# 1 Introduction

#### 1.1 Notations and Abbreviations

R.v. — random variable

i.i.d. — independent identically distributed

$$X, Y, Z, \xi, \eta, \psi, \ldots$$
 for r.v.'s

F, G — distribution function, f — density

 ${f P}$  — probability and probability measure,  ${f E}$  — expectation,  ${f D}$  — variance

$$\xi \in F$$
 means  $\mathbf{P}(\xi \le x) = F(x)$  for all  $x$ 

$$\xi \in \mathbf{P}$$
 means  $\mathbf{P}(\xi \in B) = \mathbf{P}(B)$ 

#### Standart families of distributions

#### Convergence

$$\xi_n \stackrel{\text{a.s.}}{\rightarrow} \xi$$
 means  $\mathbf{P}(\lim \xi_n = \xi) = 1$ 

$$\xi_n \xrightarrow{p} \xi$$
 means  $\forall \varepsilon > 0$   $\mathbf{P}(|\xi_n - \xi| > \varepsilon) \to 0$  as  $n \to \infty$ 

**Definition 1** Weak convergence:  $F_n \Rightarrow F$ , if for each x such that F(x) is continuous in x,

$$F_n(x) \to F(x)$$
.

Equivalent form:  $F_n \Rightarrow F$ , if for each g — bounded continuous,

$$\int g(x)dF_n(x) \to \int g(x)dF(x).$$

I will write also:  $\xi_n \Rightarrow \xi$ . It means:  $\xi_n \in F_n$ ,  $\xi \in F$  and  $F_n \Rightarrow F$ .

 $\hat{\xi}$  is a copy of  $\xi \iff$  they have the same distribution  $\iff \hat{\xi} \stackrel{\text{D}}{=} \xi$ . In general,  $\hat{\xi}$  and  $\xi$  may be defined on different probability spaces.

### Coupling

(a) Coupling of distribution functions (d.f.) or of probability measures.

For  $F_1, F_2$  – d.f., their coupling is a construction of two r.v.'s  $\xi_1 \in F_1$  and  $\xi_2 \in F_2$  on a *common probability space*. The same — for more than two r.v.'s.

(b) Coupling of two random variables.

Let  $\xi_1$  be defined on  $\langle \mathbf{\Omega_1}, \mathcal{F}_1, \mathbf{P_1} \rangle$  and  $\xi_2$  be defined on  $\langle \mathbf{\Omega_2}, \mathcal{F_2}, \mathbf{P_2} \rangle$ . Their coupling:  $\langle \mathbf{\Omega}, \mathcal{F}, \mathbf{P} \rangle$  and  $\hat{\xi}_1, \hat{\xi}_2$  on it:  $\hat{\xi}_1 \stackrel{\mathrm{D}}{=} \xi_1, \hat{\xi}_2 \stackrel{\mathrm{D}}{=} \xi_2$ .

## 1.2 Weak and "strong" convergence

**Lemma 0.** If  $F_n \Rightarrow F$  (all  $F_n$  and F are d.f.), then there exists a coupling of  $\{F_n\}$  and F:

$$\xi_n \stackrel{\text{a.s.}}{\to} \xi$$
.

**Proof.** For a d.f. F, define  $F^{-1}$ :

$$F^{-1}(z) = \inf\{x : F(x) \ge z\}, \quad z \in (0,1).$$

Put  $\Omega = (0,1)$ ,  $\mathcal{F}$  —  $\sigma$ -algebra of Borel subsets in (0,1),  $\mathbf{P}$  — Lebesgue measure on (0,1).

Set  $\eta(\omega) = \omega$ ,  $\omega \in \Omega$ . Then  $\eta \in U[0, 1]$ .

Define  $\xi_n=F_n^{-1}(\eta), \xi=F^{-1}(\eta)$  and show  $\xi_n\stackrel{\text{a.s.}}{\to} \xi$ . Note:  $\xi_n \in F_n, \xi \in F$ .

In order to avoid some technicalities, assume, for simplicity, that all d.f. are continuous. Put

$$\underline{\xi}_n = \inf_{m \ge n} \xi_m, \overline{\xi}_n = \sup_{m > n} \xi_m, \underline{F}_n = \sup_{m > n} F_m, \overline{F}_n = \inf_{m \ge n} F_m$$

Then  $\underline{\xi}_n \subseteq \underline{F}_n$ ,  $\overline{\xi}_n \subseteq \overline{F}_n$ . Indeed,

$$\begin{array}{lcl} \mathbf{P}(\underline{\xi}_n \leq x) & = & \mathbf{P}(\underline{\xi}_n < x) = \mathbf{P}(\ \exists m \geq n : \xi_m < x) = \\ & = & \mathbf{P}(\ \exists m \geq n : F_m^{-1}(\eta) < x) = \mathbf{P}(\ \exists m \geq n : \eta < F_m(x)) = \\ & = & \mathbf{P}(\eta < \sup_{m \geq n} F_m(x)) = \underline{F}_n(x) \end{array}$$

Similarly,  $\mathbf{P}(\overline{\xi}_n > x) = \ldots = 1 - \overline{F}_n(x)$ .

Since  $\underline{F}_n \Rightarrow F$  and  $\overline{F}_n \Rightarrow F$  (by definition), then it is sufficient to show that, for instance,  $\xi_n \stackrel{\text{a.s.}}{\to} \xi$ .

But both  $\{\underline{F}_n\}$  and  $\{\underline{\xi}_n\}$  are monotone!

And  $\underline{\xi}_n \leq \xi$  a.s., that is  $\psi$  exists:  $\underline{\xi}_n \nearrow \psi$  a.s.,  $\psi \leq \xi$  a.s.

If  $P(\psi \neq \xi) > 0$ , then there exists point x:

$$\mathbf{P}(\psi \le x) > \mathbf{P}(\xi \le x).$$

But 
$$\mathbf{P}(\xi \le x) = F(x) = \lim \underline{F}_n(x) \ge \mathbf{P}(\psi \le x)!$$

**Problem No 1.** Prove this lemma without the additional assumption that all d.f. are continuous

## 1.3 Uniform integrability

Let  $\{\xi_n\}_{n\geq 1}$  be a sequence of real-valued r.v.'s.

**Definition 2**  $\{\xi_n\}$  are uniformly integrable (UI), if  $\mathbf{E}|\xi_n| < \infty \ \forall n$  and, moreover,

$$\sup_{n} \mathbf{E}\{|\xi_n| \cdot I(|\xi_n| \ge x)\} \le h(x) \to 0 \text{ as } x \to \infty.$$

We can assume the upper bound h(x) to be monotone and right-continuous.

