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Abstract

This paper focuses on the stability of open queueing systems under stationary ergodic as-
sumptions. It defines a set of conditions, the monotone separable framework, ensuring that the
stability region is given by the following saturation rule: ‘saturate’ the queues which are fed
by the external arrival stream; look at the ‘intensity’ µ of the departure stream in this saturated
system; then stability holds whenever the intensity of the arrival process, say λ satisfies the
condition λ < µ, whereas the network is unstable if λ > µ. Whenever the stability condition
is satisfied, it is also shown that certain state variables associated with the network admit a fi-
nite stationary regime which is constructed pathwise using a Loynes type backward argument.
This framework involves two main pathwise properties, external monotonicity and separability,
which are satisfied by several classical queueing networks. The main tool for the proof of this
rule is sub-additive ergodic theory. It is shown that for various problems, the proposed method
provides an alternative to the methods based on Harris recurrence and regeneration; this is par-
ticularly true in the Markov case, where we show that the distributional assumptions commonly
made on service or arrival times so as to ensure Harris-recurrence can in fact be relaxed.
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1 Introduction

A folk theorem of queueing theory states that the stability region of an open queueing systems
can be obtained as follows: ‘saturate’ the queues which are fed by the external arrival stream
with an infinite customer population; if µ denotes the ‘intensity’ of the departure stream in this
saturated system, then the system is stable when the intensity of the arrival process, λ, satisfies
λ < µ. This engineering rule, which we will refer to as the saturation rule, was initially designed
for Markovian queueing systems, where µ could be obtained by computing the steady state of a
Markov chain of smaller dimension than that of the initial non-saturated system (see for instance
[13]).

The aim of the present paper is to set a natural framework in which this rule can be rigorously
proved when dropping the Markovian assumptions and replacing them by standard stationary er-
godic assumptions, namely the arrival point process is a stationary ergodic marked point process
of finite intensity. The conditions required by this framework consist of easy-to-check, pathwise
properties of the system under consideration. The two main conditions are external monotonicity
and separability, although two other mild conditions called causality and homogeneity are also
assumed.

For any queueing system within this framework (to be defined below), we will denote Xn the
time of the last activity to take place in the system, whenever one starts with n customers, all
arrived at time 0 in an empty system. The maximal dater Xn turns out to be the adequate way of
implementing the saturation idea for non-Markov systems. The main result is then:

Theorem 1 The sequence {Xn} satisfies a SLLN:

lim
n

Xn

n
= γ(0) a.s.,

for some non-negative constant γ(0); this constant will also be finite if the input marked process
satisfies natural integrability conditions. Whenever the intensity of the input process satisfies the
condition λ < γ−1(0), then the system is stable, whereas it is unstable if λ > γ−1(0).

Two versions of this theorem are proposed. In the first one, considered in § 2, the monotonicity
and separability assumptions which are made, and the results which are obtained only concern
the maximal daters {Xn}. Stability here means that when the system is fed by the restriction of
the point process on (−∞, t), the time to inactivity admits a finite steady state regime.

In the refined version of § 4, monotonicity and separability assumptions are made on all daters,
namely the epochs of all events in the network. In that case, a steady regime can be constructed
for the number of customers in each queue.

In both versions, this stationary regime is constructed pathwise using a backward argument of
the same nature as the argument of Loynes in the G/G/1 queue. If λ > γ−1 , the system is unsta-
ble in the sense that certain variables (either the time to inactivity or the number of customers in
some queues) tend to∞ in probability.

The proposed method provides an alternative to the methods based on regeneration (Harris-
recurrence [15] in the Markov-case, Renovating Events in the non-Markov case [8]). Regen-
eration is replaced by separability. An interesting point when comparing these methods is that
regeneration has to be effective (for instance, in the Harris-recurrent case, it is necessary to have
an infinite number of regeneration points – forming a recurrent point process – for the method to
apply), whereas the method developed here applies even in the case when separation a.s. never
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takes place.

Several classes of queueing systems for which the stability is an open question (at least in
the stationary ergodic case) fall within this framework, like for instance generalized Jackson
queueing networks, polling systems and certain non-(max +)-linear Petri nets (see the examples
of the final section). So subadditive ergodic theory is central for a much wider class than the
class of models based (directly or indirectly) on random graph structures (see for example [11],
[2], [1], [5], [6]).

