj . Let nk = max{j : mj ≤ n}. Then, for any k = 1, . . . ,K,

nk∑
j=nk−Qk

n+2

σk,j ≤ Z[1,n] ≤
K∑
k=1

nk∑
j=nk−Qn+1

σk,j +
n0+Qn∑
j=n0+1

ψj , (12)

where ψj = Ψj −Ψj−1 is the total switching time during the jth cycle, n0(T,Ψ) is the largest number of a
cycle completed up to Tn.

Since the input flow is stationary and ergodic, and random variables ψj are i.i.d., (12) implies that
Qn(T ) and Z[1,n](T ) are bounded in probability simultaneously.

If the condition λγ(0) < 1 holds, lim Z̃[−n,0](T ) < ∞ a.s. Then Property 5 and inequality (12) imply
that Qn(T ) is bounded in probability. In the case λγ(0) > 1, Theorem 6 yields lim Z̃[−n,0](T ) = ∞ a.s.;
therefore, Z[1,n](T ) and Qn(T ) infinitely grow in probability.

Systems with policies from the classes A, Â. Let us state some corollaries of Theorem 6. Consider
a stochastic system Σg, where gk ∈ A is the transmission policy in the kth queue. According to Corollary 3,
there exist functions fk, hk ∈M such that

lim
x→∞

fk(x) = lim
x
gk(x) = Fk = lim

x
hk(x),

fk(x) ≤ gk(x) ≤ hk(x) for all x ≥ 0. As will be shown in Sec. 5, for systems Σf , Σh, we have

γ(0) = σ +max
k

[
pk
FkCk

W

]
.

Then, for Zg[1,n](T ), the corollary below holds.

Corollary 5. If Zg[1,n](T )
P→ ∞, then λγ(0) ≥ 1. If λγ(0) > 1, then Zg[1,n]

P→ ∞.

Proof. Indeed, if Zg[1,n](T )
P→ ∞, then, by Corollary 3,

Zf[1,n](T )
a.s.
≥ Zg[1,n](T )

P→ ∞.

Since Corollary 5 is valid for the system Σf , Z̃f[−n,0](T )
P→ ∞. Since the sequence Z̃f[−n,0](T ) is monotone

in n, convergency to infinity holds a.s., and then Theorem 6 yields λγ(0) ≥ 1. In the case λγ(0) > 1,
Z̃h[−n,0](T )→ ∞ a.s.; hence,

Zg[1,n](T )
a.s.
≥ Zh[1,n](T )

P→ ∞

due to Corollary 3 and Property 5. 
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The statement of Theorem 2 follows now directly from Corollary 5 and inequality (12) which, unlike
preceding statements of this section, is not related with the assumptions on the monotonicity of transmission
policies.

Consider the class Â. For g ∈ Â, generally speaking, it is impossible to construct a monotone function
h ≥ g with the same limit at infinity, but the lower function can still be constructed (see Remark 4). Thus,
the corollary below holds.

Corollary 6. If Zg[1,n](T )
P→ ∞, then λγ(0) ≥ 1.

The proof is quite similar to that of Corollary 5. Since Zg[1,n](T ) and Q
g
n(T ) are bounded in probability

simultaneously, Corollary 5 implies Theorem 1.

5. Explicit form of the ergodicity condition

Consider a system which is entered byN messages with numbers 1, . . . , N at t = 0; other messages do not
arrive; the server moves from queue to queue along a cyclic route Ψ. It is required to find γ(0) ≡ lim

N
Z[1,n]/N .

The existence of this limit was proved in Sec. 4. Note that Z[1,n] = ZN +
N∑
n=1

σn, where ZN is the end

instant of the last nonempty cycle for the same system with zero message-transmission times. Then,
γ(0) ≡ lim

N
ZN/N + σ.

Consider a determinate model of a polling system, which is a realization of the above-described system
with zero transmission times on one elementary event.

We assume that some laws of large numbers hold, the validity of which is guaranteed by the conditions
of Sec. 2. Also, let fk ∈M for k = 1, . . . ,K.

Let wn be the total switching time over the nth cycle, �k,n be the number of visits to the kth queue

(k = 1, . . . ,K) during the nth cycle, Lk(n) =
n∑
j=1

�k,j . Assume that (for any k)

lim
n

n∑
j=1

wj

n
=W > 0, lim

n

Lk(n)
n

= lim
n

n∑
j=1

�k,j

n
= Ck > 0.

