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Regenerative events for different queueing models are considered. The aim of this paper is 
to construct these events for continuous-time processes if they are given for the corresponding 
discrete-time model. The construction uses so-called renovative events revealing the property 
of the state at time n of the discrete-time model to be independent (in an algebraic sense) of 
the states referring to epochs not later than n -  L (where L is some constant) given that 
there are some restrictions on the "governing sequence". Different types of multi-server and 
multi-phase queues are considered. 
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1. Introduction 

The notion of regeneration is a very important  one in probability theory in 
general and in queueing theory in particular. It is used both for qualitative 
analysis of  queueing processes (their ergodicity, boundedness,  stability, conver- 
gence to a stationary regime) and quantitative estimates including simulation 
(stationary characteristics, estimates of stability, convergence rates etc.). Being 
introduced by W.L. Smith this notion was generalized by Thorisson [13] and 
Asmussen [1] in such a way that they permitted regeneration cycles to be 
dependent  given that any cycle is independent  of the preceding regeneration 
times. This generalization is very important  for queueing theory as it preserves all 
important results and leads to the possibility of considering a rather wide class of 
queues (in comparison with Smith's regeneration). This generalization is very 
natural. In fact, different examples of it were considered independently by other 
authors; see e.g. Kalashnikov [9]. 

Another  (but not totally different) approach was suggested by Borovkov ([3] 
for so-called stochastic recursive sequences. Its essence is the construction of 
so-called "renovative events" with the following property: the process is indepen- 
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dent (in an algebraic sense but not necessarily a probabilistic one!) of the 
preceding terms of the governing sequence after the time when some renovative 
event does occur. 

It turned out that "coupling" of these two approaches permits us to construct 
regenerative events in some new situations (e.g. for multi-server and multi-phase 
queues). 

The aim of this paper is to suggest a general construction of regeneration 
points for continuous-time models given that they exist for some imbedded 
discrete-time process. Now the construction of regeneration points for discrete- 
time processes is well-known (see Thorisson [13], Asmussen [1], Kalashnikov [9] 
and references in these papers). As a rule it exploits the Harris-recurrency of the 
underlying Markov processes, see e.g. Nummelin  [12]. But its generalization on 
continuous time is not self-evident. Here we propose it for rather general 
processes occurring in queueing. So, it can be used for many queueing models. 
We do it step by step, starting from the discrete case, using such notions as 
regeneration and renovation. 

Given that regeneration points are constructed it is possible to apply any 
known result for regenerative processes (conve.rgence rate estimates, stability 
estimates, estimates of distribution functions of the first-occurrence times, etc.) in 
order to study the corresponding queueing model. An example of such a study is 
contained in Asmussen and Foss [2] where the proposed general construction is 
used for obtaining ergodicity results. 

The idea of this paper arose after fruitful discussions with S. Asmussen and H. 
Thorisson during the meeting on queueing theory and point processes in Karpacz, 
Poland (January, 1990). 

2. Regeneration and renovation in discrete time 

Regeneration events in queueing are often connected with emptiness of queues, 
or arrival of customers to an empty system. 

Example 1: The single-server queue 
Let us consider the G I / G I / 1 / ~  queue which satisfies Lindley's equation: 

w , + l = ( w , + s , - e , ) + ,  n>~O, (2.1) 

where (-) + = max(0, �9 ), and { x,  }, { e, } are sequences of service and interarrival 
times respectively consisting of i.i.d.r.v.'s, and { w,,} is a sequence of actual 
waiting times. Here and below, interarrival and service times are numbered from 
0: the zeroth customer having service time s o arrives at time e 0 and so on. Then 
the event 

A.= (w.=O} (2.2) 
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is a regenerative one. Let us denote  S ( k )  the k t h  occurrence t ime of the 
regenerative event, O k = S ( k )  - S ( k  - 1), k >/1, S(0) = 0. If  

Es o < Ee  o (2.3) 

then the events ( A,  } are positive recurrent.  This means  that  under  the condi t ion 
(2.3) the following relation is true 

EOk <~ e < oo, k >~ l ,  (2.4) 

where the constant  c depends on the distr ibution functions (d.f.) of s o and e 0 in 
general. Let us notice that the inequality (2.3) follows from 

P ( s  o < e0) > 0. (2.5) 

Sometimes (e.g. in stability analysis, see Borovkov [4], Kalashnikov [8], 
Kalashnikov and Rachev [11]) we need this constant  to be the same for some 
class of regenerative processes. Then  we have to demand  the restrictions to be 
uniform over this class (in some natural  sense). 