2 The Monotone Separable Framework for Maximal Daters

Arrival Point Process LetN be a marked point process with points {Tn}n∈ZZ and marks {ξn}n∈ZZ ,
where ξn ∈ (K,K). This point process is not assumed to be simple (nor to be stationary at this
stage). We only assume that Tn ≤ Tn+1, for all n. We shall use the notations τn for Tn+1−Tn , c+N
for the point process {Tn + c} and cN for the point process {cTn}, where c ∈ IR. In what follows,
we shall not adopt the usual renumbering rule for point processes, and the n-th point of N + c will
be Tn + c by definition.

Maximal Daters For all m ≤ n ∈ IN , let X[m,n](N ) be the time of the last activity in the
network, when this one starts empty and is fed by the [m,n] restriction of N , namely the point
process N[m,n] , with points {Tl}m≤l≤n. We assume to be given a set of functions {fl}, fl : IRl ×
Kl → IR, such that:

X[m,n](N ) = fn−m+1{(Tl, ξl), m ≤ l ≤ n}, (1)

for all n,m and N . We assume that the functions fn are such that the following properties hold
for all N :

1. (causality): For all m ≤ n,
X[m,n](N ) ≥ Tn;

2. (external monotonicity): For all m ≤ n,

X[m,n](N
′) ≥ X[m,n](N ),

whenever N ′
def
= {T ′n} is such that T ′n ≥ Tn for all n, a property which we will write N ′ ≥ N

for short;

3. (homogeneity): ∀c ∈ IR, ∀m ≤ n

X[m,n](c + N ) = X[m,n](N ) + c;

4. (separability): If, for all m ≤ l < n, X[m,l](N ) ≤ Tl+1 , then

X[m,n](N ) = X[l+1,n](N ).

In words, property (4) simply states that if the arrival of customer l + 1 takes place later than the
last activity for the arrival process [m, l], then the evolution of the network after time Tl+1 is the
same as in the network which ‘starts empty’ at this time.
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Remark Note that any system satisfying (2) and (3) also satisfies the following continuity prop-
erty: for all n, if Tk ≤ T ′k ≤ Tk + ε, then

X[1,n] ≤ X ′[1,n] ≤ X[1,n] + ε.

A similar property holds true for all daters in the generalized framework of §4.

Properties of Maximal Daters Let

Z[m,n](N )
def
= X[m,n](N ) − Tn = X[m,n](N − Tn).

Note that Z[m,n](N ) is a function of {ξn} and {τl}m≤l≤n−1 only. In particular, Zn(N )
def
= Z[n,n](N )

is not a function of {τn}.

Lemma 1 (internal monotonicity ofX and Z) Under the above conditions, the variablesX[m,n]

and Z[m,n] satisfy the internal monotonicity property: for all N

X[m−1,n](N ) ≥ X[m,n](N ), Z[m−1,n](N ) ≥ Z[m,n](N ) (m ≤ n).

Proof Consider the point process N ′ with points:

T ′j =

{
Tj − Zm−1(N ) for j ≤ m− 1;
Tj for j ≥ m .

Since the [m,∞] restrictions of N and N ′ coincide, X[m,n](N ) = X[m,n](N ′). The separability
assumption implies that X[m−1,n](N ′) = X[m,n](N ′). Finally, the external monotonicity implies
that X[m−1,n](N ′) ≤ X[m−1,n](N ). ut

Lemma 2 (subadditive property of Z .) Under the above conditions, {Z[m,n]} satisfies the fol-
lowing sub-additive property: for all m ≤ l < n, for all N

Z[m,n](N ) ≤ Z[m,l](N ) + Z[l+1,n](N ).

Proof Introduce two auxiliary point processes N 1 = {T 1
j } and N 2 = {T 2

j } defined by

T 1
j =

{
Tj for j ≤ l;
Tj + Z[m,l](N ) for j > l .

and

T 2
j =

{
Tj − Z[m,l](N ) for j ≤ l;
Tj for j > l .