Let N = N1 + . . .+NK be the queue length at instant 0. Let lim
N
Nk/N = pk > 0 for any k.

Bounded transmission policies. Let lim
x
fk(x) = Fk < ∞ and, for t ≥ 0, QN(t) be the total queue

length in the system at instant t, QN (0) = N .
Denote

x0 = min {x : fk(y) = Fk ∀k, ∀y ≥ x},

nk = max
{
n :

n∑
j=1

�k,jFk + x0 ≤ Nk
}
.

Since nk → ∞ as N → ∞,

lim
N

nk∑
j=1

�k,jFk + x0

nk
= FkCk and lim

N

Nk
nk

= FkCk.

Therefore,
nk
N

=
nk
Nk

× Nk
N

→ pk
FkCk

= αk > 0.
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Let n = max{n1, . . . , nK}. Then

ZN =
n∑
j=1

wj + o(N) = nW + o(N).

Since n/N → max
k≤K

αk, we obtain lim
N
ZN/N = max

k
αkW , i.e., for the case of bounded transmission policies

we have proved the theorem below.
Theorem 7. The constant γ(0) introduced above is given by

γ(0) =
K∑
k=1

pkCσ,k +max
k

{
pk
FkCk

}
W = σ +max

k

{
pk
FkCk

}
W,

where σ = Eσn is the mean message-transmission time.

Unbounded transmission policies. Let, for some fixed m ∈ {1, . . . ,K − 1}, F1, . . . , Fm < ∞,
Fm+1 = . . . = FK = ∞. Fix an arbitrary positive L > 0 and consider the system ΣL that differs from our
system in message transmission policies in the queues m+ 1, . . . ,K only, i.e., let fLk (x) = min{L, fk(x)} ≤
fk(x) for m+ 1 ≤ k ≤ K and fLk (x) = fk(x) for 1 ≤ k ≤ m. It is obvious that the limits lim

x
fLk (x) = F

L
k

exist and are equal to fk for the first m stations and to L for the others. By Theorem 4, the end instant of
the last nonempty cycle ZLN ≥ ZN a.s., and by Theorem 7 just proved,

lim sup
ZN
N

≤ lim
N

ZLN
N

= max
k

pk
FLk Ck

W = max
(
max
k≤m

pk
FkCk

, max
k>m

pk
LCk

)
W. (13)

Consider the system Σ′ with the following message transmission policies: f ′k(x) = x ≥ fk(x) for m+1 ≤
k ≤ K and f ′k(x) = fk(x) for 1 ≤ k ≤ m. By Theorem 4, Z ′

N ≤ ZN a.s.
Let us find lim

N
Z ′
N/N . Repeating the construction from the first part of the section, we obtain that

(a) for 1 ≤ k ≤ m, nk → ∞;
(b) for m + 1 ≤ k ≤ K, one visit to the kth queue suffices, i.e., nk = min{n : �k,n > 0} < ∞. In

particular, max{nm+1, . . . , nK}/N → 0.

Let s = max{n1, . . . , nm}. We have the representation as follows: Z ′
N =

s∑
j=1

wj + o(N) = sW + o(N).

Therefore,

lim inf
ZN
N

≥ lim
N

Z ′
N

N
= max

1≤k≤m
αkW = max

1≤k≤m

pk
FkCk

W. (14)

By (13) and (14), for any L,

σ + max
1≤k≤m

pk
FkCk

W ≤ γ(0) ≤ σ +max
(

max
1≤k≤m

pk
FkCk

, max
m<k≤K

{
pk
LCk

})
W.

Letting L tend to infinity, we obtain that Theorem 7 holds for the case of unbounded transmission policies
as well (1/Fk = 0 for Fk = ∞).

6. Existence of the stationary regime

Consider an arbitrary realization of a polling system described in Sec. 2 on one elementary event (de-
terminate model). Renumber the server route Ψ(1) in the empty system as follows. Assign the number 0 to
the time of the switching that is made by the server at instant +0; to the next switching time, assign the
number 1, etc.; to the previous one, the number −1, etc. Thus, we obtain the sequence of switching times
{wi}∞i=−∞. Let, as before, Ψ(1)

0 = min
{
Ψ(1)

 : Ψ(1)


 > 0
}
be the end instant of the zero cycle, Ψ(1)


 , � ∈ Z,
be the end instant of the �th cycle.
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Introduce the following notations: ai is the starting instant of the ith switching time in the empty
system, ai+1 = ai + wi; E
 = Ψ(1)


 −Ψ(1)

−1 is the total switching time in the �th cycle.