This example shows that the process ( w n } is a regenerative one in the sense of 
Smith, i.e. the "fragments"  of this process belonging to different cycles are 
independent .  The  "condi t ion"  of regeneration is expressed here in pure  algebraic 
form (2.2). 

E x a m p l e  2: Mult i -server queues 

Consider a multi-server system (with N servers) and use for its description 
Kiefer-Wolfowitz  equations: 

w , + l = R ( w , + ~ s , - I e , )  +, n>~O, (2.6) 

where again ( s , }  and (e ,}  are sequences of service and interarrival times, 
w, = (w,1 . . . .  , W,N ) is a waiting time vector referring to the n th  customer,  Wnl 
. . .  ~< w,~, and R(-)  is an operator which orders the components  of (-) in a 
non-decreasing way, 8 = (1, 0 , . . . ,  0), I = (1, 1 , . . . ,  1). If ( s,  } and { e,  } consist of 
i.i.d.r.v.'s then it is possible to define regenerative events for this system. Very 
often one tries to expand the previous construct ion to the multi-server case in the 
following way. Let 

A, = { w, = (0, 0 . . . . .  0) }. (2.7) 

Of course, this is a regenerative event in the sense of Smith. In order  for these 
events to be positive recurrent we need to impose the ergodicity condit ion:  

Es o < N E e  o. (2.8) 

But this condi t ion is not  sufficient in general. We have to demand  addit ionally 
that  

P ( s  o < e0) > 0. (2.9) 

It is easy to prove that under  condi t ions (2.8) and (2.9) the events {A,}  
constructed by formula (2.7) are positive recurrent.  



214 S. G. Foss, V. V. Kalashnikov / Regeneration and renovation 

This construct ion is not good because it demands  an addit ional  restriction 
(2.9). A similar restriction (2.5) for a single-server queue was implied by ergodic- 
ity condi t ion (2.3) and so it was not  an addit ional  one. It is well-known (see e.g. 
Borovkov [3], Kalashnikov [9], Foss [6], Kalashnikov and Rachev [11]) that  it is 
possible to eliminate the restriction (2.9) if we use regeneration in the sense of S. 
Asmussen  and H. Thorisson. Namely,  let us fix an integer L > 0 and consider the 
events 

B. (A ,  o, e) = { s j - N e j <  --A, s j < o ,  ej>~e, n - L < j < n } ,  (2.10) 

C , ( W )  = {w,u~< W} ,  (2.11) 

where A, e, e, W are some positive constants.  It is possible to prove that  there 
exists such integer L > 0 that the values w n (n > /L)  calculated with the help of eq. 
(2.6) do not  depend  on w 0 . . . .  ,wn_ L, (but only on e,_L . . . .  , e , _ l  and 
s , - L  . . . .  , G - l )  in an algebraic sense given that  the event 

A , =  G _ L ( W ) n B , ( A ,  O, e) (2.12) 

does occur. In fact, this is a consequence of the Kiefer-Wolfowitz  equation.  Of 
course, the constant  L depends on W, A, o, e and  it is possible to give a 
corresponding estimate, see Kalashnikov and Rachev [11]. It is reasonable to 
name A,  a "renovat ive event". Let us write I (A)  = 1 if an event A does occur 
and I (A)  = 0 otherwise. If we denote  S(0) = 0, 

S(1) = r a in (k :  I (Ak)  = 1}, (2.13) 

