1 Introduction

1.1 Notations and Abbreviations

R.v. — random variable
i.i.d. — independent identically distributed
XY, Z.&n,,...—forr.v.’s

F, G — distribution function, f — density

P — probability and probability measure, E — expectation, D —

variance
¢ € Fmeans P({ <z) = F(z) forall z

¢ €P means P(¢ € B) =P(B)

Standart families of distributions

Ula,b] G(p) E(e) B(m,p) N(a,0%) 1(})
I(A) — indicator function.

Convergence
£ 5 ¢ means P(lim¢, =¢) =1

(o 2 € means Ve>0 P&, —¢€>¢)—0asn— o

Definition 1 Weak convergence: F, = F, if for each x such that F(x) is

continuous in x,

Equivalent form: F, = F, if for each ¢ — bounded continuous,

[ s@idFu(x) = [ g@)dr(a).



I will write also: &, = £. It means: ¢, € F,,, £ € Fand F,, = F.

fis a copy of ¢ <= they have the same distribution <= é 2 & In
general, ¢ and £ may be defined on different probability spaces.

Coupling

(a) Coupling of distribution functions (d.f.) or of probability measures.

For Fi, Fy — d.f., their coupling is a construction of two r.v.’s {; € F}
and & € F, on a common probability space. The same — for more than
two r.v.’s.

(b) Coupling of two random variables.
Let & be defined on (2, 1, Py) and & be defined on (Qy, >, Ps).
Their coupling: (@, F,P) and &, & on it: & 2 &1, 6 2 &s.

1.2 Weak and “strong” convergence

Lemma 0. If F,, = F (all F,, and F are d.f.), then there exists a coupling
of {F,} and F':
& 25 €.

Proof. For ad.f. F, define F':
F~Yz)=inf{z : F(z) > 2z}, 2z€(0,1).

Put @ =(0,1), 7 — o-algebra of Borel subsets in (0,1), P — Lebesgue
measure on (0,1).

Set n(w) =w,w € Q. Thenn € U[0, 1].

Define &, = F;7(n),& = F~'(n) and show &, *3 £. Note: &, € F,,¢ €
F.



In order to avoid some technicalities, assume, for simplicity, that all
d.f. are continuous. Put

€ = inf &,,§, =sup &, F,, = sup F,, F,, = inf F,
- m2n m>n m>n m2n
Then{ € F,,¢&, € F.

Indeed,

P(§n§x) = P(§n<x):P(E|m2n:§m<3:):
= P(Im>n:F,'(n)<z)=P(Im>n:n<F,(r)) =
= Py < sup F(x)) = F(x)

Similarly, P(§, > z) = ... =1— F,(x).

Since F,, = F and F,, = F (by definition), then it is sufficient to show
that, for instance, £ =3

But both {F,} and {¢ } are monotone!

And{ < ¢a.s., thatisyexists: § 7 pas., <{as.

If P(y # &) > 0, then there exists point z:

P(y <) >P(£ <)

ButP(( <z)=F(x) =limF,(x) > P(y < z)!
O

Problem No 1. Prove this lemma without the additional assumption
that all d.f. are continuous

1.3 Uniform integrability

Let {&,}n>1 be a sequence of real-valued r.v.’s.

Definition 2 {¢,} are uniformly integrable (Ul), if E|¢,| < oo Vn and,
moreover,

supE{|&,| - I(|&n] > )} < h(z) — 0 as x — oc.



We can assume the upper bound h(z) to be monotone and right-continuous.

Lemma 1 The following are equivalent:
(1) {&.} are UL
(i1) Ja function g : [0,00) — [0, 00) :
(a) g(O) >0;9 /7 im0 g(:)?) = 00
(b) sup,, E{[&n] - 9(|€a])} < 00

Note: g(0) > 0 is not essential!

Proof.
(i1) — (1). For each n,
Eﬂ@wmmmz@}zEﬂ@«%%%-nszw}g
< g<|;r> supB{Iga| - g(J€ul)} — 0 as  — oo,

(i) — (ii). Assume that h(x) > 0 for all = (otherwise, the statement is
trivial).
Form € Z, put

1 1

Patmrny < Ma) < 550)

A, ={x:

and, for z € A,,, put g(z) = 2™. From h(0) < oo get g(0) > 0.
Note: A,, is an interval, and if z,, is its left boundary point, then z,, €
A,,. Therefore,

E{[&al - 9(1€a1)} = D E{l&l - 9(1€a]) - (160l € Am)} =

— S B{6] 27 I(j6] € An)} < S 2B{E] - 1] > 7)) <

1

Remark 1 4s a corollary, one can get the following: if E|¢| < oo, then 3
g from Lemma I such that E{|{| - g(|¢])} < oo.
“If Jthe first moment” = *“ I something more”.
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Lemma 2 Assume &, = & Then holds

(1) {&n} are Ul = E[¢] < 00 and E[¢,| — E[¢],

(2)P(& 2 0) =1 Vn; E|§,| <oo Vn, E[§,| — E[f| < oo = {&}
are UL

Remark 2 In (2), the condition P(§, > 0) = 1 may be weakened in a
natural way. But it cannot be eliminated.