For the point process Ψ(−n) = Ψ(1) −
0∑

j=−n
σj , keep the above-introduced numeration of switching times

and cycles, i.e., the ith switching time for the process Ψ(−n) starts at the time instant a(−n)
i

def= ai−
0∑

j=−n
σj ,

the �th cycle ends at the instant Ψ(−n)



def= Ψ(1)

 −

0∑
j=−n

σj .

Consider a polling system where n + 1 entering messages from the input flow have numbers −n,−n+
1, . . . , 0 (see Sec. 4) and the server moves along the route Ψ(−n). We call such a system a [−n, 0]-model.
The instant of the end of the transmission of all arrived messages in a [−n, 0] system is denoted by τ [−n,0].

The model introduced has the following properties:
1. τ [−n,0] <∞;
2. τ [−n,0] coincides with one of the instants ai, i ≥ 1, say, with aM[−n,0] ;
3. τ [−n,0] ≤ X̃[−n,0], where X̃[−n,0] is the instant of the end of the last nonempty cycle, as in Sec. 4.
Denote by δ[−n,0] the number of the last switching time in a [−n, 0]-model before the instant τ [−n,0].

Evidently, δ[−n,0] = M[−n,0] − 1 since, starting from τ [−n,0], the server route in a [−n, 0]-model coincides
with Ψ(1).

Lemma 7. The sequences τ [−n,0], δ[−n,0] do not decrease in n.

Proof. Let n ≥ 0. Introduce a [−n− 1, 0]′-model that differs from the [−n− 1, 0]-model in the instant
of the arrival of the message with number −n− 1 only. Define T ′

−n−1 in such a way that the transmission
of the (−n− 1)st message would be completed before T−n. Let

�0 = max
{
� : Ψ(−n−1)


 + σ−n−1 ≡ Ψ(−n)

 < T−n

}
,

�1 = max
{
� ≤ �0 : during the �th cycle, the server visits the station µ−n−1

}
,

j0 = max
{
j : a(−n−1)

j ≤ min
{
T−n−1,Ψ

(−n−1)

−1

}}
.

Now, it suffices to put T ′
−n−1 = a

(−n−1)
j0

.
Let us compare the models [−n − 1, 0]′ and [−n − 1, 0]. By Theorem 4, τ ′[−n−1,0] ≤ τ [−n−1,0]. Since

the total switching time of all messages is the same for these models, the total switching time over the
time interval

[
a
(−n−1)
j0

, τ ′[−n−1,0]

]
for the first model is less than the total switching time over the interval[

a
(−n−1)
j0

, τ [−n−1,0]

]
for the second one. Therefore, δ′[−n−1,0] ≤ δ[−n−1,0] as well.

Comparing the [−n− 1, 0]′- and [−n, 0]-models, we obtain

τ ′[−n−1,0] ≡ τ [−n,0], δ′[−n−1,0] ≡ δ[−n,0]

since Ψ(−n−1) + σ−n−1 ≡ Ψ(−n). Thus, the lemma is proved. 
Let us assume that the condition below holds.

A0: The limit lim
n→∞

τ [−n,0] ≡ τ <∞ exists.

If A0 holds and ai → ∞ as i→ ∞, then τ coincides with one of the ai’s, i ≥ 1. Moreover, the statement
below, which is a direct consequence of Lemma 7 and condition A0, is valid.

Corollary 7. 1. There can be found N ≥ 1 and M ≥ 1 such that, for any n ≥ N , τ [−n,0] = τ = aM .
2. The limit lim

n→∞
δ[−n,0] ≡ δ ≤M <∞ exists.

3. There can be found N0 such that δ[−n,0] ≡ δ for all n ≥ N0.
4. Therewith, δ =M − 1.
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For a [−n, 0]-model, denote by c(−n)
i the actual starting instant of the ith switching. By definition,

c
(−n)
i = a(−n)

i if a(−n)
i < T−n, and c

(−n)
i = ai if i ≥M[−n,0].