S ( n +  1 ) =  m i n ( k :  k >  S ( n ) + L ,  I (AI , )  = 1}, (2.14) 

then the sequence (S(n)},>_.a of " renova t ion  epochs" is a renewal one, i .e .r .v. 's  
On = S(n) - S(n - 1) are i.i.d. (n > 1). Besides, the ergodicity condi t ion (2.8) 
implies that  EO 1 < o~. So, we managed to el iminate condi t ion (2.9) and obtained 
a regenerative process without it. Though  inter-regeneration times are i.i.d.r.v.'s, 
the cycles are dependent  in general. Namely,  the behaviour  of the process (w,  } 
beginning f rom some epoch S(k)  can depend  on the values Ss(k)_L,..., SS(k)_ 1 
and es(k)_ L . . . .  ,es(~)_ a and, hence, on the values WS(k)_L+X,...,Ws(k)_ 1. Of 
course, the distr ibution of the process (w~k)},>~0- (W,+s(k)},>_. 0 does not  de- 
pend  on (S (O) , . . . , S (k ) }  for any k. This  means  that  the process (w,} is a 
regenerative one in the sense of S. Asmussen  and H. Thorisson. It is useful to 
note  that  the epochs { S(n) )  are regenerat ion ones also for other processes such 
as queue-length. 

Let us generalize this construction. 
Let (Y,} be a sequence taking values in a measurable  state space ~ and 

defined by the recursive relation 

Yn+a =f (Yn ,  Sn), n >1 O, (2.15) 

where X,, are elements of the "governing sequence" taking values f rom some 
measurable space X and the mapping  f :  ~ x X ~  ~ is supposed to be measura-  
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ble too. So, if Yn =Y is fixed then we are able to find values Yn+,, for any m > 0 
in terms of y, An, . . . ,  An+,,_ 1 with the help of (2.15): 

Yn+m =fro(Y, Xn, . . . ,  Xn+m-1). (2.16) 

We suppose that there exist such an integer L > 0, a measurable subset B(L)  c 
X/~ = s215 . . .  • s and C c ~ that for any Yl ~ C, Yz ~ C and (x 1 . . . .  , xz. ) 
B(L)  the following relation is true 

fL(Yl,  Xa , ' ' ' ,XL)=f z (Y2 ,  X l , . ' ' ,XL) .  (2.17) 

If C contains only one point then the above equality is true for any L and B(L) .  
Otherwise, it demands some algebraic independence of the state of the process 
{ Yn } after L steps given that the state of the process is in the set C at the 
beginning and that L successive "governing" variables X n take values from the 
set B( L ). 

We now introduce probabilistic notions in the above constructions. Suppose 
that the sequence ( X  n } consists of i.i.d.r.v.'s defined on some probability space 
(/2, ~ ,  P),  let ~n be the a-algebra generated by (Y0, X0 . . . . .  Xn} , o ~ o ~ .  
Hence, r.v. Yn+l is G-measurable. Define events 

Cn= (rn C}, 
B n ~ = { ( X n _ L , . . . , X , _ I ~ B ( L ) } ,  

A n = C,_Lf'IBn(L ). 

(2.18) 

(2.19) 

(2.20) 

Then the sequence (S(n))  of occurrence times of (A,}  (renovation times) as 
defined in (2.13) and (2.14) is a renewal process. This follows from (2.17) and the 
fact that each S(n) is a stopping time of the family ( ~ } .  Besides, the distribu- 
tion of the "shifted" process (Y/k)}n>_.0-= (Yn+s~k)}n>~0 does not depend on 
{ S(O) . . . .  , S(k)}  for any k. Hence, the process { Yn } is a regenerative one in the 
sense of S. Asmussen and H. Thorisson and the behaviour of the process on each 
cycle depends on the L last values of the state belonging to the preceding cycle. 

In order for this construction to be useful the events (A n } are to be positive 
recurrent. This imposes some restrictions on the choice of subsets C and B(L)  
defining regenerative events. In queueing the following standard situation takes 
place: ergodic conditions give the possibility to choose necessary subsets. This 
possibility has already been illustrated for the multi-server system. Below, we 
consider other examples of queueing systems having the same property. 

3. More examples 

Example 3: Multi-phase systems 
Let us consider now the model G I / G I / N  a ---> G I / N  2 ---, . . .  --> G I / N  m which 

consists of m phases, each of them representing a multi-server system (see 
Kalashnikov and Rachev [11], Kalashnikov [10]). Again, let (e ,}  be the i.i.d. 
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interarrival times and s , ( j )  the (N  1 + . . .  +Nj_ 1 + n)th service time at the j t h  
phase, all these times being mutually independent. Let 

N ~  N k = N I + . . . + N k ,  l<~k<~m, N ~ N  m. 