So T 2
j = T 1

j − Z[m,l](N ), for all j . Then, using assumptions (1)-(4) of our framework

X[m,n](N )
2
≤ X[m,n](N

1)
4
= X[l+1,n](N

1)
3
= X[l+1,n](N

2) + Z[m,l](N ) = X[l+1,n](N ) + Z[m,l](N ).

Therefore

Z[m,n](N ) = X[m,n](N ) − Tn ≤ X[l+1,n](N ) − Tn + Z[m,l](N )
= Z[l+1,n](N ) + Z[m,l](N ).

ut
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Remark The conditions (1)-(4) are given here under their simplest form. They can be relaxed
in various ways without altering the conclusions. In particular:

• Causality can be replaced by the weaker conditions that X[1,n](N ) ≥ Tn − Un, where Un is
positive and EUn ≤ cn for all n and for some c <∞.

• Separability can be replaced by the following weaker subseparability condition:

X[m,n](N ) ≤ X[l+1,n](N ),

for all m ≤ l < n, such that X[m,l](N ) ≤ Tl+1 .

• Another possible weakening of (4) is as follows: for allm ≤ l < n, ifX[m,l](N )+U[m,l](N ) ≤
Tl+1 , then X[m,n](N ) = X[l+1,n](N ), where U[m,l](N ) is some auxiliary sequence such that

– U[m,l](N ) = U[m−1,l−1](N ) ◦ θ (see §3);
– {U[−n,0](N )} is uniformly integrable and U[−n,0](N )/n→ 0 a.s. as n→∞.

Concerning the relevant extension of Kingman’s subadditive ergodic theorem, see [16].

• Homogeneity can also be weakened and be replaced by some homogeneity in distribution.
Concerning the relevant extension of Kingman’s subadditive ergodic theorem, see [14].

Several other extensions are possible, like for instance replacing the arrival point process by a
random measure.

3 Proof of the Saturation Rule

Stationarity Assumptions Assume the variables {τn, ξn} are random variables defined on a
common probability space (Ω,F , P 0, θ), where θ is a measure-preserving shift transformation,
such that (τn, ξn) ◦ θ = (τn+1, ξn+1). For instance, this space is the Palm space of a stationary
ergodic point process. The following integrability assumptions are also assumed to hold:

E0τn
def
= λ−1 <∞, E0Zn <∞.

First-Order Ergodic Property Kingman’s sub-additive ergodic theorem gives:

Lemma 3 There exists a finite non-negative constant γ such that the a.s. limits

lim
Z[−n,−1]

n
= lim

E0Z[−n,−1]

n
= lim

Z[1,n]

n
= lim

E0Z[1,n]

n
= γ

hold P 0-a.s.

Corollary 1 Under the foregoing assumptions

lim
n

X[1,n]

n
= γ + λ−1.

0-1 Law Let A be the event A = {limZ[−n,0] = ∞}.

Theorem 2 Under the foregoing ergodic assumption, P 0(A) ∈ {0, 1}.

Proof Note that θA = {limZ[−n,−1] = ∞}. But owing to the sub-additive property, Z[−n,−1] ≥
Z[−n,0] − Z0 . This and the integrability of Z0 imply that θA ⊇ A. Since θ is ergodic, the proof is
concluded. ut
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Scaling Factor For all 0 ≤ c <∞, the sequences

X[m,n](cN )
def
= fn+1−m{(c · Tl, ξl);m ≤ l ≤ n}

and
Z[m,n](cN ) = X[m,n](cN ) − c · Tn

satisfy all the monotonicity and sub-additive properties mentioned above. In addition, for all n
(a) Z[−n,−1](cN ) is decreasing in c;
(b) X[1,n](cN ) is increasing in c.

Thus

Lemma 4 For all c ≥ 0, there exists a non-negative constant γ(c) such that

lim
Z[−n,−1](cN )

n
= γ(c) a.s.;

γ(c) is decreasing in c while γ(c) + cλ−1 is increasing in c. In particular, γ + λ−1 ≥ γ(0), where

γ
def
= γ(1).