Introduce the following notation: for any queue k and any switching number i, let Gki,[−n,0] denote the

number of messages to be transmitted in the kth queue after the instant c(−n)
i .

Repeating the reasoning of Lemma 7 and using statement 3 of Theorem 4, we obtain the corollary below.

Corollary 8. For any i, k, the sequence
{
Gki,[−n,0]

}
does not decrease in n.

The following statement is valid.

Lemma 8. The sequence Gkδ,[−n,0] is upper bounded.

Proof. Let n ≥ max{N,N0}, and k′ be such that Gk
′

i,[−n,0] > 0, r0 = min{j ≥ 0 : µ−j = k′}. By the
definition of transmission policies, it is evident that, in a [−n, 0]-model for n ≥ r0, the transmission of the
last group of messages of the queue k′ after the instant c(−n)

δ cannot start before T−r0 . Therefore, the total
transmission time during the last visit of the server to this queue is not greater than τ − T−r0 . Then, for
any k,

n0 = min

� ≥ 0 :
0∑

j=−

σjI(µj = k′) ≥ τ − T−r0

 ≥ Gkδ,[−n,0]. 

Due to the monotonicity and boundness, the integer sequence Gkδ,[−n,0] has properties as follows.
1. For any k, the limit Gkδ = lim

n→∞
Gkδ,[−n,0] < ∞ exists, and there exists N1 < ∞ such that for all

n ≥ N1, k = 1, . . . ,K, Gkδ = G
k
δ,[−n,0].

2. By definition, only one of the Gkδ ’s is nonzero, i.e., G
k0
δ > 0, Gkδ = 0 for k �= k0. Then, in a [−n, 0]-

model, for any n ≥ max{N,N0, N1}, the last servicing is made in the queue k0, and during this visit, the
server transmits Gk0δ messages.

3. For the same n’s, c(−n)
δ ≡ cδ = aδ+1 −

0∑
j=−mδ

σjI(µj = k0) − wδ does not depend on n, where

mδ = min
{
� :

0∑
j=−


I(µj = k0) = Gk0δ

}
, −mδ is the number of the message that is sent first in the last

group of Gk0δ messages.
Consider now the sequence Gkδ−1,[−n,0]. Let us show the validity of Lemma 8 and Properties 1–3 for this

sequence. Similarly to Lemma 8, the lemma below can be proved.

Lemma 9. The sequence Gkδ−1,[−n,0] is upper bounded.

Since the sequence Gkδ−1,[−n,0] is integer, nondecreasing, and upper bounded, the following statements
hold.

1. For any k, the limit Gkδ−1 = lim
n→∞

Gkδ−1,[−n,0] < ∞ exists, and there exists N2 < ∞ such that for all
n ≥ N2, k = 1, . . . ,K,

Gkδ−1 = G
k
δ−1,[−n,0].

2. At most one of the Gkδ−1’s is nonzero.

3. For n ≥ max{N,N0, N1, N2}, c(−n)
δ−1 ≡ cδ−1 does not depend on n.

Set m0 = max{m ≥ 0 : cδ−m ≥ 0}. Since cδ−m0 ≤ aδ−m0 , we have m0 < M . Repeat the above
reasoning for Gkδ−2,[−n,0], . . . , G

k
δ−m0−1,[−n,0]. After m0 + 1 steps, we conclude that in a [−n, 0]-model, for

any n ≥ N = max{N,N0, N1, N2, . . . , Nm0+2} and t ≥ 0 > cδ−m0−1, the system state at an instant t does
not depend on n.

Denote by Qk[−n,0](t) the queue length for the kth station at an instant t; by W k
[−n,0](t), the residual

message-transmission time for the kth queue at an instant t; by j[−n,0](t), the number of the switching that
is made at t or of the preceding switching if the server is busy with transmission at t. Let us state the main
result of this section, which follows from the above reasoning.
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Theorem 8. If the condition A0 holds, a process {Qk(t),W k(t), j(t), t ≥ 0} and numbers N,M < ∞
exist such that

1.
{
Qk[−n,0](t),W

k
[−n,0](t), j[−n,0](t)

}
= {Qk(t),W k(t), j(t), t ≥ 0} for any k = 1, . . . ,K, t ≥ 0, n ≥ N,

2. Qk[−n,0](t) =W
k
[−n,0](t) = Q

k(t) =W k(t) = 0 for any k = 1, . . . ,K, t ≥ aM , n ≥ 0.