&l 2n|=2n| 0
Example. ‘ I I ‘ I Then E|¢,| = 2,E¢, =

il 1— =
2n n

0;¢ =0, but {&,} are not UI!

Proof of Lemma 2. First, note that both statements (1) and (2) are “marginal”,
i.e. only marginal distributions are involved. So, we can construct a cou-
pling: &, 3 €.
Prove (1).

(a) Assume that there exists N: P(|¢,] < N) = 1 for each n (this is a
special case of UI).

Then P(|{| < N) =1 and, Ve >0,

0< [E& —ES <El, — ¢l =E{[& — & - I(J6 — & < o)} +
+ E{& —¢& 16 —¢ >e)} <e+2N-P(l, — & >¢) mcasn — oo

Therefore, E|¢,| — E[¢].
(b) Assume now that P(|{,| < N) < 1 for each N and for some n.
Since &, 2% ¢, then Vo > 0

Mo = & 1(16a] < 2) = € I(JE] < 2) = .

Then,

vn P(|n.| < z) = P(jn| <) =1 En, — En (see (2));

and
’nn| < |€n| a.s. }:> E|77n| < E‘€n| < Snglfn‘ =KVn }:> E|77’ < K.
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(¢) Prove: E|¢| < co. Indeed,
El¢| = lim E{J¢] - I(J¢] < N)} < K < oo

(d) Ve >0, choose z: h(z) <ecand E{|¢|- I(|{]| > )} <e.
Then,

E¢,

B{l6,] - 1(16.] < 2)} + B{l&.| - 1(&] > 2)} = 6.,
l
B{l¢] - 1(¢] < ©)} + B{Jé]- 1(|¢] > 2)} =

Since |,| < e Vnand |[0| < ¢, then

E§

limsup(E¢,, — E£) < 2¢ and
liminf(E¢, — E€) > —2¢ for any «.

Prove (2).
E{ <oo b= Ve > 03z =m(e) : E{¢- 1(§ > x0)} < e/2.
Use (b) from the proof of (1): for a given z,

En, — En = E{§ 1(& > 20)} =E( — ) =
=E¢, —En, — E{ —En=E{{ - I({ > z9)} < ¢/2.

Therefore, In(e):
E{&, - 1(& > x0)} <e  Vn>n(e).
Now, Vn=1,2,...,n(e)
E, <o b= Fx,:E{& - 1(&§ > x,)} <e.
Set & = max(z1, ..., Tn(), To). Then
E{¢, -1(& > x)} <eVn.

Therefore,
supE{¢, - I(§, > 2)} — 0asx — oo.



1.4 Some useful properties

Property 1 If{¢,} are Ul and {n, } are such that |n,,| < |&,| a.s., then {n,}
are UL

Indeed, Vz

E{ip - 1(nn > @)} < {nn - 1(&n > @)} < {&n - 1(&n > 7)) < h(2).

O
Property 2 If {n,} are such that there exists an i.i.d. sequence {£,}:
(@) ] < [€a] @5,
(b) E[&] < oo,
then the sequence {1}, 1, = u is UL
n
Indeed,
Gl +...+ &
\%\S'ﬂ | |E¢m
n
(i) E¢, =E[&| Vn
(ii) SLLN:
¢n b E|€1|
= From Lemma 2, (2), {¢,,} are UL
= From Property 1.1, {¢,} are UL O

Property 3 Since the Ul property is the property of “marginal” distribu-
tions only, one can replace the a.s.-inequality in Property 1.1 |n,| < |&,]
by the weaker one |n,|< || (that means: P(|n,| > z) < P(|&,| > =) Vo).
In particular, if |n,|<q|&| Vn (€ is the same ¥n) and if E|{| < oo, then {n,}
are UI.