**Lemma 1** The following are equivalent:

(i)  $\{\xi_n\}$  are UI;

(ii)  $\exists a \text{ function } g: [0,\infty) \to [0,\infty):$ (a)  $g(0) > 0; g \nearrow; \lim_{x\to\infty} g(x) = \infty;$ (b)  $\sup_{x} \mathbf{E}\{|\xi_{n}| \cdot g(|\xi_{n}|)\} < \infty$ 

Note: g(0) > 0 is not essential!

#### Proof.

(ii)  $\rightarrow$  (i). For each n,

$$\mathbf{E}\{|\xi_n| \cdot I(|\xi_n| \ge x)\} \equiv \mathbf{E}\{|\xi_n| \cdot \frac{g(|\xi_n|)}{g(|\xi_n|)} \cdot I(|\xi_n| \ge x)\} \le$$

$$\le \frac{1}{g(|\xi_n|)} \cdot \sup_n \mathbf{E}\{|\xi_n| \cdot g(|\xi_n|)\} \to 0 \text{ as } x \to \infty.$$

(i)  $\rightarrow$  (ii). Assume that h(x) > 0 for all x (otherwise, the statement is trivial).

For  $m \in \mathbf{Z}$ , put

$$A_m = \{x : \frac{1}{2^{2(m+1)}} < h(x) \le \frac{1}{2^{2m}}\}$$

and, for  $x \in A_m$ , put  $g(x) = 2^m$ . From  $h(0) < \infty$  get g(0) > 0.

Note:  $A_m$  is an interval, and if  $z_m$  is its left boundary point, then  $z_m \in A_m$ . Therefore,

$$\mathbf{E}\{|\xi_{n}| \cdot g(|\xi_{n}|)\} = \sum_{m} \mathbf{E}\{|\xi_{n}| \cdot g(|\xi_{n}|) \cdot I(|\xi_{n}| \in A_{m})\} =$$

$$= \sum_{m} \mathbf{E}\{|\xi_{n}| \cdot 2^{m} \cdot I(|\xi_{n}| \in A_{m})\} \leq \sum_{m} 2^{m} \mathbf{E}\{|\xi_{n}| \cdot I(|\xi_{n}| \geq z_{m})\} \leq$$

$$\leq \sum_{m} 2^{m} \cdot h(z_{m}) \leq \sum_{m} 2^{m} \cdot \frac{1}{2^{2m}} < \infty$$

**Remark 1** As a corollary, one can get the following: if  $\mathbf{E}|\xi| < \infty$ , then  $\exists$  g from Lemma 1 such that  $\mathbf{E}\{|\xi| \cdot g(|\xi|)\} < \infty$ .

"If  $\exists$  the first moment"  $\Longrightarrow$  " $\exists$  something more".

**Lemma 2** Assume  $\xi_n \Rightarrow \xi$ . Then holds

- (1)  $\{\xi_n\}$  are  $UI \Longrightarrow \mathbf{E}|\xi| < \infty$  and  $\mathbf{E}|\xi_n| \to \mathbf{E}|\xi|$ ;
- (2)  $\mathbf{P}(\xi_n \ge 0) = 1 \ \forall n; \ \mathbf{E}|\xi_n| < \infty \ \forall n; \ \mathbf{E}|\xi_n| \to \mathbf{E}|\xi| < \infty \implies \{\xi_n\}$  are UI.

**Remark 2** In (2), the condition  $P(\xi_n \ge 0) = 1$  may be weakened in a natural way. But it cannot be eliminated.

Example.

 $0; \xi \equiv 0$ , but  $\{\xi_n\}$  are not UI!

**Proof** of Lemma 2. First, note that both statements (1) and (2) are "marginal", i.e. only marginal distributions are involved. So, we can construct a coupling:  $\xi_n \stackrel{\text{a.s.}}{\to} \xi$ .

Prove (1).

(a) Assume that there exists N:  $\mathbf{P}(|\xi_n| \leq N) = 1$  for each n (this is a special case of UI).

Then  $\mathbf{P}(|\xi| \le N) = 1$  and,  $\forall \varepsilon > 0$ ,

$$\begin{array}{ll} 0 \leq & |\mathbf{E}\xi_n - \mathbf{E}\xi| \leq \mathbf{E}|\xi_n - \xi| = \mathbf{E}\{|\xi_n - \xi| \cdot I(|\xi_n - \xi| \leq \varepsilon)\} + \\ + & \mathbf{E}\{|\xi_n - \xi| \cdot I(|\xi_n - \xi| > \varepsilon)\} \leq \varepsilon + 2N \cdot \mathbf{P}(|\xi_n - \xi| > \varepsilon) \to \varepsilon \text{ as } n \to \infty \end{array}$$

Therefore,  $\mathbf{E}|\xi_n| \to \mathbf{E}|\xi|$ .

(b) Assume now that  $\mathbf{P}(|\xi_n| \le N) < 1$  for each N and for some n. Since  $\xi_n \stackrel{\mathrm{a.s.}}{\to} \xi$ , then  $\forall x > 0$ 

$$\eta_n \equiv \xi_n \cdot I(|\xi_n| < x) \stackrel{\text{a.s.}}{\to} \xi \cdot I(|\xi| < x) \equiv \eta.$$

Then,

$$\forall n \ \mathbf{P}(|\eta_n| \le x) = \mathbf{P}(|\eta| \le x) = 1 \Longrightarrow \mathbf{E}\eta_n \to \mathbf{E}\eta \text{ (see (a))};$$

and

$$|\eta_n| \le |\xi_n| \text{ a.s. } \models \mathbf{E}|\eta_n| \le \mathbf{E}|\xi_n| \le \sup_n \mathbf{E}|\xi_n| \equiv K \ \forall n \models \mathbf{E}|\eta| \le K.$$

(c) Prove:  $\mathbf{E}|\xi| < \infty$ . Indeed,

$$\mathbf{E}|\xi| = \lim_{x \to \infty} \mathbf{E}\{|\xi| \cdot I(|\xi| \le N)\} \le K < \infty$$

(d)  $\forall \varepsilon > 0$ , choose x:  $h(x) \le \varepsilon$  and  $\mathbf{E}\{|\xi| \cdot I(|\xi| \ge x)\} \le \varepsilon$ . Then,

$$\mathbf{E}\xi_n = \mathbf{E}\{|\xi_n| \cdot I(|\xi_n| < x)\} + \mathbf{E}\{|\xi_n| \cdot I(|\xi_n| \ge x)\} \equiv \delta_n,$$

$$\downarrow$$

$$\mathbf{E}\xi = \mathbf{E}\{|\xi| \cdot I(|\xi| < x)\} + \mathbf{E}\{|\xi| \cdot I(|\xi| \ge x)\} \equiv \delta.$$

Since  $|\delta_n| \le \varepsilon \ \forall n \text{ and } |\delta| \le \varepsilon$ , then

$$\limsup \sup (\mathbf{E}\xi_n - \mathbf{E}\xi) \le 2\varepsilon$$
 and  $\lim \inf (\mathbf{E}\xi_n - \mathbf{E}\xi) \ge -2\varepsilon$  for any  $\varepsilon$ .