Second-Order Ergodic Property The main result on the stability region is:

Theorem 3 If limZ[−n,0](N ) = ∞ a.s., then λγ(0) ≥ 1. If λγ(0) > 1, then limZ[−n,0] = ∞ a.s.

Proof We first prove the second assertion. We have

lim
n
Z[−n,0](N )/n = γ ≥ γ(0) − λ−1 > 0

a.s. Therefore, if λγ(0) > 1, then Z[−n,0](N ) →∞ a.s.

We now prove the first one. Let Q be the point process with all its points equal to 0: Tn(Q) = 0
for all n. For each integer l ≥ 1, let Kl be the random variable

Kl = min{n ≥ 1 : Z[−n,0](N ) ≥ Tl − T0},

which will be P 0 a.s. finite if Z[−n,0] tends to ∞. Owing to the sub-additive property, for all
n, l ≥ 1

Z[−n,l] ≤ Z[−n,0] + Z[1,l] ≤ Z[−n,0] +
l∑

i=1

Zi,

where the random variables Zi = Z0◦θi do not depend on the inter-arrival times and are integrable.
For all n ≥ 1, let N̂n be the point process with points

T̂n
j =

{
Tj − T0 for j ≤ 0;
Z[−n,0](N ) for j ≥ 1

and let Ñn be defined by
T̃n

j = Z[−n,0], for all j.

Then

(X[−n,l](N ) − T0)1n≥Kl

2
≤ X[−n,l](N̂

n)1n≥Kl
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4
= X[1,l](N̂

n)1n≥Kl
= X[1,l](Ñ

n)1n≥Kl

3
=

(
Z[−n,0](N ) +X[1,l](Q)

)
1n≥Kl

=
(
Z[−n,0](N ) + Z[1,l](Q)

)
1n≥Kl

.

Therefore

Z[−n,l](N )1n≥Kl
=

(
X[−n,l](N ) − Tl

)
1n≥Kl

≤ (Z[−n,0](N ) + Z[1,l](Q) − Tl + T0)1n≥Kl
.

Finally,

Z[−n,l](N ) − Z[−n,0](N )
=
(
Z[−n,l](N ) − Z[−n,0](N )

)
[1n<Kl

+ 1n≥Kl
]

≤
(

l∑
i=1

Zi

)
1n<Kl

+
(
Z[1,l](Q) − Tl + T0

)
1n≥Kl

= Ψl1n<Kl
+ Z[1,l](Q) − Tl + T0, (2)

where

ψl
def
=

l∑
i=1

Zi − Z[1,l](Q) + Tl − T0

is P 0-integrable. By making use of the relations Z[−n,l] = Z[−n−l,0] ◦ θl , Z[−n−l,0] ≥ Z[−n,0] and
E0Z[−n−l,0] <∞, we obtain from (2) that

0 ≤ E0Z[−n,l] − E0Z[−n,0] ≤ E0{ψl1n<Kl
} + E0Z[1,l](Q) − lλ−1.

If Kl is a.s. finite for all l, the right-hand side of the last equation tends to E0Z[1,l](Q) − lλ−1 as
n→∞. Therefore

E0Z[1,l](Q)
l

≥ λ−1,

for all l. Finally, when letting l go to infinity and when making use of Lemma 4, we obtain

γ(0) = lim
l

E0Z[1,l](Q)
l

≥ λ−1.

ut
Thus if λγ(0) < 1, the random variable

Z
def
= lim

n
Z[−n,0] a.s.

is P 0-a.s. finite and it provides a minimal stationary regime for the time to inactivity, which is
defined as the time to the last activity in the system when subject to the [−∞, 0] restriction of N .

4 The Separable-Monotone Framework for Counters and Daters

The network is assumed to be characterized by following two equivalent sets of refined state
variables:

• The daters: Xi
[m,n](k) ∈ IR, will denote the epoch of the k-th event on node i, when the

network has N[m,n] for input point process (here, we take k ∈ IN and Xi
[m,n](k) = ∞ if there

are less than k events on node i).
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• The counters: X i
[m,n](t) ∈ IN , will denote the number of events (for instance customer

departures) which take place on node i before time t (this function will be taken left-
continuous with right-hand limits).