Remark 3 Consider, instead of a sequence {&, },>1, a family of r.v.’s {& }er,
where T is an arbitrary set. Then one can introduce the following



Definition 3 (compare with Definition 1).
{&}ier are UL if E|&| < oo Vt € T and, moreover,

sup B{|&| - (16| > 2)} < h(x) — 0 as  — oo.
teT

Then

(a) The statement and the proof of Lemma 1 will not change, if we re-
place “n” by “t € T,

(b) For T" = [0,00), the statement and the proof of Lemma 2 will not
change, too.

(¢) Properties 1.1 and 1.3 still will be true.

1.5 Coupling inequality. Maximal coupling. Dobrushin’s
theorem

In this section, we assume that random variables are not necessary real-
valued, but may take values in some measurable space (X, By) that is as-
sumed to be complete separable metric space.

Coupling inequality
Let&, & (Q,F,P) — (X,By) be two X'-valued r.v.’s. Put
P,(B) = P(¢ € B), Po(B) = P(& € B), B € B.
Then, for B € By,
Pi(B) = P2(B) = PG €B,&=8)+P(G €B&G#E&)-
— P(LeB & =8)-PLeBLFE) =
- PG eBG AL -PGEBGAL S O

Therefore, for any B € By, P1(B) — Pa2(B)| < P(& # &), that is

sup [P1(B) — Pa(B)| < P(¢ # &) (*)

BeBy




Maximal coupling

Let’s reformulate the statement. Note that I.h.s. of inequality (*) depends
on “marginal” distributions P; and P, only and does not depend on the
joint distribution of & and &. Therefore, we get the following:

for given P; and P, and for any their coupling (*) takes place. Or,
equivalently,

sup |P1(B) — PQ(B)| < mf P(Sl 7é 52)

BeBxy on all coupling

(?) May be, in () is equality?

(??) If “yes”, then does there exists such a coupling that

sup |Py(B) —Py(B)| =P(& # &)?

BeBy

Both answers are positive! And this is the statement of Dobrushin’s
theorem.
Proof. pu(B) = Py(B) — Py(B) is a signed measure. Therefore, Banach

theorem states that
there exists a subset C C X:

(a) w(B) >0 VB CC;
(b) (B)<0OVBC X\C=C.
Note:
1) if u(C) = 0, then P; = P, and the coupling is obvious;
2) w(C) = —u(0).
Assume p(C') > 0. Introduce 4 distributions (probability measures):

Qi1 =U(C), if P(C) =0,
Q1,1 :

, B € By, otherwise.



P,(C N B) —_Pl(U N B)

Q2.1 :Q21(B) = o) , B € By.
Similarly,
Qs = U(C), | i P,(C) = 0,
Q272 . . PQ(C N B th .
(Q22(B) = 7P2(C) , B € By, otherwise.
P,(CnNnB)-Py,(CNB
Ouo: Qra(B) = TUEND) “PolCND) g

pu(C)
Then, define 5 independent r.v.’s:

M1 € Qr1, Mo € Qi2, M1 € Q21, M2 € W22,

and

Now we can “construct” &; and & :
Si=ma-Ia=1)+ms - I(a=2)+mn, I(a=0),

S=ma-I(a=1)+m - I(a=2)+ms - I(a=0).

Simple calculations show that§; e P, i =1, 2.
Problem No 3. “Indeed, ...”
Then,

P& # &) = Pla =0) = u(C) < sup [Py(B) — Py(B)].

BeBy

So,
P(& # &) = sup [Pi(B) — Po(B)],

BeBx

and the proofis completed.
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1.6 Probabilistic Metrics

The Dobrushin’s theorem gives a positive solution of one of the important
problems that arise in the theory of probabilistic metrics. Let us describe
briefly some concepts of this theory. (X,By)— complete separable metric
space,

X? =X x X,

B% = By ® By is a o-algebra in X2, generated by all sets B; X Ba,
By, B; € By,

diag(X?) = {(z,z),r € X}.

Problem No 4. Prove: diag(X?) € B%.

Let P be any probability distribution on (X2, B%). Denote by P; its first
marginal distribution, and by P, — second one:

Pi(B) = P(BxX),
Py(B) = P(X x B), B € By.

Let P be the set of all probability distributions (measures) on (X2, B%).

Definition 4 4 function d : P — [0,00) is called a probabilistic metric,
if it satisfies:

(1) P(diag(X?)) =1 = d(P) = 0;
(2) dP)=0 =Py =Py

(3) PW has marginals Py and P,
P® has marginals Py and Py

= d(PU) = d(P1);

(4) “triangle inequiality”:
PW has marginals Py and P,
P® has marginals P, and Py = d(PW) < d(P?) + d(P®));
P®) has marginals Py and P,

Definition 5 4 probabilistic metric d is simple if it depends on marginal
distributions only (i.e. if PV and P® have the same marginals, then
d(PW) = d(P®)), and complex — otherwise.
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For simple metric, it is natural to write d(P;,Ps) instead of d(P), so d
1s some “distance” between P; and P».