Define the waiting time vector w~= (w~(1),..., w~(N)) in a formal way as 
satisfying the following recurrent relation (the sense of this vector and the 
reasoning behind the following relations can be found in Kalashnikov [10]): 

Wn+a=(R((wn(1))+ + Sn(1), wn(2),...,wn(N1)) . . . .  , 

R(max(w. (N k + 1), w.(N k-1 + 1)) + s . ( k  + 1), w.(N k + 2) , . . . ,  

w.(Nk+l ) ) , . . . ,R (max(w. (U "-1 + 1), w.(U "-2 + 1)) + s . (m) ,  

wn(N m-1 "a t. 2) . . . .  , w,,(N)) - e,,I. (3.1) 

It is proved in Kalashnikov and Rachev ([11], section 5.7.3) that renovative events 
A, can be chosen as in (2.18)-(2.20) and one can choose 

C.={  max w.(i)<~ W},  (3.2) 
l <.i<~N 

B,= (ek >~e, sk(i) <a( i  ) , l  <i  <m,  n - L  <~k < n - 1 } ,  (3.3) 

where constants e and o(i) meet the inequality 

min ( N / e -  a ( i ) )  >~ A > 0. (3.4) 
l <~i<~m 

If the ergodicity condition 

rnin E(Nieo -  So) > 0  (3.5) 
l <~i<~m 

is satisfied then the renovative events A, having been chosen with the help of 
relation (2.20) (where C, and B~ are from (3.2)-(3.4)) are positive recurrent ones. 

A similar construction can be used for multi-phase models consisting of a 
sequence of multi-server systems with some restrictions (e.g. with finite waiting 
rooms). Moreover, it is possible to construct similar renovative events for queue- 
ing networks without feedback or for Jackson-type networks, see Borovkov [4], 
Foss [7]. 

Example 4: Infinite-server queues 
Consider the model (71/(31/o0. Its description is similar to that of the 

GI/GI /N /o~  model. Namely, let us consider the waiting-time vector w, = 
(w,~, w,2 . . . .  ) where w.1 >/w.2 >t . . .  and 

w , + l = D ( s , , - % , w , l - e  . , w . E - e  . . . . .  )+, n>~0. (3.6) 

In eq. (3.6) the operator D(-) orders the components of the vector (-) in a 
non-increasing way, so the sense of the component of the vector w. is quite clear. 
Of course, it is possible to use the operator D when describing models from 
examples 2 and 3, but we preferred the more traditional description. 
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Let us fix an integer L > 0 and consider events 

B,(e)  = (ej>~e, n - L < ~ j  < n } ,  (3.7) 

Cn(IV ) = (Wni <~ W}, (3.8) 
A . = C . _ z ( W ) N B . ( e  ), (3.9) 

where e and IV are some positive constants. It is easy to prove that events A,  are 
renovative ones if we choose L >~ IV/e. So, the relations Es o < 0% P( e o > O) > 0 
guarantee that the events A,  are positive recurrent for some IV, e, L. 

Example 5: Multi-server queues with finite waiting room 
Consider  the G I / G I / N / k  model  with waiting room of capacity k. Let q. be 

the number  of customers in the system at the n th arrival epoch. If w. is the 
waiting-time vector, which is quite similar to that f rom example 2, then 

w . + l = R ( w . + 6 s . I ( q . < k ) - I e . ) + ,  n>~O. (3.10) 

The  sequence of pairs { w., q. } is clearly defined by some recursive relation (as 
q .+l  depends  only on w., e. ,  s.  and q.). Here we again consider renovative 
events A.  or type (2.20): 

A . =  {W._L,N <~ W}N{s j  <~ c<~ ej~ n -  L <~j <~n-1} .  (3.11) 

We are ready to prove that there exist values W, c, L such that these events are 
really renovative and positive recurrent, given that 

P(so <~ Ueo) > O. (3.12) 