Prove (2).

$$\mathbf{E}\xi < \infty \Longrightarrow \forall \varepsilon > 0 \ \exists x_0 = x_0(\varepsilon) : \mathbf{E}\{\xi \cdot I(\xi \geq x_0)\} \leq \varepsilon/2.$$

Use (b) from the proof of (1): for a given  $x_0$ ,

$$\mathbf{E}\eta_n \to \mathbf{E}\eta \quad \Longrightarrow \quad \mathbf{E}\{\xi_n \cdot I(\xi_n \ge x_0)\} = \mathbf{E}(\xi_n - \eta_n) = \\ = \mathbf{E}\xi_n - \mathbf{E}\eta_n \to \mathbf{E}\xi - \mathbf{E}\eta = \mathbf{E}\{\xi \cdot I(\xi \ge x_0)\} \le \varepsilon/2.$$

Therefore,  $\exists n(\varepsilon)$ :

$$\mathbf{E}\{\xi_n \cdot I(\xi_n \ge x_0)\} \le \varepsilon \quad \forall n > n(\varepsilon).$$

Now,  $\forall n = 1, 2, \dots, n(\varepsilon)$ 

$$\mathbf{E}\xi_n < \infty \Longrightarrow \exists x_n : \mathbf{E}\{\xi_n \cdot I(\xi_n \ge x_n)\} \le \varepsilon.$$

Set  $x = \max(x_1, \ldots, x_{n(\varepsilon)}, x_0)$ . Then

$$\mathbf{E}\{\xi_n \cdot I(\xi_n \ge x)\} \le \varepsilon \ \forall \, n.$$

Therefore,

$$\sup_{n} \mathbf{E}\{\xi_n \cdot I(\xi_n \ge x)\} \to 0 \text{ as } x \to \infty.$$

## 1.4 Some useful properties

**Property 1** If  $\{\xi_n\}$  are UI and  $\{\eta_n\}$  are such that  $|\eta_n| \leq |\xi_n|$  a.s., then  $\{\eta_n\}$  are UI.

Indeed,  $\forall x$ 

$$\mathbf{E}\{\eta_n \cdot I(\eta_n > x)\} \le \{\eta_n \cdot I(\xi_n > x)\} \le \{\xi_n \cdot I(\xi_n > x)\} \le h(x).$$

**Property 2** If  $\{\eta_n\}$  are such that there exists an i.i.d. sequence  $\{\xi_n\}$ :

- (a)  $|\eta_n| \leq |\xi_n| \ a.s.$ ,
- (b) **E** $|\xi_1| < \infty$ ,

then the sequence  $\{\psi_n\}$ ,  $\psi_n = \frac{\eta_1 + \ldots + \eta_n}{n}$ , is UI.

Indeed,

$$|\psi_n| \le \frac{|\xi_1| + \ldots + |\xi_n|}{n} \equiv \phi_n,$$

- (i)  $\mathbf{E}\phi_n = \mathbf{E}|\xi_1| \ \forall \ n$
- (ii) SLLN:

$$\phi_n \stackrel{\text{a.s.}}{\to} \mathbf{E} |\xi_1|.$$

 $\implies$  From Lemma 2, (2),  $\{\phi_n\}$  are UI.

 $\implies$  From Property 1.1,  $\{\psi_n\}$  are UI.

**Property 3** Since the UI property is the property of "marginal" distributions only, one can replace the a.s.-inequality in Property 1.1  $|\eta_n| \le |\xi_n|$  by the weaker one  $|\eta_n| \le_{\rm st} |\xi_n|$  (that means:  $\mathbf{P}(|\eta_n| > x) \le \mathbf{P}(|\xi_n| > x) \ \forall x$ ). In particular, if  $|\eta_n| \le_{\rm st} |\xi| \ \forall n$  ( $\xi$  is the same  $\ \forall n$ ) and if  $\mathbf{E}|\xi| < \infty$ , then  $\{\eta_n\}$  are UI.

**Remark 3** Consider, instead of a sequence  $\{\xi_n\}_{n\geq 1}$ , a family of r.v. 's  $\{\xi_t\}_{t\in T}$ , where T is an arbitrary set. Then one can introduce the following

**Definition 3** (compare with Definition 1).

 $\{\xi_t\}_{t\in T}$  are UI, if  $\mathbf{E}|\xi_t|<\infty \ \forall t\in T$  and, moreover,

$$\sup_{t \in T} \mathbf{E}\{|\xi_t| \cdot I(|\xi_t| \ge x)\} \le h(x) \to 0 \text{ as } x \to \infty.$$

Then

- (a) The statement and the proof of Lemma 1 will not change, if we replace "n" by " $t \in T$ ".
- (b) For  $T = [0, \infty)$ , the statement and the proof of Lemma 2 will not change, too.
- (c) Properties 1.1 and 1.3 still will be true.

# 1.5 Coupling inequality. Maximal coupling. Dobrushin's theorem

In this section, we assume that random variables are not necessary real-valued, but may take values in some measurable space  $(\mathcal{X}, \mathcal{B}_{\mathcal{X}})$  that is assumed to be complete *separable* metric space.