These two sets of variables are equivalent since counters and daters are related by

X i
[m,n](t) =

∑
k∈IN

1{Xi
[m,n] (k)≤t} . (3)

The refined separable-monotone framework consists of the following set of assumptions:

II. (external Monotonicity) If N[m,n] ≤ N ′[m,n] , then (with obvious notations)

Xi
[m,n](k) ≤ {X ′}i[m,n](k),

for all k and i , or equivalently

X i
[m,n](t) ≥ {X ′}i[m,n](t),

for all t and i.

III. (homogeneity) If T ′l = Tl + c, then

{X ′}i[m,n](k) = X
i
[m,n](k) + c,

for all k and i, or equivalently

{X ′}i[m,n](t + c) = X i
[m,n](t),

for all t and i.

V. (conservation) Let1

X i
[m,n]

def
= lim

t→∞
X i
[m,n](t) . (4)

We assume that X i
[m,n] is finite and independent of the values taken by the variables Tl ,

n ≤ l ≤ m (provided m,n and {Tl} are finite of course).

The maximal dater of the network is naturally defined by:

X[m,n] = max
i
Xi

[m,n](X i
[m,n]) . (5)

IV. (separability) The separability assumption states that if Tl+1 ≥ X[m,l] , then

Xi
[m,n](k) = Xi

[m,l](k), k ≤ X i[m, l]

Xi
[m,n](k + X i

[m,l]) = Xi
[l+1,m](k), k ≥ 1

or equivalently

X i
[m,n](t) = X i

[m,l](t), t < Tl+1

X i
[m,n](t) = X i

[m,l] + X i
[l+1,m](t), t ≥ Tl+1.

1This limit exists since the function X i
[m,n] (t) is non-decreasing. In words, X i

[m,n] counts the total number of events
on node i for N[m,n]
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Remarks It is easy to check that the separation and the conservation properties imply that for
all m ≤ l < n,

X i
[m,n] = X i

[m,l] + X i
[l+1,n] (6)

regardless of {Tl}.

Whenever all counters (or daters) of a queueing network satisfy the assumptions II-V, the max-
imal dater defined by (5) necessarily satisfies Assumptions 2-4 of the framework of Section 2. In
what follows, we will also assume that condition (1) of this framework is satisfied.

Let

W i
[m,n](t)

def
= X i

[m,n] −X i
[m,n](Tn + t) t ≥ 0 .

Theorem 4 (refined internal monotonicity) Under the above assumptions, for all t ≥ 0, i and
n,

W i
[m−1,n](t) ≥W i

[m,n](t),

so that
∃ lim

m→−∞
↑W i

[m,n](t)
def
= W i

[−∞,n](t).

Proof Let N ′ be as in the proof of Lemma 1. From the conservation assumption,

W i
[m,n](t) = {X ′}i[m,n] − {X ′}i[m,n](Tn + t).

But in view of (6)

{X ′}i[m−1,n] = {X ′}i[m−1,m−1] + {X ′}i[m,n] = X i
[m−1,m−1] + X i

[m,n].

Similarly, in view of the separation assumption

{X ′}i[m−1,n](Tn + t) = {X ′}i[m−1,m−1] + {X ′}i[m,n](Tn + t).

When using the last three equations, we obtain

W i
[m,n](t) = {X ′}i[m−1,n] − {X ′}i[m−1,n](Tn + t)

≤ X i
[m−1,n] −X i

[m−1,n](Tn + t)

= W i
[m−1,n](t),

where the last inequality follows from the (counter) external monotonicity. ut

Theorem 5 Under the stochastic assumptions of the Section 3, if

{W[−n,0] →n→∞ ∞}
a.s.
=
{
∃i/W i

[−n,0] →n→∞ ∞
}

(7)

then, λγ0 < 1, impliesW i
[−∞,n](t) <∞ for all n, i and t.