Return to the stochastic model of a polling system described in Secs. 2 and 4. Since τ [−n,0] ≤ X̃[−n,0]
a.s., under the condition λγ(0) < 1 we have

τ ≤ lim X̃[−n,0](T ) <∞ a.s.

by Theorem 6, i.e., the condition A0 holds a.s. The validity of the additional assumption that ai → ∞ as
i→ ∞ is obvious due to the stationarity of Ψ(1). Thus, the proof of Theorem 3 is completed.

Remark 5. With the help of the process {Qk(t),W k(t), j(t)} introduced in Theorem 8, for the polling
systems under consideration one can construct (as is done in [21] for Jackson-type queueing networks)
the process

{(
Q̂k(t), Ŵ k(t), ĵ(t)

)
, −∞ < t < ∞

}
that determines the stationary regime on the whole

axis, and this regime is the minimum possible one. Stationarity is understood in the following sense:
distributions of the processes

{(
Qk(t, n),W k(t, n), j(t, n)

)
, t ≥ 0

}
coincide for all n = 0,±1,±2, . . . , where

Qk(t, n) = Q̂k(Tn + t), W k(t, n) = Ŵ k(Tn + t), j(t, n) = ĵ(Tn + t). There exist natural examples where a
stationary regime is not unique.

Remark 6. The maximum stationary regime also exists and can be constructed analogously to what is
done in [21]. Schematically, this looks as follows: for any 0 < c < 1, a polling system is introduced with
the same control sequences as before, with the only change being that messages arrive at time instants cTi.
For c close enough to 1, the traffic condition is fulfilled and, hence, the corresponding minimum stationary
regimes exist. For c ↗ 1, these stationary regimes monotonically decrease, and their limit provides the
desired maximum stationary regime.

7. Possible generalizations of the model considered

1. Batch arrivals. All statements of Sec. 2 remain unchanged if batch message arrival in the input flow
is admitted. Let (τn,µn,σn) be a stationary metric-transitive sequence. Here, τn is the time between arrival
instants of the (n−1)st and nth batch, µn = (µn,1, . . . , µn,K) is the number of messages of the nth batch sent
to queues 1, . . . ,K respectively, σn = (σn,1, . . . ,σn,K), σn,k = (σn,k,1, . . . , σn,k,µn,k

) are the transmission
times for the nth batch at the kth station. Let Eτ1 = λ−1 < ∞ and �= 0, E

∑
k

∑
i

σ1,k,i = σ < ∞,

0 < Eµ1,k = µk <∞ for any k = 1, . . . ,K. Then

ρ = λ
[
σ +max

k

µk
FkCk

W

]
.

The proofs of Theorems 1–3 remain valid without any considerable changes (except for some obvious
distinctions in terminology, such as “batch call” instead of “call,” etc.)

2. Random policies. Theorems 1–3 also hold for natural extensions of the classes A, Â, M , which in-
clude random functions. Assume that transmission policies depend on a random variable, namely, fk(x,D

j
k)

messages are transmitted during the jth visit of the server to the kth station, where for any k, random
variables Djk, j = 1, 2, . . . , are i.i.d. It is necessarily required therewith (say, in the extended class M) that
for any k, j, fk(x,D

j
k) ≤ fk(x+ 1, Djk) ≤ fk(x,D

j
k) + 1 a.s. In this case,

Fk = E lim
x→∞

fk
(
x,Djk

)
= EFk

(
x,Djk

)
≤ ∞.

The validity of the statements of Secs. 3, 4, and 6 is evident; we just explain the changes in Sec. 5.
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Let Fk < ∞. Then Fk(D
j
k) < ∞, and random variables xjk = min{x : fk(x,D

j
k) = Fk(D

j
k)} are i.i.d.

and a.s. finite. Also,
n∑
j=1

Fk(D
j
k)

n
→ Fk a.s. (15)

Let us compute the limit ZN/N in the sense of convergence in probability. Let Nk be a (random) length of
the kth queue at t = 0,

mk = max
{
n : Nk ≥ x1

k, Nk − Fk(D1
k) ≥ x2

k, . . . , Nk −
n−1∑
j=1

Fk(D
j
k) ≥ xnk

}
.