#### Coupling inequality

Let 
$$\xi_1, \xi_2 : \langle \mathbf{\Omega}, \mathcal{F}, \mathbf{P} \rangle \longrightarrow (\mathcal{X}, \mathcal{B}_{\mathcal{X}})$$
 be two  $\mathcal{X}$ -valued r.v.'s. Put  $\mathbf{P}_1(B) = \mathbf{P}(\xi_1 \in B), \ \mathbf{P}_2(B) = \mathbf{P}(\xi_2 \in B), \ B \in \mathcal{B}_{\mathcal{X}}.$ 

Then, for  $B \in \mathcal{B}_{\mathcal{X}}$ ,

$$\mathbf{P}_{1}(B) - \mathbf{P}_{2}(B) = \mathbf{P}(\xi_{1} \in B, \xi_{1} = \xi_{2}) + \mathbf{P}(\xi_{1} \in B, \xi_{1} \neq \xi_{2}) - \mathbf{P}(\xi_{2} \in B, \xi_{1} = \xi_{2}) - \mathbf{P}(\xi_{2} \in B, \xi_{1} \neq \xi_{2}) =$$

$$= \mathbf{P}(\xi_{1} \in B, \xi_{1} \neq \xi_{2}) - \mathbf{P}(\xi_{2} \in B, \xi_{1} \neq \xi_{2}) \stackrel{\leq}{>} -\mathbf{P}(\xi_{1} \neq \xi_{2}) > -\mathbf{P}(\xi_{1} \neq \xi_{2})$$

Therefore, for any  $B \in \mathcal{B}_{\mathcal{X}}$ ,  $\mathbf{P}_1(B) - \mathbf{P}_2(B) | \leq \mathbf{P}(\xi_1 \neq \xi_2)$ , that is

$$\sup_{B \in \mathcal{B}_{\mathcal{X}}} |\mathbf{P}_1(B) - \mathbf{P}_2(B)| \le \mathbf{P}(\xi_1 \ne \xi_2)$$
(\*)

#### Maximal coupling

Let's reformulate the statement. Note that l.h.s. of inequality (\*) depends on "marginal" distributions  $\mathbf{P}_1$  and  $\mathbf{P}_2$  only and does not depend on the joint distribution of  $\xi_1$  and  $\xi_2$ . Therefore, we get the following:

for given  $P_1$  and  $P_2$  and for any their coupling (\*) takes place. Or, equivalently,

$$\sup_{B \in \mathcal{B}_{\mathcal{X}}} |\mathbf{P}_1(B) - \mathbf{P}_2(B)| \le \inf_{\text{on all coupling}} \mathbf{P}(\xi_1 \neq \xi_2)$$
 (\*\*)

- (?) May be, in (\*\*) is equality?
- (??) If "yes", then does there exists such a coupling that

$$\sup_{B \in \mathcal{B}_{\mathcal{X}}} |\mathbf{P}_1(B) - \mathbf{P}_2(B)| = \mathbf{P}(\xi_1 \neq \xi_2)?$$

Both answers are positive! And this is the statement of **Dobrushin's** theorem.

**Proof.**  $\mu(B)=\mathbf{P}_1(B)-\mathbf{P}_2(B)$  is a signed measure. Therefore, Banach theorem states that

there exists a subset  $C \subset \mathcal{X}$ :

- (a)  $\mu(B) \ge 0 \ \forall B \subset C$ ;
- (b)  $\mu(B) \leq 0 \ \forall B \subset \mathcal{X} \setminus C \equiv \overline{C}$ .

Note:

- 1) if  $\mu(C) = 0$ , then  $\mathbf{P}_1 = \mathbf{P}_2$  and the coupling is obvious;
- 2)  $\mu(C) = -\mu(\overline{C}).$

Assume  $\mu(C) > 0$ . Introduce 4 distributions (probability measures):

$$Q_{1,1}: \begin{cases} Q_{1,1} = U(\overline{C}), & \text{if } \mathbf{P}_1(\overline{C}) = 0, \\ Q_{1,1}(B) = \frac{\mathbf{P}_1(\overline{C} \cap B)}{\mathbf{P}_1(\overline{C})}, \ B \in \mathcal{B}_{\mathcal{X}}, & \text{otherwise.} \end{cases}$$

$$Q_{2,1}: Q_{2,1}(B) = \frac{\mathbf{P}_2(\overline{C} \cap B) - \mathbf{P}_1(\overline{C} \cap B)}{-\mu(\overline{C})}, \ B \in \mathcal{B}_{\mathcal{X}}.$$

Similarly,

$$Q_{2,2}: \begin{cases} Q_{2,2}=U(C), & \text{if } \mathbf{P}_2(C)=0, \\ Q_{2,2}(B)=\frac{\mathbf{P}_2(C\cap B)}{\mathbf{P}_2(C)}, \ B\in\mathcal{B}_{\mathcal{X}}, & \text{otherwise.} \end{cases}$$

$$Q_{1,2}: Q_{1,2}(B) = \frac{\mathbf{P}_1(C \cap B) - \mathbf{P}_2(C \cap B)}{\mu(C)}, \ B \in \mathcal{B}_{\mathcal{X}}.$$

Then, define 5 independent r.v.'s:

$$\eta_{1,1} \in Q_{1,1}, \ \eta_{1,2} \in Q_{1,2}, \ \eta_{2,1} \in Q_{2,1}, \ \eta_{2,2} \in Q_{2,2},$$

and 
$$\begin{array}{c|c|c|c} \alpha & 1 & 2 & 0 \\ \hline & \mathbf{P}_1(\overline{C}) & \mathbf{P}_2(C) & \mu(C) \end{array}$$

Now we can "construct"  $\xi_1$  and  $\xi_2$ :

$$\xi_1 = \eta_{1,1} \cdot I(\alpha = 1) + \eta_{2,2} \cdot I(\alpha = 2) + \eta_{2,1} \cdot I(\alpha = 0),$$

$$\xi_2 = \eta_{1,1} \cdot I(\alpha = 1) + \eta_{2,2} \cdot I(\alpha = 2) + \eta_{1,2} \cdot I(\alpha = 0).$$

Simple calculations show that  $\xi_i \in \mathbf{P}_i$ , i = 1, 2.

Problem No 3. "Indeed, ..."

Then,

$$\mathbf{P}(\xi_1 \neq \xi_2) = \mathbf{P}(\alpha = 0) = \mu(C) \le \sup_{B \in \mathcal{B}_{\mathcal{X}}} |\mathbf{P}_1(B) - \mathbf{P}_2(B)|.$$

So,

$$\mathbf{P}(\xi_1 \neq \xi_2) = \sup_{B \in \mathcal{B}_{\mathcal{X}}} |\mathbf{P}_1(B) - \mathbf{P}_2(B)|,$$

and the proof is completed.