For complex metric, we can write d({;, &) instead of d(P), where &, &
is a coupling of two r.v.’s with joint distribution P:

P(B) =P((&1,&2) € B), B € B3

So, d(&;,&) may be considered as a “distance” between r.v.’s.
We can also write d(&;, &) for simple metrics.

Examples
Simple Complex
1) supgep [P1(B) — Po(B)| 2) P(& # &) = P(X? — diag(X?))
(Total variation norm (T.V.N.)) (Indicator metric (I.M.))
For real-valued r.v.’s:
3) sup, |Fi(z) — Fa(z)| 5)inf{e > 0:P(|& — &| > ¢) < ¢}
(Uniform metric (U.M.)) (Ki Fan (???) metric (K.F.M.))
4)inf{e > 0:

Fi(z —¢e) —e < Fy(v) < Fi(x +¢) + eV}
(Levy metric (L.M.))

One of the general problem in the theory of probabilistic metrics is:
Assume some simple metric to be given.
Does there exist a complex metric d such that

(a) the following coupling inequality holds:

d(é,&) < inf  d(&,&) (compare with (sx))
all couplings

(b) “<”— “="1n(a) ? (And vice versa...)

(¢) 3 acoupling: d(&,&) = J(Sl,fg)?

Theorem 1 The answer on the above question is positive for the metrics:
d=TV.N. «—d=1M.
d=LM «——d=KFM.
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1.7 Stopping times

Let (2, F,P) be a probability space and {¢,},>1 be a sequence of r.v.’s,
&, 0 @ — R. Denote by F, the o-algebra, generated by &,:

Fn CF; Fo=1{& " (B), B € B},

where B= o-algebra of Borel sets in R.
Then, for 1 <k < n, F|.,, — o-algebra, generated by &, ..., &,; i.e.
F 2 Flin is a minimal o-algebra, so that

Flem 2 Fiforalll =k,... n.

Another way of description of FJ ) is:
& = (&, ..., &) is arandom vector; &, : 2 — R %1 Then

Firm) = {&0(B), B € Br 1},

where B"*! = g-algebra of Borel sets in R**+1,
Finally, F|1 o) = o-algebra, generated by the whole sequence {&,},>1.

Good Property : VA <€ Fpi o), I{An}n>1, An € Fpi ), sSuch that:
P(A\ A,) +P(A,\ A) — 0asn — oc.

Letnow p: Q@ — {1,2,...,n,...} be an integer-valued r.v.

Definition 6 y is called a stopping time (ST) with respect to {&,}, if V.n >
1:

{p=n} € Fny
(or, equivalently — {p < n} € Fpn).

Another variant of definition is:

Definition 7 p is a ST, if 3 a family of functions h, : R" — {0,1} such
that:
Vn>1, I(p=mn)=h,(&,...,&) a.s.

(or, equivalently — I(n < n) = h, (&, ..., &) a.s.).
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Examples ...

Assume now that {¢,} is an i.i.d. sequence, pis a ST; P(u < 00) = 1.
Put

él = 5#4—1752 :§u+27'~7éi :§H+i7“'

Lemma3 1) {}isani.id. sequence;

2) &2 &

3) {&}is1 and a random vector (ju, &1, . .. .&,) are mutually independent.

Corollary 1 {{};>) and S, = &, + ... + £, are mutually independent.

Proof of Lemma 3. We have to show that

(x) VE>1,¥Ym > 1,V Borel sets By,...,Bgand C1,...,Cy,,

P({p=F; 51GBlw-wfk:EBk}m{gl601,---7§m60m}):
=P(u=k; & € By,....5 € By)P(& € Oy, ..., & € Cp).