Since mk → ∞ a.s., we also have nk = max{j : Lk(j) ≤ mk} → ∞ a.s. Then

1 ≥

mk∑
j=1

Fk(D
j
k)

Nk
≥ 1− xmk+1

Nk

P→ 1.

Using (15), we obtain

Nk
mk

=
Nk

mk∑
j=1

Fk(D
j
k)

mk∑
j=1

Fk(D
j
k)

mk

P→ Fk,

nk
N

=
nk
mk

mk

Nk

Nk
N

P→ 1
Ck
Fkpk.

Further computation of the limit desired is made in the same way as in Sec. 5. In the case Fk = ∞, the
changes are analogous to the above ones.

3. Exhaustive policies. Theorems 1–3 are also valid in a more general case, where some transmission
policies can have an “exhaustive” character, i.e., not only the queue but also new messages that arrive
while the server works at a station can be transmitted before switching of the server. Such a policy can be
defined by a sequence of functions {f jk}∞j=1, where for all j, f

j
k ’s belong to one of the classes introduced in

Sec. 1, and f1
k (1) = 1. If at the instant of a server arrival, there are x1 messages in the queue, f1

k (x1) of
them are to be transmitted. Then, if at the instant of the transmission end, there are x2 messages in the
queue, f2

k (x2) of them are to be transmitted, and so on. The server switches to the next station only if
f jk(xj) = 0 for some j (for an analogous way of describing such policies, see, e.g., [1]).

Under these conditions, Theorems 1–3 are also valid. The quantity Fk in the ergodicity condition for
an exhaustive policy is determined as Fk =

∑
j

lim
x
f jk(x). If, for example, f jk(x) ≡ x for all k and j, then

Fk = ∞ for all k and ρ = λσ.
The proofs of Theorems 1–3 remain unchanged; certain changes should be made in the proof of Theorem 4

only.

4. Systems with infinite number of servers. Under certain conditions, analogous results hold for
this case as well. A paper on this subject is being prepared for publication.

Appendix

Let {ξi}, i ∈ N, be a stationary sequence of stationary random variables. Define a stationary sequence
{φi}, i ∈ N, of random variables with nonsingular distributions as φi = ξi − ξi+1. The following statement
holds.
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Lemma 10. If E(φ+
1 ) <∞, then E|φ1| <∞, Eφ1 = 0.

Proof. The sequence {φi} obeys the LLN:

φ1 + . . .+ φm
m

=
ξ1
m

− ξm+1

m

P→ 0 (16)

since the corresponding random variables have nonsingular distributions.
Let us show that E|φ1| <∞. Let N > 0, φ̃i = max{φi,−N} ≥ −N . Then, a random variable φ̃ exists

such that E|φ̃| <∞, Eφ̃ = Eφ̃1, and

(φ̃1 + . . .+ φ̃m)/m→ φ̃ a.s.

Assume that N exists such that Eφ̃ = Eφ̃1 < 0. Then, for some ε > 0, P(φ̃ < −ε) = ∆ > 0, i.e.,

P
(
lim
m
(φ̃1 + . . .+ φ̃m)/m < −ε

)
= ∆ > 0.

Then, m0 exists such that for all m ≥ m0,

P
(
(φ̃1 + . . .+ φ̃m)/m ≤ −ε/2

)
≥ ∆/2 > 0.

But, since φ1 ≤ φ̃i,
P
(
(φ1 + . . .+ φm)/m ≤ −ε/2

)
≥ ∆/2 > 0,

which contradicts (16); thus, Eφ̃1 ≥ 0 for any N , and Eφ1 ≥ 0. Then, obviously, Eφ−1 ≤ Eφ+
1 <∞, whence

the desired statement follows.
Now, let us show that Eφ1 = 0. Let, on the contrary, Eφ1 > 0. Then a random variable φ exists such

that Eφ = Eφ1 > 0 and (φ1 + . . .+ φm)/m → φ a.s. Therefore, for some ε > 0, P(φ̃ > ε) = ∆ > 0. Then
m0 exists such that for all m ≥ m0,

P
(
(φ̃1 + . . .+ φ̃m)/m > ε/2

)
≥ ∆/2 > 0,

which contradicts (16). 
LLN for random subadditive stochastic sequences. The results presented below are generaliza-

tions of the corresponding properties of subadditive sequences [18, 19] for the case of shift transformations
with random index. They are used in Sec. 4.