Similar constructions of renovative events can be proposed for other multi- 
server queues with different types of restrictions (see Foss [6]). Besides, we can 
consider other queueing characteristics (rather than the waiting-time vector). For  
example, denote  T, = e 0 + . . .  + e , ,  n >I 0, and let Q,(u) be the total number  of 
customers who arrived to the system not later than T n and depar ted after T. + u, 
Q~ - ( Q , ( u ) ,  u >10}. Then {Q~},~0 is a stochastic recursive sequence. More- 
over, this sequence defines the sequence ( w , } , ~  0. For  example, for the 
G 1 / G I / N / o e  model  

w .~= in f{u>~0 :  a , ( u ) < ~ N - i } ,  l <~i<~N. (3.13) 

It is interesting to note that the suggested events A,  are renovative ones for the 
sequence { Q,} too and so the epochs (S (n )}  are regeneration ones for ( Q , } .  

Other examples can be found in Borovkov [3], Foss [5], and Kalashnikov and 
Rachev [11]. It is important  to ment ion  that  the proper ty  (2.17) is of an algebraic 
nature and probabilistic arguments are necessary only for proving the recurrency 
of A,,. 
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4. Regeneration in continuous time 

It is very attractive to use the above regenerative events for studying continu- 
ous-time processes. We shall do this assuming that the above sequence { Y, } is 
now imbedded in some continuous-time process Z =  (Z(t)}t>~o with the mea- 
surable state space r and the sequence { X, } (consisting again of i.i.d.r.v.'s and 
taking values from the space &r) governs the dynamic of Z. Let us proceed to 
correct definitions. 

We construct the process Z recurrently and represent it as consisting of cycles 
which are in fact semi-regeneration ones. Let us consider a "cycle of semi- 
regeneration" defined on some probability space (I2", ~ ' * ,  P *) 

Z * = Z * ( t ,  to*, y ,x ) ,O<<.t<~( to* ,x) , to*~12*,x~r ,  y ~ ,  (4.1) 

where ~ is the length of the cycle and Z* is the random process over the cycle, 
depending on some parameter x ~ ~ and Z*  depending on x ~ ~r and y ~ ~ .  

Briefly, the sense of the parameters defining the cycle is the following: x is a 
value of a member of a "governing sequence" defining the dynamic of the cycle; 
y is a value containing all necessary information about the "prehistory" (in fact, 
y is a value of some imbedded discrete-time regenerative process); to* is an 
element permitting the cycle to be "random".  If the pair (Z* ,  ~) treated as a 
function of to* is constant P*-a.s. then the cycle (Z* ,  ~) is in fact a determinis- 
tic pair given that x and y are fixed. We shall refer to this case as (Z* ,  ~) being 
"conditionally deterministic". Such situations are typical in queueing models. In 
this case all "randomness" is contained in the values of the governing sequence. 

We define the governing r.v. X =  X(to*) also on (I2", ~ * ,  P*) .  Besides, let 
Y =  Y(to*, Z*,  x) be some functional (random in general and depending on 
x ~ Lr) defined on the above cycle. 

Now let (I2, ~ ,  P)  be a Cartesian product of a denumerable number of copies 
p*): 

($2, ~ ,  P ) =  (I2", ~ ' * ,  P * ) X  (12", ~ ' * ,  P * ) •  . . . .  (4.2) 

Let us denote an element of I2 as to---(%, to1,---). Define random element 
Y0(to) = Y0(%)- Below we define r.v.'s Yn(to), n >t 1, recursively. Denote for 
n>~l  

Sn_l-~- gn_l(to)= X(ton); 
= x ( t o o ) ) ;  

+ . . .  T0=0; 

Zn- -Zn( t ,  t o ) = Z * ( t ,  ton, Yn_l(to ), Xn_l(to)),  O<~t <~ n. 

Put 

Zl(t, to) for 0 ~< t < T1, 

Z( t ,  60) = Zn+l(t __ Zn, to) for Z, ~< t < Zn+l, n >t 1, 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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and 

z ,+ l ,  x , ) ,  n> O. (4.8) 

Then relations (4.7), (4.8) together with (4.3)-(4.6) define the process Z com- 
pletely. 