Proof In view of Theorem 3 and Assumption (7), the condition λγ(0) < 1 implies thatW i
[−∞,n](t) <

∞ for all n, i and t. ut
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Remark If in addition W i
[n,n+k](t) = W i

[0,k](t) ◦ θn for all n, i and t, then the sequence Wn =
(W i

[−∞,n](t), t ∈ [Tn, Tn+1), i) satisfies the compatibility propertyWn = W ◦θn , and thus provides
a way of constructing a stationary version of queueing process. For instance, consider the family
of daters Xi,j (k) associated with departures from node i to node j , and assume that they satisfy
the above assumptions. In this case, it is natural to define the variables:

Qi
[m,n](t) = W

i
[m,n](t) −

∑
j

W j,i
[m,n](t) (8)

which represent the number of customers in station i at time t + Tn for N[m,n] . So, if λγ(0) <
1, we have constructed a stationary (θ-compatible) version of the Qi(t) process. For instance,
Qi

[−∞,n](t) for t ∈ [Tn, Tn+1) provides a stationary process Q for the [−∞, +∞]-restriction of N ,
namely N .

5 Examples and Counter-Examples

The G/G/1 Queue. Here X[m,n] is the departure epoch of customer n, when there are n + 1−m
customers with arrival epochs Tl and service times σl , m ≤ l ≤ n; Z[m,n] is then the sojourn time
of customer n. The computation of γ(0) is trivial, by the strong law of large numbers.

The G/G/s Queue. X[m,n] is the last departure time from the queue with customers arriving at
Tl , m ≤ l ≤ n, that is

Z[m,n](N ) = max(W 1
[m,n](N ) + σn,W

s
[m,n](N )),

where W[m,n](N ) = (W 1
[m,n](N ), . . . ,W s

[m,n](N )) is the ordered workload vector at time Tn−, for
this arrival process (we assume that the queue is initially empty). We have

lim
n

Z[1,n](Q)
n

= γ(0) a.s.,

as a consequence of Lemma 4. The computation of the constant γ(0) is immediate from the rela-
tion

lim
W j

[m,n](Q)

n
= γ(0) a.s. (1 ≤ j ≤ s). (9)

Indeed since
n∑

i=1

σi =
s∑

j=1

W j
[1,n](Q),

the relation γ(0) = E0(σ)/s follows by an immediate limiting argument.

Proof of (9) For j = s, the property follows from the relation Z[1,n](Q) = W s
[1,n+1](Q). In order to

prove the property for all j , it is enough to show that

W s
[1,n] −W 1

[1,n]

n
→ 0

a.s. as n → ∞. Let Un = max(σn, . . . , σn+s−1). By comparing the original queue and the queue
with workload (W 1

[1,n](Q),W
s
[1,n](Q), . . . ,W

s
[1,n](Q)) at time Tn−, and with constant service time

Un over the interval n, n + 1, . . . , n + s− 1, we see that

W s
[1,n+s](Q) ≤ max(W s

[1,n](Q),W
1
[1,n](Q) + sUn) n ≥ 0.
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Let n = ks + l, 0 ≤ l < s with l fixed. Since the sequence W 1
[1,n](Q) is non-decreasing in n and

since Un is non-negative, an induction argument leads to the following inequalities:

W s
[1,n+s](Q) ≤ . . . ≤ max(W s

[1,l](Q),W
1
[1,ks+l](Q)) + s max

0≤i≤k
Uis+l.

Since {Uis+l}i≥0 is a stationary sequence with finite mean, then (max0≤i≤k Uis+l)/k → 0 a.s. as
k →∞. Obviously,W s

[1,l](Q)/k → 0 a.s. as k →∞. Then

γ(0) = lim
k→∞

W s
[1,ks+l]

ks
= lim inf(

W s
[1,ks+l]

ks
)

≤ lim inf
max(W s

[1,l](Q),W
1
[1,ks+l](Q))

ks
+ lim sup

max0≤i≤k Uis+l

k

= lim inf
W 1

[1,ks+l](Q)

ks

a.s. for all l = 0, . . . , s− 1. Therefore,

γ(0) ≤ lim inf
W 1

[1,n](Q)

n

a.s., and this together withW s
[1,n](Q) ≥W 1

[1,n](Q) a.s. conclude the proof.

FIFO Kelly-type Networks Customers are given a route through the network upon arrival
(namely the route of customer n is a mark associated with point Tn). Then the external mono-
tonicity property is not satisfied. Note that the conditions stating that the traffic intensity be less
than one at each queue is not sufficient for monotonicity, even in the FIFO case (see [9]).