Let (X ,BX ) be an arbitrary metric space. Consider two sequences of random variables, X -valued
{ξn}∞−∞ and real-valued {ψn}∞−∞. We assume that

(a) {ξn} is a stationary ergodic sequence,
(b) {ψn} is a sequence of i.i.d. nonnegative random variables, and P(ψ1 > 0) > 0,
(c) these sequences are mutually independent.
Set Fξ = σ{ξn; −∞ < n <∞}, Fψ = σ{ψn; −∞ < n <∞}, Fξ,ψ = σ{(ξn, ψn); −∞ < n <∞}. Let θξ

and θψ be two measure-preserving shift transformations of Fξ,ψ-measurable random variables, namely, if

S = h(. . . , ξn−1, ξn, ξn+1, . . . ; . . . , ψm−1, ψm, ψm+1 . . .),

then
θξ ◦ S = h(. . . , ξn, ξn+1, ξn+2, . . . ; . . . , ψm−1, ψm, ψm+1 . . .),

and
θψ ◦ S = h(. . . , ξn−1, ξn, ξn+1, . . . ; . . . , ψm, ψm+1, ψm+2 . . .).

For n ≥ 1, let θnξ and θnψ denote the iterations of θξ and θφ respectively, and θ−nξ and θ−nψ be the shift
transformations inverse to θnξ and θnψ.

For each k ≥ 1, let Z[1,k] be a nonnegative random variable and η[1,k] = min{n ≥ 1 : ψ1 + . . . + ψn ≥
Z[1,k]}. Put η[1,0] ≡ 0.
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We assume that
(d) For any � ≥ 1 and any Borel set B, the event {Z[1,k] ∈ B; η[1,k] ≤ �} belongs to the σ-algebra

σ{ξ1, . . . , ξk;ψ1, . . . , ψ
}.
For m ≤ n, introduce the pair of random variables(

Z[m,n], η[m,n]

)
= θm−1

ξ ◦ θm−1
ψ

(
Z[1,n−m+1], η[1,n−m+1]

)
,

and for r ≤ m ≤ n, the pair of random variables(
Zr[m,n], η

r
[m,n]

)
= θm−r

ξ ◦ θη[r,n−1]

ψ

(
Z[r,n−m+1], η[r,n−m+1]

)
.

The assumptions (a)–(d) imply that the sequences
{(
Zr[m,m+k], η

r
[m,m+k]

)
, k ≤ 0

}
and

{(
Z[1,1+k], η[1,1+k]

)
,

k ≤ 0
}
are identically distributed. Assume that Z1 = Z[1,1], η1 = η[1,1], Z2 = Z1

[2,2], η2 = η1[2,2], and for
k ≥ 3, (Zk, ηk) = θξ ◦ θη1ψ ◦ (Zk−1, ηk−1).

The assumptions (a)–(d) imply the proposition below.
Proposition 1. The sequence {(Zk, ηk), k ≥ 1} is stationary and metric-transitive.
Let the conditions below hold,
(e) d ≡ EZ1 <∞,
(f) “random” subadditivity: For any r ≤ m < n,

Z[r,n] ≤ Z[r,m] + Zr[m+1,n] a.s.

In this inequality, in contrast to the subadditive processes in [18], the variable Zr[m+1,n] does not equal
Z[m+1,n]; it only equals the latter in distribution, being its random shift in ψ. The “range” of this shift
depends on the first summand on the right-hand side of (f).

Let us state simple corollaries of the assumptions (a)–(f).

Corollary 9. For any n ≥ 1, Z[1,n] ≤
n∑
i=1

Zi ≡ Sn.

Corollary 10. For all n ≥ 1, m ≥ 1,

EZ[1,n] ≡ gn <∞ and gn+m ≤ gn + g +m.

Corollary 11. Let γ = inf
n≥1

gn/n. Then γ <∞ and γ = lim
n
gn/n.

For the proof of the last statement, see, e.g., [18].
Corollary 12. Let Φ = lim supZ[1,n]/n. Then Φ ≤ d a.s.
Proof. Since Sn/n→ d a.s., lim supZ[1,n]/n ≤ limSn/n = d a.s. 
Corollary 13. The random variable Ψ is Fξ-measurable.
Proof. Since Z[1,n] ≤ Z[1,m] + Z1

[m+1,n] a.s., we have for any fixed m ≥ 1 and m→ ∞

Φ = lim supZ[1,n]/n ≤ lim supZ1
[m+1,n]/n = lim supZ1

[m+1,n]/(n−m+ 1) ≡ Φ1
[m+1].