#### 1.6 Probabilistic Metrics

The Dobrushin's theorem gives a positive solution of one of the important problems that arise in the theory of probabilistic metrics. Let us describe briefly some concepts of this theory.  $(\mathcal{X}, \mathcal{B}_{\mathcal{X}})$ — complete separable metric space,

$$\mathcal{X}^2 = \mathcal{X} \times \mathcal{X}$$
,

 $\mathcal{B}_{\mathcal{X}}^2 = \mathcal{B}_{\mathcal{X}} \otimes \mathcal{B}_{\mathcal{X}}$  is a  $\sigma$ -algebra in  $\mathcal{X}^2$ , generated by all sets  $B_1 \times B_2$ ,  $B_1, B_2 \in \mathcal{B}_{\mathcal{X}}$ ,

$$\operatorname{diag}(\mathcal{X}^2) = \{(x, x), x \in \mathcal{X}\}.$$

**Problem No 4.** Prove:  $\operatorname{diag}(\mathcal{X}^2) \in \mathcal{B}^2_{\mathcal{X}}$ .

Let **P** be any probability distribution on  $(\mathcal{X}^2, \mathcal{B}_{\mathcal{X}}^2)$ . Denote by **P**<sub>1</sub> its first marginal distribution, and by **P**<sub>2</sub> — second one:

$$\mathbf{P}_1(B) = \mathbf{P}(B \times \mathcal{X}),$$
  
 $\mathbf{P}_2(B) = \mathbf{P}(\mathcal{X} \times B), B \in \mathcal{B}_{\mathcal{X}}.$ 

Let  $\mathcal{P}$  be the set of all probability distributions (measures) on  $(\mathcal{X}^2, \mathcal{B}^2_{\mathcal{X}})$ .

**Definition 4** A function  $d: \mathcal{P} \longrightarrow [0, \infty)$  is called a <u>probabilistic metric</u>, if it satisfies:

- (1)  $\mathbf{P}(\operatorname{diag}(\mathcal{X}^2)) = 1 \implies d(\mathbf{P}) = 0;$
- (2)  $d(\mathbf{P}) = 0 \quad \Longrightarrow \mathbf{P}_1 = \mathbf{P}_2;$
- (3)  $\mathbf{P}^{(1)}$  has marginals  $\mathbf{P}_1$  and  $\mathbf{P}_2$   $\Longrightarrow d(\mathbf{P}^{(1)}) = d(\mathbf{P}^{(2)});$   $\mathbf{P}^{(2)}$  has marginals  $\mathbf{P}_2$  and  $\mathbf{P}_1$
- (4) "triangle inequiality":

 $\mathbf{P}^{(1)}$  has marginals  $\mathbf{P}_1$  and  $\mathbf{P}_2$ 

 $\mathbf{P}^{(2)}$  has marginals  $\mathbf{P}_1$  and  $\mathbf{P}_3 \mid \Longrightarrow d(\mathbf{P}^{(1)}) \leq d(\mathbf{P}^{(2)}) + d(\mathbf{P}^{(3)})$ ;

 $\boldsymbol{P}^{(3)}$  has marginals  $\boldsymbol{P}_3$  and  $\boldsymbol{P}_2$ 

**Definition 5** A probabilistic metric d is <u>simple</u> if it depends on marginal distributions only (i.e. if  $\mathbf{P}^{(1)}$  and  $\mathbf{P}^{(2)}$  have the same marginals, then  $d(\mathbf{P}^{(1)}) = d(\mathbf{P}^{(2)})$ ), and <u>complex</u> — otherwise.

For simple metric, it is natural to write  $d(\mathbf{P}_1, \mathbf{P}_2)$  instead of  $d(\mathbf{P})$ , so d is some "distance" between  $\mathbf{P}_1$  and  $\mathbf{P}_2$ .

For complex metric, we can write  $d(\xi_1, \xi_2)$  instead of  $d(\mathbf{P})$ , where  $\xi_1, \xi_2$  is a coupling of two r.v.'s with joint distribution  $\mathbf{P}$ :

$$\mathbf{P}(B) = \mathbf{P}((\xi_1, \xi_2) \in B), \ B \in \mathcal{B}^2_{\mathcal{X}}.$$

So,  $d(\xi_1, \xi_2)$  may be considered as a "distance" between r.v.'s.

We can also write  $d(\xi_1, \xi_2)$  for simple metrics.

#### **Examples**

| Simple                                                                                                   | Complex                                                                                                 |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1) $\sup_{B\in\mathcal{B}}  \mathbf{P}_1(B) - \mathbf{P}_2(B) $                                          | 2) $\mathbf{P}(\xi_1 \neq \xi_2) \equiv \mathbf{P}(\mathcal{X}^2 - \operatorname{diag}(\mathcal{X}^2))$ |
| (Total variation norm (T.V.N.))                                                                          | (Indicator metric (I.M.))                                                                               |
| For real-valued r.v.'s:                                                                                  |                                                                                                         |
| 3) $\sup_{x}  F_1(x) - F_2(x) $                                                                          | 5) $\inf\{\varepsilon > 0 : \mathbf{P}( \xi_1 - \xi_2  > \varepsilon) < \varepsilon\}$                  |
| (Uniform metric (U.M.))                                                                                  | (Ki Fan (???) metric (K.F.M.))                                                                          |
| 4) $\inf\{\varepsilon > 0:$                                                                              |                                                                                                         |
| $\mathcal{F}_1(x-\varepsilon) - \varepsilon \le F_2(x) \le F_1(x+\varepsilon) + \varepsilon \ \forall x$ |                                                                                                         |
| (Levy metric (L.M.))                                                                                     |                                                                                                         |

One of the general problem in the theory of probabilistic metrics is:

Assume some simple metric to be given.

Does there exist a complex metric  $\tilde{d}$  such that

(a) the following coupling inequality holds:

$$d(\xi_1, \xi_2) \leq \inf_{\text{all couplings}} \tilde{d}(\xi_1, \xi_2) \quad \text{(compare with (**))}$$

- (b) " $\leq$ "  $\mapsto$  "=" in (a)? (And vice versa...)
- (c)  $\exists$  a coupling:  $d(\xi_1, \xi_2) = \tilde{d}(\xi_1, \xi_2)$ ?

**Theorem 1** The answer on the above question is positive for the metrics:

$$d = T.V.N. \longleftrightarrow \tilde{d} = I.M.$$
  
$$d = L.M. \longleftrightarrow \tilde{d} = K.F.M.$$

## 1.7 Stopping times

Let  $\langle \mathbf{\Omega}, \mathcal{F}, \mathbf{P} \rangle$  be a probability space and  $\{\xi_n\}_{n\geq 1}$  be a sequence of r.v.'s,  $\xi_n : \mathbf{\Omega} \to \mathbf{R}$ . Denote by  $\mathcal{F}_n$  the  $\sigma$ -algebra, generated by  $\xi_n$ :

$$\mathcal{F}_n \subseteq \mathcal{F}; \ \mathcal{F}_n = \{\xi_n^{-1}(B), B \in \mathcal{B}\},\$$

where  $\mathcal{B}$ =  $\sigma$ -algebra of Borel sets in **R**.