Indeed, (x) = 1), 2) and 3).
First, By =...= By, = By, =...=R. Then, Vm

()
P €Ch,...,én€Cy) kip( =k& €Ch,....4n€C)
i f[l & el) = f[ (& € Cy).
In particular, Vj > 1V Cj take m > j and C; = R for ¢ # j.
Then

the L.h.s. of (xx) = P(&; € C}),
the r.h.s. of (xx) =P(§ € C)) = 2)
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Now, take any C1, ..., C,, and replace in (k)

[[P@ec) by [[PGeC) =D

Finally, take any By, ..., By and C}, ..., (), and replace in (x)
fTpeeccy by [iréec) =2

So, let’s prove (x):

P({u =k & € Bi,....& € By N{& € Cr,... & € C}) =
P({hp(&,....&) =1 & € By,... .6 € B} N {&11 € Ch, oo &pim € O }) =

ef[l,k] E]:[kﬂ,mm]

=P(.)-P(.)= N
P(..)- [[ P& € C) =P(.)- [ P& € C).

i=1 i=1

Lemma 4.
(Wald

identity) Assume that E|&| < oo and By < oo. Then ES,, = E&; - Ep.

Proof. (a) Show that E[S,| < occ.

H 00
n=1 n=1
Note, that I(p >n) =1—I(p<n—1),and {g <n—1} € Fp 1

= ¢, and I(p > n) are independent = [¢,| and I(u > n) are inde-
pendent

—  EJS,/ < E{i &l I(n > n))} = iE{. )=

= _Bl&] P> n) =Blta] - 3 Pl > n) = Bl&a| - By < oo

n=1
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(b) Therefore,

ES, :E{an-f(
n=1

“Induction...”

Lemma 5 Let

{&n}n>1 be ani.i.d. sequence;
wbeaSTw.r. to{&}n>1, P(p < 00) =1,
{&}i=1 be as defined above;
fibe a STw.r. to {& i1, P(ji < 00) = 1.

Then

w+ pisa STw.r. to {&, >t

Proof.

(e n=h=Uln=

Ut

o~

Y

Ed
—

=

Let’s write ffl)
e
&
e

p=zn)t=...=E& - Epu

Bn{a=*k—1}

instead of ¢
instead of p

&
i

16
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Lemma 6 I/f
p® is a STw.r. to {@(j)}izl Vi=1,...,J
and if {¢/"V} = {7},

then
pO 4+ pD s a ST w.r. to {&}is1

Problem No 5. To prove Lemma 6.

1.8 Generalization onto 2-dimensional case

Let {&,1}n>1 and {&,2}n>1 be two sequences; Fii, n,]x[ks,ns) D€ @ o-algebra,
generated by

ékl,lu §k1+1,17 s 7§1’L1,1; 5’62,27 §k2+1,27 o 75?12,2'
Definition 8 4 pair of rv.’s py, o : @ — {1,2,...} is a ST w.r. to {&,1}
and {§n72}; lf
Vi >1, Ve > 1 {1 =n1, e = N2} € Fingx[ing-

Lemma 7 If{{,1}n>1 and {&,2}n>1 are two mutually independent sequences
and if (1, o) is a ST, then

1) each of the sequences
(&1} = {&urin} and {& 2} = {Euyin}
isi.i.d., and they are mutually independent;
2) ém 2 51,1; éz',? 2 51,2;
3) {{&1}is1; {€io}iz1} and a random vector
(A SRTY JRH SR TR Sy

are mutually independent.
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Proof — omitted.

Lemma 8 In conditions of Lemma 7, assume, in addition, that

D
§10 = &2

Then the sequence {&, }n>1,

gn: {gn,h lfngﬂl

6n—u1+u2,27 if n >

isiid; & 26,

Proof. We have to show that Vn=1,2,..., V By,..., B

n

P(& € By,....& € B,) = [[P(&11 € By).

i=1

1) Vn, VB

P&, € B)=P(&1 € Bin <) +P(lptme € Bin > ).

P 1eBn<w) = P&1€B)—P&1€B)-Pn>w)=
= P(&1 € B)-P(n <)
1

P(gn—u1+u272 € B;n > Ml) - Z P(§;L2+n—l,2 € B; 1= l)
=1
n—1

= Z P(énfl,Q € By =1)

=1

= ...:P(§172€B)'P(M1<n)

2) Problem No 6. To prove for joint distributions — by induction ar-
guments. O

Another variant of generalization on 2-dimensional case.

Lemma 9 Assume that
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() &, = (€n1,&n2) is a sequence (n = 1,2,...) of independent random
vectors;

(i1) each of {&n1}n>1 and {2} n>1 is ani.i.d. sequence;
(ifi) &1 = &1o/
(iv) (p1, p2) is a ST and pu = pio = p.
Then '
f o gn,lu ljf n S H
" 571,2’ lff n > M

. . D
isani.i.d. sequence; &, =& .

Proof is very similar to that of Lemma 8. — omitted.
Finally, the last generalization (of Lemma 9).