We shall view the sequence (Y, } as imbedded in the process Z and consider 
the { T n } as "imbedded epochs". In fact, (Yn) is a Markov chain and (Xn } 
Consists of i.i.d.r.v.'s. The sequence (I1, } meets the following stochastic recursive 
equation 

Y,+a =f(c%+~, r , ,  X,),  (4.9) 

where the mapping f can be recovered easily from relations (4.6) and (4.8). 
Equation (4.9) is a sort of generalization of relation (2.15). Namely, in (2.15) the 
value Y,+x is completely determined by Y, and X,, and in (4.9) the value Y,+I is 
a random one given that Y, and X, are fixed. If (Z* ,  4) is conditionally 
deterministic and the functional Y does not depend on the first argument o:* 
then relation (4.9) is reduced to (2.15). Of course, denoting X" = (~:,+,, X,), we 
can carry out this reduction in the general case, but sometimes it is important to 
distinguish between governing r.v.'s and "' random" elements ~,. 

As in (2.15) we are able to find functions fro, m >/1, defining values Y,+,,, in 
terms of II, = y ,  X , , . . . ,  X,+,,_,,  ~ 0 n + l , . . .  , ~n+rn: 

Yn+rn ~---L(0~n+] . . . .  , O$n+ m, y, Xn . . . .  , X,,+n,_a). (4.10) 

Suppose that there exists an integer L > 0, a measurable set ~ ( L )  c (~2") L -= 
~ 2 " • 2 1 5  (L times) and C c ~  such that for any y l ~ C ,  Y2~C and 
(o:,+1,.. . ,  o:,+L) ~ ~ ( L )  the following relation is true: 

fz (o : ,+ l , . . . ,  o:,+L, Y,, X(o:,+a),---, X(~,+L))  

=ft.(~ . . . . .  ~ Yu, X(~ X(~,+z) ) -  (4.11) 

Define the events 

C, = ( Y, ~ C }, (4.12) 

B.(L) = (4.13) 

A , = C n _ L M B , ( L  ). (4.14) 

Then ( A n } is a sequence of regenerative events for the imbedded process ( Y, } in 
the sense of S. Asmussen and H. Thorisson. 

We consider the following particular case which is important in queueing 
theory especially when the cycle (Z* ,  4) is conditionally deterministic. In this 
case (cf. section 2) we construct the set ~ ( L )  through some set B ( L ) c Y  "L. 
Namely, we demand the existence of a set B(L)  c y-L such that (4.11) is true for 

~ ( L )  -~- ((O~n+ 1 . . . .  ,03n+L): ( X ( c a ) n . I ) , . . . , X ( c . % + L ) E B ( L ) } .  (4.15) 
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The above construct ion is a generalization of the construct ion in section 2. If  
( Z * ,  ~) is condit ionally deterministic then formulas (4.12)-(4.14) are completely 
the same as in section 2. 

N ow we would  like to use ( A , }  to construct  regenerative events for a 
cont inuous  t ime process Z. Let R(k) be the k t h  regenerat ion epoch for (I1, } and 
let S ( k )  be the k th occurrence t ime of events (C,, } (see (2.18)), bo th  R(k) and 
S(k) being integers. Denote  Ok = TR(k), ~ Ts(k). It is tempt ing  to claim the 
epochs (Ok } as regeneration ones for Z. Unfor tunate ly ,  they may  not  have the 
"regenerat ive proper ty"  even in the sense of S. Asmussen  and H. Thorisson.  
Really, though the values of Z(s ) ,  s >/Ok, depend  on only Yk, Yk can depend  on 
the value Pk -- Ok* where Ok* = max{ o/: oj < Ok }- Hence,  the values Z(s), s >! Oh, 
can depend on the length of the previous inter-regeneration times. This con- 
tradicts the defini t ion of the regenerative process in any sense ment ioned  above. 