Kelly-type Networks with Synchronization Constraints These networks were defined in [2].
The routing is mechanism is the same as above, but the service discipline is such that, on a given
queue, service requirements brought by the n-th external arrival can in no case be served before
all the service requirements brought by the n− 1-st external arrival have been completed. There,
X[m,n] is also the last departure epoch from the system with restricted arrivals as above. The
constant γ(0) is the (max, +) Lyapunov exponent of a sequence of stationary random matrices
defined from the routing and the service times (see [1] for the notions pertaining to (max, +)-
Lyapunov exponents).

Generalized Jackson Networks Whenever the routing decisions and the service times are se-
quences associated with stations (namely, the n-th customer to reach station j requires the service
time σj

n, and is routed to station νj
n), then the network falls in the refined monotone separable

framework, provided the routing sequences satisfy the two stationarity properties described be-
low (see [3]).

Let K be the number of stations.

• We assume that there exist K non-decreasing, integer-valued sequences ϕk
l , k = 1, . . . ,K ,

such that when denoting F k
n = ϕk

1 + · · · + ϕk
n, the sequence {νk

j }
F k

n

j=F k
n−1+1

}Kk=1} satisfies an
Euler-type property defined in [3].

• We assume that the driving sequence

ξn
def
= {ν0n, {{σk

j , ν
k
j }

F k
n

j=F k
n−1+1

}Kk=1}n≥1 (10)

is stationary ergodic.
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Both conditions are for instance satisfies in the i.i.d. case provided the routing matrix is without
capture.

In this case, the constant γ(0) is equal to maxk ρ
k , where ρk = E(

∑ϕ1

j=1 σ
k
j ).

Stochastic Petri Nets Open FIFO stochastic event graphs fall in our framework, namely they
satisfy the four conditions of the framework (see [1]). The constant γ(0) is also the (max, +) Lya-
punov exponent of a sequence of random matrices defined from the topology of the network and
the service times. Tandem networks (open or closed, with finite or infinite capacity), synchro-
nized Kelly Networks (and in particular Fork-Join networks) all fall in that class of systems.

For general open stochastic Petri nets with switching, also defined in [1], take X[m,n] to be the
epoch of the last firing time of whole net for the [m,n] restriction of the arrival point process.
Conditions 1-3 of the framework are always satisfied. The validity of condition 4 of the frame-
work is discussed in [4]. This class contains generalized Jackson networks, although it is much
more general.

Polling Systems For a wide class of polling models, it is possible to prove stability under gen-
eral assumptions (e.g. stationary ergodic input, routing and walking mechanism with regenera-
tive structure). The properties (1)-(4) are still valid, but (3)-(4) only hold in distribution. The
constant γ(0) coincides with the well-known constant (see [10]).

A Non-separable Network for which the Rule Does Not Hold Consider an assembly queue
with two independent Poisson arrival streams with the same intensity λ/2. The system starts
empty. Whenever there are customers of both classes in the queue, service is provided at rate
µ. The completion of a service consumes one customer of each class. Whenever the queue has
no customers of either class, it is blocked. Let consider as input stream the superposition of the
two Poisson processes properly marked. If one saturates the system with an infinite customer
population, the (Markov) departure rate is µ. Similarly, if one takes the viewpoint of letting n
customers of this input stream arrive at time 0, the last activity of the system takes place at time
µ−1n/2 + o(n). A naive application of the saturation rule would suggest that if λ < µ, the system
is stable. However, such queues are always unstable (see [1]), whatever the values of λ and µ.
Note that this system does not satisfy the separability property.

Remark It is not true in general that systems satisfying the properties of the monotone separable
framework admit a unique stationary regime. The existence of multiple stationary regimes is well
known for G/G/s queues. The same multiplicity arises in generalized Jackson networks (see the
last section of [4]), depending on the initial condition which is chosen. However, one can always
define a maximal solution following the ideas of Remark 30, §6 in [3].

Acknowledgement We thank P. Konstantopoulos for his comments on the manuscript of this
paper.
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