Lemma 10 Replace in the statement of Lemma 9 (if 3my > 1,mq > 1.)
(i) by

( r ) gn = (g(n—l)mﬁ—l,la s 7§nm1,1; 5(n—1)m2+1727 s )5717712,2) is an i.i.d. se-
quence;

and

(iv) by

(iv’) (pa, p2) is a ST,

P(Hl € {m1,2m1, c. }) = P(,UQ € {m2,2m2, .. }) =1

and B = &.
mq mo

Then
é- :{gn,b lfngl'l’l

gn—u1+u2727 if n>

. . D
isani.i.d. sequence; &, =& ;.

Problem No 7. Prove Lemma 10.
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1.9 Stationary Sequences and Processes
Discrete Time

Definition 9 (a) Let {¢,},>0 be a sequence of r.v.’s.
It is stationary, if V1=1,2,..., VO<i1 <ix<...<7i, VBy,...,BCB,
Vm=1,2,...

P(&1 - Bl, .. 7&1 - Bl) = P(&H_m - Bl, A 7£il+m - Bl)

(b) Similarly, {£,}5° _ . is stationary, if ..., ¥ ' m € Z, the above equality
holds.

Continuous Time

Definition 8 (a) Let {&;}i>0 be a family of r.v.’s.
It is stationary, if VIi=1,2,.., VO<t1 <ty <...<t, VBy,...,B,CB,
Yu>0

P(Etl 6 Bl, P 75751 6 Bl) — P(§t1+u 6 Bl, e ,gtl—‘y—u 6 Bl)

(b) Similarly, {&}° . is stationary, if ..., ¥ u € R, the above equality
holds.

Definition 9 A4 sequence of events { A, }5° _ is stationary, if {I(A,)}5°
is stationary.

Assume {A4,,}>°
Introduce r.v.’s:

to be stationary, P(4y) > 0, P(U22 A4,) = 1.

—0o0

v=vi=min{n>1:1(4,)=1}=min{n>1:weA,}
“=min{n>1:I1(A_,) =1}

r=7" : P(r>n)=P(A;...4,|Ap)

7 P(rT>n)=P(A ... A_,]Ay)

<

Lemma 11 (a) v 2y
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\]
1o
\]

(b)
(c) Plv=n)=P(Ay) -P(r>n) Vn=12...

?

Remark 4 It is not obvious, in general. Examples: {§,} —i.i.d., P(§, >

0) > 0.
a) A, = {&, > 0}; b)A, ={& +&, >0}

Proof of Lemma 11.

(a)
Ym m=—n—1
| |
Plv>n) = P(A...A,) = PAim.. . Avim) =
= P(4,...A) =P >n)
(b)
o P(AALLLALA) PALA L AL A
P(r=n) = P(Ay) P(Ao)
= P(r~ =n)
(c)

P(V Z n) = P(Z Zn ) P(A()Al An 1) + P(A()Zl e An—l)
0) P(A; ... A, 1|A) + P(A ... A,) =
0) - P(r > )—|—P(y>n—{—1)

I
l'i

= Plv=n)=Pv>n)—Plv>n+1)=P(A) P(r >n).

Corollary2 VEk >0, EvF < 0o <= E7"! < .

Proof. Note:




l+ 1)k+1 2k+1 lk+1

l I+1 (
an S/ e < ~— L < —_
1 k+1 k+1

= E/f =Y n"P(v Ag)- Y n"P(r = n) =
n=1 n=1
00 00 00 l
0) - anZP(T = 1) == P(A) - ZP(T =) an <
_P(A) P(4y) "
.9 +1 P lk-‘rl 2k’+1 Er k+1
SRR P
and E/f > P(4o) Bk
k+1
=  Ev* and E7**! are either finite or infinite simultaneously. O

1.10 On o-algebras, generated by a sequence of r.v.’s.

(1). Let (2, F,P) be a probabililty space, &,: Q2 —R,n=1,2,...—a

sequence of r.v.’s,  Fron) = (&5 6n);  Flioo) = 0 (& 1 - - -)-
For A, B € F, put

d(A,B)=P(A\ B)+P(B\ A).
(A) Remind some properties of o-algebras.

1) If FO, F@ are g-algebras on N = FO N F@ is g-algebra,
too, but F& U F@ — not! (in general).

2) More generally, let T be any parameter set, F). t € T are o-algebras
on} = ﬂteT}"(t) is o-algebra, too.

Therefore, F|; o) is a minimal o-algebra, O F;, V n <= an inter-
section of all o-algebras, that O F[; ) V n.