So, in order to define regeneration times let us fix some constant  2t > 0 and 
define the following events using in fact "discrete-t ime construct ions":  

B,(X,L)=B,(L) f ' I (~(%_L+I,X,_L)+. . .+~(~o, ,X,_ , )<X},  (4.16) 

A(n, X ) =  C,_/ f ' lB , (X,  L) .  (4.17) 

Now we are ready to define epochs which are " 'candidates" for regeneration 
times: 

r 1 = min (~ -=  T k + X: I(A(k,  h ) ) =  1}, (4.18) 

z . + l = m i n ( z = T k + X : I ( A ( k , X ) ) = l , ~ > ' r . + X } ,  n>~l. (4.19) 

These times are really regeneration ones due to the following: 
Let T. = T~(.) + X. Then the sequence (T.(.) } is a sequence of s topping times of 

the family ( ~ ( " ) }  where o~("~ is a o-algebra generated by ((Yo, X0), (I11, X1, 
~1), (Y2, X2, ~2),...,(Y., Xn, ~.)}" Let x be the ordering number  of the 
semi-regeneration cycles (of the process Z )  starting at t ime T.(.). Then  both  the 
inter-regeneration time ~-.+1-~-. and the "shi f ted"  process Z(")={Z(t+ 
r., ~0) } t >~ 0 depend  only on ( ~0~, % + ~ . . . .  ). Of course, the initial L elements of this 
sequence are not  arbitrary but  belong to the set ~ ( L ) .  It is impor tan t  to note  
that  the preceding inter-regeneration t ime "r . -  "r._ 1 does not  depend  on these L 
elements as -r. - T.(.~ = h. Hence, successive inter-regeneration t imes are indepen-  
dent  and Z(n) does not depend on { % . . . . .  ~-.} for any n though successive 
" regenera t ion  cycles" can be dependent .  This means  that  { r. } are regenerat ion 
epochs for Z in the sense of S. Asmussen  and H. Thorisson.  

F r o m  the defini t ion of the process Z follows that  the constructed regenerative 
events (4.17) are positive recurrent if 
(i) the set C is positive recurrent for the Markov  chain (Y. }; 
(ii) the constant  h and events B.(X, L )  are such that  P(Bn(X, L ) ) >  0 (this 

probabil i ty does not  depend on n); 
(iii) 0 < E~.  < c~. 
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It should be mentioned that there is another way of constructing regenerative 
events. Namely,  one can use the so-called "split t ing technique" (see Nummel in  
[12]) in the following way. Let us add a binary coordinate ~ to the underlying 
process Z so that this coordinate can be changed only at times T k and T k + ?t: 
~b(t) = 1 if and only if T k ~< t < T k + X and I(Ckf'lBk+L(Tt, L)) = 1. Then the 
sequence { flj } defined by the equalities 

B1 = min(Tk: r  = a}, 

B,+, = min{rk:  rk > B,, ~ ( r ~ )  = 1}, 

(4.20) 

(4.21) 

is a sequence of regeneration times (in the sense of S. Asmussen and H. 
Thorisson) for the "expanded" process (Z,  q~). 

5. Examples: multi-server queues in continuous time 

Let us start with the G I / G I / N / o o  queue. The construction of a discrete-time 
regenerative process for it with the help of the Kiefer -Wolfowi tz  relations was 
given in: example 2. In order to describe this model  with a continuous-t ime 
regenerative process we introduce some additional notations. Let Q(t) be the 
queue-length (the number of customers presented to the system) at time t, 
r(t) = ( q ( t ) , . . . ,  ro(t) ) be a vector of dimension Q = Q(t) consisting of residual 
service times for all customers at time t. It follows that rj(t)  decreases with unit 
velocity if 1 ~<j ~< N and rj(t) stays constant  if j > N. 

Suppose for a while that no customer enter the system after time t, i.e. we 
consider only the service process. Define the process V(u) = (Q(u), r(u)), u >1 t, 
having the following trajectories: 

(i) If Q ( t ) = 0  then V ( u ) - V ( t ) = 0  for all u>~ t - in this situation the 
component  r (u )  is not defined. 

(ii) If 0 < Q(t) = Q <~ N then all rj(u),  1 ~<j ~< Q, decrease with unit velocity 
and Q(u) = Q over the time-interval t ~ u < t + X where X = min{/)( t ) :  1 ~ j  
Q}. Define Q(t + x)  = Q - 1 and construct r(t + X) from the vector r(t + X - O) 
deleting from the latter "zero"-components .  Further,  the dynamics of V(u), 
u >~ t + X, is evident (if Q(t + x)  > 0 then it has been described just  above, if 
Q(t + x)  = 0 then see (i)). 