Then, for  $1 \le k \le n$ ,  $\mathcal{F}_{[k,n]}$  —  $\sigma$ -algebra, generated by  $\xi_k, \ldots, \xi_n$ ; i.e.  $\mathcal{F} \supseteq \mathcal{F}_{[k,n]}$  is a minimal  $\sigma$ -algebra, so that

$$\mathcal{F}_{[k,n]} \supseteq \mathcal{F}_l$$
 for all  $l = k, \ldots, n$ .

Another way of description of  $\mathcal{F}_{[k,n]}$  is:  $\vec{\xi}_{k,n}:=(\xi_k,\ldots,\xi_n)$  is a random vector;  $\vec{\xi}_{k,n}:\mathbf{\Omega}\to\mathbf{R}^{n-k+1}$ . Then

$$\mathcal{F}_{[k,n]} = \{\vec{\xi}_{k,n}^{-1}(B), B \in \mathcal{B}^{n-k+1}\},\$$

where  $\mathcal{B}^{n-k+1} = \sigma$ -algebra of Borel sets in  $\mathbb{R}^{n-k+1}$ .

Finally,  $\mathcal{F}_{[1,\infty)} = \sigma$ -algebra, generated by the whole sequence  $\{\xi_n\}_{n\geq 1}$ .

**Good Property:**  $\forall A \in \mathcal{F}_{[1,\infty)}$ ,  $\exists \{A_n\}_{n\geq 1}$ ,  $A_n \in \mathcal{F}_{[1,n]}$ , such that:  $\mathbf{P}(A \setminus A_n) + \mathbf{P}(A_n \setminus A) \to 0$  as  $n \to \infty$ .

Let now  $\mu: \mathbf{\Omega} \to \{1, 2, \dots, n, \ldots\}$  be an integer-valued r.v.

**Definition 6**  $\mu$  is called a <u>stopping time</u> (ST) <u>with respect to</u>  $\{\xi_n\}$ , if  $\forall n \geq 1$ ,

$$\{\mu=n\}\in\mathcal{F}_{[1,n]}$$

(or, equivalently —  $\{\mu \leq n\} \in \mathcal{F}_{[1,n]}$ ).

Another variant of definition is:

**Definition 7**  $\mu$  is a ST, if  $\exists$  a family of functions  $h_n : \mathbf{R}^n \to \{0,1\}$  such that:

$$\forall n \geq 1, I(\mu = n) = h_n(\xi_k, \dots, \xi_n) a.s.$$

(or, equivalently —  $I(\mu \le n) = h_n(\xi_k, \dots, \xi_n)$  a.s.).

#### Examples ...

Assume now that  $\{\xi_n\}$  is an i.i.d. sequence,  $\mu$  is a ST;  $\mathbf{P}(\mu < \infty) = 1$ . Put

$$\tilde{\xi}_1 = \xi_{\mu+1}, \tilde{\xi}_2 = \xi_{\mu+2}, \dots, \tilde{\xi}_i = \xi_{\mu+i}, \dots$$

**Lemma 3** 1)  $\{\tilde{\xi}_i\}$  is an i.i.d. sequence;

- 2)  $\tilde{\xi}_i \stackrel{\mathrm{D}}{=} \xi_1$ ;
- 3)  $\{\tilde{\xi}_i\}_{i\geq 1}$  and a random vector  $(\mu, \xi_1, \dots, \xi_{\mu})$  are mutually independent.

**Corollary 1**  $\{\tilde{\xi}_i\}_{i\geq 1}$  and  $S_{\mu} \equiv \xi_1 + \ldots + \xi_{\mu}$  are mutually independent.

**Proof** of Lemma 3. We have to show that

(\*)  $\forall k \geq 1, \ \forall m \geq 1, \ \forall \ \text{Borel sets } B_1, \ldots, B_k \text{ and } C_1, \ldots, C_m,$ 

$$\mathbf{P}(\{\mu = k; \, \xi_1 \in B_1, \dots, \xi_k \in B_k\} \cap \{\tilde{\xi}_1 \in C_1, \dots, \tilde{\xi}_m \in C_m\}) = \mathbf{P}(\mu = k; \, \xi_1 \in B_1, \dots, \xi_k \in B_k) \mathbf{P}(\xi_1 \in C_1, \dots, \xi_m \in C_m).$$

Indeed,  $(*) \implies 1$ , 2) and 3).

First, 
$$B_1 = \ldots = B_k = B_{k+1} = \ldots = \mathbf{R}$$
. Then,  $\forall m$ 

(\*\*)

$$\mathbf{P}(\tilde{\xi}_{1} \in C_{1}, \dots, \tilde{\xi}_{m} \in C_{m}) = \sum_{k=1}^{\infty} \mathbf{P}(\mu = k; \tilde{\xi}_{1} \in C_{1}, \dots, \tilde{\xi}_{m} \in C_{m})$$
$$= \sum_{k=1}^{\infty} \mathbf{P}(\mu = k) \prod_{i=1}^{m} \mathbf{P}(\xi_{1} \in C_{i}) = \prod_{i=1}^{m} \mathbf{P}(\xi_{1} \in C_{i}).$$

In particular,  $\forall j \geq 1 \, \forall \, C_j$  take  $m \geq j$  and  $C_i = \mathbf{R}$  for  $i \neq j$ .