Since F 2 Fjin V0 = Fle € F.

(B) Some properties of d:

1) d(A, B) = d(B, A) > 0
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2) d(A,C) < d(A,B) +d(B,C) (triangle inequality);
Indeed, A\C =(A\B)N(AN(B\C)) C(A\B)U(B\C)
= P(A\C)<P(A\B)+P(B\C).

Similarly,
P(C\A) <P(B\A)+P({C\B).

3) d(A, B) = d(A, B) (since P(A\ B) = P(B\ A));
4) |P(A)—P(B)| = |P(ANB)+P(A\B)—P(AUB)—P(B\ A)| < d(A, B);
5) d(AyU Ay, Bi U By) < d(A1, By) + d(As, By);

Indeed, (Al U Ag) \ (Bl U BQ) = (Al \ (Bl U Bg)) U (AQ \ (Bl U Bg)) Q
(A1 \ B1) U (A2 \ By)

F= P((AUAy)\ (B1UBs)) <P(A;\ B)) +P(Ay\ By).

Lemma 12 VA € Fpi o), I {An}n>1, An € Fpm ¢ d(A,A,) — 0.

Proof. Let U be the setof events A € F: 3 {An}u>1, Ay € Fig
d(A, A,) — 0.
DU2 Fum Vm=1,2,....Indeed, Vm, VA€ Fp,y), take

A O, ifn<m;
"l A ifn>m.

Therefore, it is sufficient to show that U is o-algebra. Then U 2 Fpj o),
and the proofis completed.
2) Prove that U is an algebra, i.e.

() Qe U;
(ii) AcU = AcU;

(iii) V&, AD . AW e U = ADU...UA® e U.
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(1) is obvious, (i1) follows from the property (3); (iii1) follows from (5):
k
d(AD U UA® AL Y uAB) < 3T d(AD]AD) — 0.
j=1

3) Prove that U is a o-algebra:
(iii") AV, A® e U = A=U2, AV e UL
Put B® = Uk AU, BK) ~ Aand P(BW) " P(A).

= 3{B®} : B® e Fu,, d(BY,BP) - 0asn — .

Choose
n(l) =min{n > 1 : d(B(l),Bl(l)) <1/2Vl>n}

and, for k > 1,
n(k +1) = min{n > n(k) : d(B®, BM) < 1/2* v > n}.

Finally, put

A, =

{@, if n < n(l); 4 € Foum
n 1,n]-

B, ifn(k) >n <n(k+1),

Then d(A, A,) < d(A, B®) +1/2%, for n(k) > n < n(k + 1). Since k — oo
asn — oo, d(A, A,) — 0. ad

Lemma 13 Let {£,}5° _ be a double-infinite sequence of r.v.’s,
f(—O0,00) = 0{' .- 75727 5717 507 517 527 . }
Then VY A€ F(_ooc), I{An}, Ap € Flonm @ d(A, Ay) — 0.

Problem No 8. Proof — for you!!!

(2). A sequence of independent r.v.’s.
Definition 10 For a sequence {&,},>1, the tail o-algebra is
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Note: Since Flit1,00) C Flooo) = Foo = Mo Flec) VL.

Definition 11 For a sequence {£,}5°_,
Foo = Mt1Fkoo) = My Flkyoo), ¥V — 00 <1 <00
is right tail o-algebra and
F oo = M3 _0F (—ook] = My F(—ooi]s ¥V —00 <[ < 00
is left tail o-algebra.

Examples...

Lemma 14 If{¢,},>1 is a sequence of independent r.v.’s, then F, is triv-
ial, i.e.
VAe Fo, P(A)=0VL

Proof.
1) AL Fp,Vn;
2) Since Foo € Flioo), I {An} € Fpim 1 d(Ay, A) — 0.
Therefore,
P(A)=P(ANA,) +P(A\ A, =P(A)-P(A,) +P(A\ A,);

0 < P(A)[1 - P(4,)] = P(A\ 4,) < d(A,, A) — 0.

Lemma 15 If{{,}>2 __ is a sequence of independent r.v.’s, then both F _,
and F o, are trivial.

Problem No 9. Proof — for you!!!

(3). A stationary sequence of r.v.’s.
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Definition 12 4 sequence {&,}n>1 (or {£,}5° ) is stationary, if
VI>1, forall 1 <ny <ng < ...<ng (orwithout “1 <”),
VEkE>1(orV —oo <k <o00),

VB,,....B

P(Snl € B17 cee 75711 € Bl) = P(€n1+k,’ € B17 cee agnl-i-k € Bl)

In particular, all &, are identically distributed and all finite-dimensional
vectors &, = (&, Entty - - -5 nyr) are i.d. (for a fixed 1).