(iii) If Q ( t ) = Q > N  then again all ~(u) ,  I<~j<~N, decrease with unit 
velocity, l ) (u)  = l)(t), j > N, and Q(u) = Q over the time-interval t ~< u < t + X 
where X = rain( w 1 ~<j ~< N}.  Define Q(t + x)  = Q - 1 and construct r(t + 
X) from the vector r(t + X - 0) removing the component  rN+a(t ) to the place of 
the "zero"-component  (if there are several "zero"-components  in r ( t+  X -  O) 
then several components  rj(t) beginning from j = N +  1 are removed to new 
places). After  these steps the dynamics of V(u), u >~ t + X, is evident. 



222 S. G. Foss, V. K Kalashnikov / Regeneration and renovation 

So, Q(u)  is a non-increasing function of time u >~ t and hence the dimension of 
the vector r(u) is non-increasing too. If we know V(t) then we are able to 
construct the Kiefer-Wolfowitz waiting time vector w ( t ) = ( W l ( t  ) . . . .  , wlv(t)) 
(referring to the time t) in the following way: 

w j ( t ) = m i n { u :  Q ( t + u ) < ~ N - j } .  (5.1) 

We use the process V(u) in order to construct the regenerative cycle of the 
underlying process. In order to do this we put  for n >_- 0 (cf. eqs. (4.3)-(4.8)) 

Xn=(en ,  s , ) ;  (5.2) 

~,,+1 = e , ;  (5 .3 )  

Z 0 ---- 0, Tn+ 1 = e 0 + . . .  + e , ;  (5.14) 

Yn = (Q, ,  G, w,),  (5.5) 

where Q, = Q(T,), r n = r(Tn), w n = w(T,); 

Zn+ 1 = V ( u ) ,  0 ~ U < ~ n + l  , (5.6) 

where V(0)=  (Q, ,  G)- 
We can see that the constructions (5.2)-(5.6) are particular cases of (4.3)-(4.7) 

and the cycles defined by (5.6) are conditionally deterministic, the sequence ( Y, ) 
being defined by the recursive relation of type (2.15). From relation (5.5) and 
example 2 it follows that there exist constants A, a, e, W and L such that events 
An defined by relation (2.12) are renovative ones for the imbedded process { Yn }- 
This means that relation (2.17) is true for this process. Besides, ( A n } are positive 
recurrent events given that the ergodicity condition (2.8) holds. Hence, in order to 
construct positive recurrent regeneration epochs ( r n } in accordance with relations 
(4.16)-(4.19) we need to assume additionally that there exists a constant e' such 
that 

* ' (e  0 < ~') > 0 (5.7) 

(we need this relation for the events Bn(~,, L)  from (4.16) to have positive 
probability). However, the relation (5.7) is true for any non-degenerate r.v. e o. 
This means that relation (2.8) guarantees that the sequence (rn } constructed by 
eqs. (4.16)-(4.19) is a sequence of positive recurrent regenerative times (in the 
sense of S. Asmussen and H. Thorisson) for the initial process Z( t )  = (Q(t) ,  r(t)) 
defining all main characteristics of the G I / G 1 / N / o o  queueing model. 

Similar constructions remain valid for G I / G i / o o  and G I / G I / N / k  queueing 
models (see examples 4 and 5), the underlying process Z( t )  being the same as 
above. Regenerative events for it are constructed with the help of relations 
(4.16)-(4.19) and corresponding regenerative events for imbedded discrete-time 
processes { Yn ), their construction being described in the above examples. 

For  the multi-phase model G I / G I / N  1 ~ G I / N  2 -~ . . .  ~ GI/Nm (see example 
3) we can consider the process Z( t )  = (Q~ r(1)(t) . . . . .  Q(m)(t), r(m)(t)) where 
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Q~i~(t) is the queue-length at the i t h  phase  at  t ime t and  r~i~(t) is the correspond-  
ing vector of  residual service times. Then,  using the const ruct ion of  regenerative 
events for the discrete-time imbedded  process (3.1), we can obta in  regenerative 
events for the process Z ( t )  with the help of  eqs. (4.16)-(4.19) and  the ergodici ty  
condi t ion  (3.4) is sufficient for  these events to be positive recurrent.  
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