Since Φ D= Φ1
[m+1], we have Φ = Φ1

[m+1] a.s. For any δ > 0, k ≥ 1, and A ∈ σ{φ1, . . . , φk}, choose m � 1
such that P(η[1,m] ≥ k) ≥ 1− δ. Then, for any Borel set B,

P(Φ ∈ B;A) ≤
∞∑
i=k

(
Φ1

[m+1] ∈ B;A; η[1,m] = i
)
+ δ =

∞∑
i=k

(
Φ1

[m+1] ∈ B
)
×P

(
A; η[1,m] = i

)
+ δ

≤ P(Φ ∈ B)×P(A) + δ.

Analogously, P(Φ ∈ B;A) ≥ . . . ≥ P(Φ ∈ B)×P(A) − δ. 
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Corollary 14. Φ = γ a.s.

Proof. Let us show that Φ = const a.s. Indeed, Φ = Φ1
[2] = θ

1
ξ × θ

η[1,1]

ψ × Φ1
[1] = θ

1
ξ × Φ a.s. Therefore,

Φ is an Fξ-invariant random variable, and Φ = const a.s.

Remark 7. The sequence Sn/n is uniformly integrable since Sn/n→ d a.s. and ESn/n = d for any n.

Next, let us show that γ ≤ Φ a.s. The sequence
{
Z[1,n]/n

}
is uniformly integrable. Hence, γ =

lim supEZ[1,n]/n ≤ E lim supZ[1,n]/n = Φ a.s.

Finally, let us show that Φ ≤ gk/k for any k. Fix k and define the sequence
{
Z

(k)
n

}
,

Z
(k)
1 = Z[1,k], Z

(k)
2 = Z1

[k+1,2k],

and for � ≥ 3, Z(k)

 = θξ × θη[1,k] × Z(k)


−1. If km < n ≤ k(m+ 1), then Z[1,n] ≤
m∑

=1

Z
(k)

 a.s., and

lim supZ[1,n]/n ≤ lim sup

[
m∑

=1

Z
(k)



]/
k(m− 1) = gk/k a.s. 

Corollary 15. As n→ ∞, the sequence Z[1,n]/n tends to Φ in probability.

Proof. Let Φ[1,n] = sup
m≥n

Z[1,m]/m. The sequence
{
Φ[1,n]

}
n≥1

is nonincreasing, and Φ[1,n] → Φ a.s. as

n→ ∞. Therefore,

Φ[1,n] × I
{
Φ[1,n] ≤ Φ + ε

}
→ Φ

a.s., and

P
(
Z[1,n]/n ≥ Φ + ε

)
≤ P

(
Φ[1,n] ≥ Φ+ ε

)
→ 0.

Assume that there exists 0 < δ < Φ such that lim supP(Z[1,n]/n ≤ Φ− δ) > 0. Then a subsequence {nk}
can be selected, for which the limit

lim
k
P
(
Z[1,nk]/nk ≤ Φ− δ

)
≡ p > 0

exists. Choose q < δp and x0 � 1 such that

sup
n
E
{
Z[1,n]/n× I

(
Z[1,n]/n > x0

)}
≤ q

and ε > 0 such that ε(1− p) + q < δp.
For n ≥ 1, define the sequence of random variables

βn = (Φ− δ)× I
(
Z[1,n]/n ≤ Φ− δ

)
+ (Φ + ε)× I

(
Φ− δ < Z[1,n]/n ≤ Φ+ ε

)
+ x0 × I

(
Φ + ε < Z[1,n]/n ≤ x0

)
+ Z[1,n]/n× I

(
Z[1,n] > x0

)
.

It is evident that Z[1,n]/n ≤ βn a.s. On the other hand,

EZ[1,nk]/nk ≤ Eβnk
≤ (Φ− δ)× p+ (Φ + ε)× (1− p) + x0 ×P

(
Z[1,nk]/nk ≥ Φ+ ε

)
+ q

→ (Φ− δ)× p+ (Φ + ε)× (1− p) + q
= Φ− δ × p+ ε× (1 − p) + q < Φ

as k → ∞. This provides a contradiction, i.e., Z[1,n]/n→ Φ in probability. 
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