Then

the l.h.s. of 
$$(**) = \mathbf{P}(\tilde{\xi}_j \in C_j)$$
,  
the r.h.s. of  $(**) = \mathbf{P}(\xi_1 \in C_j) \implies 2$ )

Now, take any 
$$C_1, \ldots, C_m$$
 and replace in  $(**)$ 

Now, take any 
$$C_1, \ldots, C_m$$
 and replace in  $(**)$ 

$$\prod_{i=1}^m \mathbf{P}(\xi_1 \in C_i) \quad \text{by} \quad \prod_{i=1}^m \mathbf{P}(\tilde{\xi}_1 \in C_i) \implies 1)$$

Finally, take any  $B_1, \ldots, B_k$  and  $C_1, \ldots, C_m$  and replace in (\*)

$$\prod_{i=1}^{m} \mathbf{P}(\xi_1 \in C_i) \quad \text{by} \quad \prod_{i=1}^{m} \mathbf{P}(\tilde{\xi}_i \in C_i) \implies 3)$$

So, let's prove (\*):

$$\mathbf{P}(\{\mu = k; \, \xi_1 \in B_1, \dots, \xi_k \in B_k\} \cap \{\tilde{\xi}_1 \in C_1, \dots, \tilde{\xi}_m \in C_m\}) = \mathbf{P}(\underbrace{\{h_k(\xi_1, \dots, \xi_k) = 1; \, \xi_1 \in B_1, \dots, \xi_k \in B_k\}}_{\in \mathcal{F}_{[1,k]}} \cap \underbrace{\{\xi_{k+1} \in C_1, \dots, \xi_{k+m} \in C_m\}}_{\in \mathcal{F}_{[k+1,k+m]}}) = \mathbf{P}(\dots) \cdot \mathbf{P}(\dots) = \mathbf{P}(\dots) \cdot \prod_{i=1}^{m} \mathbf{P}(\xi_{k+i} \in C_i) = \mathbf{P}(\dots) \cdot \prod_{i=1}^{m} \mathbf{P}(\xi_1 \in C_i).$$

#### Lemma 4.

(Wald

identity) Assume that  $\mathbf{E}|\xi_1| < \infty$  and  $\mathbf{E}\mu < \infty$ . Then  $\mathbf{E}S_\mu = \mathbf{E}\xi_1 \cdot \mathbf{E}\mu$ .

**Proof.** (a) Show that  $\mathbf{E}|S_{\mu}| < \infty$ .

$$|S_{\mu}| \le \sum_{n=1}^{\mu} |\xi_n| \equiv \sum_{n=1}^{\infty} |\xi_n| \cdot I(\mu \ge n).$$

Note, that  $I(\mu \ge n) = 1 - I(\mu \le n - 1)$ , and  $\{\mu \le n - 1\} \in \mathcal{F}_{[1,n-1]}$ 

 $\implies \xi_n \text{ and } I(\mu \geq n) \text{ are independent } \implies |\xi_n| \text{ and } I(\mu \geq n) \text{ are inde-}$ pendent

$$\Longrightarrow \mathbf{E}|S_{\mu}| \leq \mathbf{E}\{\sum_{n=1}^{\infty} |\xi_n| \cdot I(\mu \geq n)\} = \sum_{n=1}^{\infty} \mathbf{E}\{\ldots\} =$$

$$=\sum_{n=1}^{\infty}\mathbf{E}|\xi_n|\cdot\mathbf{P}(\mu\geq n)=\mathbf{E}|\xi_1|\cdot\sum_{n=1}^{\infty}\mathbf{P}(\mu\geq n)=\mathbf{E}|\xi_1|\cdot\mathbf{E}\mu<\infty.$$

(b) Therefore,

$$\mathbf{E}S_{\mu} = \mathbf{E}\{\sum_{n=1}^{\infty} \xi_n \cdot I(\mu \ge n)\} = \ldots = \mathbf{E}\xi_1 \cdot \mathbf{E}\mu.$$

"Induction..."

#### Lemma 5 Let

$$\begin{split} \{\xi_n\}_{n\geq 1} \ be \ an \ i.i.d. \ sequence; \\ \mu \ be \ a \ ST \ w.r. \ to \ \{\xi_n\}_{n\geq 1}, \ \mathbf{P}(\mu < \infty) = 1; \\ \{\tilde{\xi}_i\}_{i\geq 1} \ be \ as \ defined \ above; \\ \tilde{\mu} \ be \ a \ ST \ w.r. \ to \ \{\tilde{\xi}_i\}_{i\geq 1}, \ \mathbf{P}(\tilde{\mu} < \infty) = 1. \end{split}$$
 Then 
$$\mu + \tilde{\mu} \ is \ a \ ST \ w.r. \ to \ \{\xi_n\}_{n\geq 1}. \end{split}$$

Proof.

$$\{\mu + \tilde{\mu} = k\} = \bigcup_{l=1}^{k-1} \{\mu = l\} \cap \{\tilde{\mu} = k - l\}$$

$$= \bigcup_{\substack{l=1\\k-1}} \{h_l(\xi_1, \dots, \xi_l) = 1\} \cap \{\tilde{h}_{k-l}(\tilde{\xi}_1, \dots, \tilde{\xi}_{k-l}) = 1\}$$

$$= \bigcup_{l=1}^{k-1} \underbrace{\{h_l(\xi_1, \dots, \xi_l) = 1\}}_{\in \mathcal{F}_{[1,l]}} \cap \underbrace{\{\tilde{h}_{k-l}(\xi_{l+1}, \dots, \xi_k) = 1\}}_{\in \mathcal{F}_{[l+1,k]}}$$

$$\Longrightarrow \cap \dots \in \mathcal{F}_{[1,k]} \ \forall \ k \ \Longrightarrow \ \bigcup \dots \in \mathcal{F}_{[1,k]}.$$

Lemma 6 If

$$\mu^{(i)} \text{ is a ST w.r. to } \{\xi_i^{(j)}\}_{i\geq 1} \ \forall j=1,\ldots,J \\ \text{and if } \{\xi_i^{(j+1)}\} = \{\tilde{\xi}_i^{(j)}\},$$

then

$$\mu^{(1)} + \ldots + \mu^{(J)}$$
 is a ST w.r. to  $\{\xi_i\}_{i \geq 1}$ .

**Problem No 5.** To prove Lemma 6.

#### 1.8 Generalization onto 2-dimensional case

Let  $\{\xi_{n,1}\}_{n\geq 1}$  and  $\{\xi_{n,2}\}_{n\geq 1}$  be two sequences;  $\mathcal{F}_{[k_1,n_1]\times[k_2,n_2]}$  be a  $\sigma$ -algebra, generated by

$$\xi_{k_1,1}, \xi_{k_1+1,1}, \dots, \xi_{n_1,1}; \xi_{k_2,2}, \xi_{k_2+1,2}, \dots, \xi_{n_2,2}.$$

**Definition 8** A pair of r.v. 's  $\mu_1, \mu_2 : \Omega \to \{1, 2, \ldots\}$  is a ST w.r. to  $\{\xi_{n,1}\}$  and  $\{\xi_{n,2}\}$ , if

$$\forall n_1 \ge 1, \ \forall n_2 \ge 1 \quad \{\mu_1 = n_1, \mu_2 = n_2\} \in \mathcal{F}_{[1,n_1] \times [1,n_2]}.$$