Examples

{6} —iid.

26 =& o
D=t ={_ |

Introduce a shift transformation 6 on the set of F|; o)-measurable (or
F (—oo,00)-measurable) r.v.’s:

1) 06, = &ui1 V0
2) 1f77/1 = h(gna fn—i—la cee a§n+l)’ then 9@/’ = h(fn—f—la €n+27 s 7§n+l+1)
3) i =h(o. & ity ), then 00 = Ao Enit, Ensas- . .).

Note: 6 is measure-preserving: 2 01).

Introduce a shift transformation 6 on F; o) (01 F(_,00)):

A€ Froy <= I(A)is F)— measurable <= Jh:I(A)="h(..., & &,

his {0, 1}-valued. Then
QA:{h(...7€n+1,€n+2,...) = 1} <~ QI(A) :h(...7§n+1,§n+2,...).

For any m, introduce ™ =¢-...- 6.
————

m
In the case of F(_ ) We can introduce 67, too. And 0° — identical
transformation.
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Definition 13 4 F|; o)-measurable (or F(_s oc)--..) F.v. W is invariant

(w.r.to 0), if
O =1 as. (ie POY=1)=1).
An event A € F ) (0r A € F(_so,00)) 1s invariant (w.r.to 0), if

P(ANOA) =P(A).
Note that i) = a.s. < Vu,
P({y <z} n{fy <a}) =Py < a).
Comments, examples...

Definition 14 A stationary sequence {&,} is ergodic (w.r.to 0), if ¥ A €
.7:[1100) (A € -7:[1,00)):

Aisinvariant = P(A)=0V1
(or i is invariant = 1 = const a.s. ).

Remark 5 All invariant events (sets) form a o-algebra FUm) invariant
o-algebra).

Lemma 16 (1) VA€ Fj ) (orV A € F(_so0)) the sequence of events
{6"A,n >0} (or {0"A, —0co0 < n < oo}) is stationary;,

(2) If {&.} is stationary egrodic, then ¥ A € Fpi ) (0r ¥V A € F(_oo0)),
P(A)>0

= P(US0"A) =1V 1 (and P(U50"A) =1V ).

Proof. (1) follows from definitions.
(2) Set B = U;2,0" A, then

OB = U22,0(0"A) = U2, ,0" A

and B D 6B
= P(BNOB)=POB)=P(B) = Bisinvariant
= P(B)=0Vv1.
ButP(B) >P(0'A)=P(A) >0 = P(B)=1. O
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Lemma 17 If A is invariant, then 3 B € F, such that d(A, B) = 0.

Proof. (a) The case F; ); (b) the case F(_ ).
Problem No 10. Proof at (b) — for you!!
1)Set By, = ANOANG?AN...NO"A, By =N 0" A. Then

A=DByy2DBp12...2 By 2 Byms+1 2 ... 2 By
and P(By,,) \, P(By). But
P(Boy) = P(A)¥m! = P(By) = P(A) and d(Bo, A) = 0.

2)Fork > 1, put By = 0*By = N2 0" A.
Note: By 2 By and By, € Fii ),

P(B,) = P(B,) = P(A) and d(Bjy, A) = 0.

Set
B = klim B, = P(B)=P(A) and d(B,A)=0.
ButBEf[kpo)Vk = B€ Fu. d

Remark 6 Inthe case F(_ ), the “symmetric” statement is true, too: if
Ais invariant, then 3 B € F_, such that d(A, B) = 0.

Corollary 3 Anyi.i.d. sequence is stationary ergodic.

Indeed, F is trivial ):> if A is invariant, B € F, P(B) =0V 1 and
d(A,B)=0 k= PA)=0VL1

Remark 7 There exists a number of more weaker conditions (than i.i.d.

ones) that imply the “triviality” of the tail o-algebra F ., and, as a corol-
lary, the ergodicity of a stationary sequence.
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For instance, introduce the following “mixing” coefficients:

d = sup [P(AN B) — P(A)-P(B)|.
Bef[kyoo),AEf(_ooy()]

One can show that if d;, — 0 as k — oo, then F is trivial.
But, in general, there are examples when F, is not trivial, but F™ is
(i.e. the sequence is ergodic).
1 .pr. 1/2
Example &, = —§,Vn; & = { R

1 Then

, w.pr. 1/2

Foo=0(&), F™={Q 0}

Next Part
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