**Lemma 7** If  $\{\xi_{n,1}\}_{n\geq 1}$  and  $\{\xi_{n,2}\}_{n\geq 1}$  are two mutually independent sequences and if  $(\mu_1, \mu_2)$  is a ST, then

1) each of the sequences

$$\{\tilde{\xi}_{i,1}\} \equiv \{\xi_{\mu_1+i,1}\} \ and \ \{\tilde{\xi}_{i,2}\} \equiv \{\xi_{\mu_2+i,2}\}$$

is i.i.d., and they are mutually independent;

- 2)  $\tilde{\xi}_{i,1} \stackrel{D}{=} \xi_{1,1}$ ;  $\tilde{\xi}_{i,2} \stackrel{D}{=} \xi_{1,2}$ ;
- 3)  $\{\{\tilde{\xi}_{i,1}\}_{i\geq 1}; \{\tilde{\xi}_{i,2}\}_{i\geq 1}\}$  and a random vector

$$(\mu_1, \mu_2; \xi_{1,1}, \dots, \xi_{\mu_1,1}; \xi_{1,2}, \dots, \xi_{\mu_2,2})$$

are mutually independent.

**Proof** – omitted.

Lemma 8 In conditions of Lemma 7, assume, in addition, that

$$\xi_{1,1} \stackrel{\mathrm{D}}{=} \xi_{1,2}.$$

Then the sequence  $\{\xi_n\}_{n\geq 1}$ ,

$$\xi_n = \begin{cases} \xi_{n,1}, & \text{if } n \le \mu_1\\ \xi_{n-\mu_1+\mu_2,2}, & \text{if } n > \mu_1 \end{cases}$$

is i.i.d.;  $\xi_n \stackrel{\mathrm{D}}{=} \xi_{1,1}$ .

**Proof.** We have to show that  $\forall n = 1, 2, ..., \forall B_1, ..., B_l$ 

$$\mathbf{P}(\xi_1 \in B_1, \dots, \xi_n \in B_n) = \prod_{i=1}^n \mathbf{P}(\xi_{1,1} \in B_i).$$

1)  $\forall n, \forall B$ 

$$\mathbf{P}(\xi_n \in B) = \mathbf{P}(\xi_{n,1} \in B; n \le \mu_1) + \mathbf{P}(\xi_{n-\mu_1+\mu_2,2} \in B; n > \mu_1).$$

$$\mathbf{P}(\xi_{n,1} \in B; n \le \mu_1) = \mathbf{P}(\xi_{1,1} \in B) - \mathbf{P}(\xi_{1,1} \in B) \cdot \mathbf{P}(n > \mu_1) = \\
= \mathbf{P}(\xi_{n,1} \in B) \cdot \mathbf{P}(n \le \mu_1) \\
\mathbf{P}(\xi_{n-\mu_1+\mu_2,2} \in B; n > \mu_1) = \sum_{l=1}^{n-1} \mathbf{P}(\xi_{\mu_2+n-l,2} \in B; \mu_1 = l) \\
= \sum_{l=1}^{n-1} \mathbf{P}(\tilde{\xi}_{n-l,2} \in B; \mu_1 = l) \\
= \dots = \mathbf{P}(\xi_{1,2} \in B) \cdot \mathbf{P}(\mu_1 < n)$$

2) **Problem No 6.** To prove for joint distributions — by induction arguments.  $\Box$ 

Another variant of generalization on 2-dimensional case.

Lemma 9 Assume that

- (i)  $\vec{\xi}_n = (\xi_{n,1}, \xi_{n,2})$  is a sequence (n = 1, 2, ...) of independent random vectors;
- (ii) each of  $\{\xi_{n,1}\}_{n\geq 1}$  and  $\{\xi_{n,2}\}_{n\geq 1}$  is an i.i.d. sequence;
- (iii)  $\xi_{1,1} \stackrel{D}{=} \xi_{1,2}$ ;
- (iv)  $(\mu_1, \mu_2)$  is a ST and  $\mu_1 \equiv \mu_2 = \mu$ .

Then

$$\xi_n = \begin{cases} \xi_{n,1}, & \text{if } n \leq \mu \\ \xi_{n,2}, & \text{if } n > \mu \end{cases}$$

is an i.i.d. sequence;  $\xi_n \stackrel{\mathrm{D}}{=} \xi_{1,1}$ .

**Proof** is very similar to that of Lemma 8. — omitted. Finally, the last generalization (of Lemma 9).

**Lemma 10** Replace in the statement of Lemma 9 (if  $\exists m_1 \geq 1, m_2 \geq 1$ :) (i) by

(i')  $\vec{\xi}_n = (\xi_{(n-1)m_1+1,1}, \dots, \xi_{nm_1,1}; \xi_{(n-1)m_2+1,2}, \dots, \xi_{nm_2,2})$  is an i.i.d. sequence;

and

- (iv) by
- (iv')  $(\mu_1, \mu_2)$  is a ST,  $\mathbf{P}(\mu_1 \in \{m_1, 2m_1, \ldots\}) = \mathbf{P}(\mu_2 \in \{m_2, 2m_2, \ldots\}) = 1$  and  $\frac{\mu_1}{m_1} \equiv \frac{\mu_2}{m_2}$ .

Then

$$\xi_n = \begin{cases} \xi_{n,1}, & \text{if } n \le \mu_1 \\ \xi_{n-\mu_1 + \mu_2, 2}, & \text{if } n > \mu_1 \end{cases}$$

is an i.i.d. sequence;  $\xi_n \stackrel{\mathrm{D}}{=} \xi_{1,1}$ .

**Problem No 7.** Prove Lemma 10.

## 1.9 Stationary Sequences and Processes

#### **Discrete Time**

**Definition 9** (a) Let  $\{\xi_n\}_{n\geq 0}$  be a sequence of r.v. 's. It is stationary, if  $\forall l=1,2,\ldots, \ \forall \ 0\leq i_1< i_2<\ldots< i_l, \ \forall \ B_1,\ldots, B_l\subseteq \mathcal{B}$ ,  $\forall \ m=1,2,\ldots$ 

$$\mathbf{P}(\xi_{i_1} \in B_1, \dots, \xi_{i_l} \in B_l) = \mathbf{P}(\xi_{i_1+m} \in B_1, \dots, \xi_{i_l+m} \in B_l).$$

(b) Similarly,  $\{\xi_n\}_{n=-\infty}^{\infty}$  is stationary, if ...,  $\forall m \in \mathbf{Z}$ , the above equality holds.

#### **Continuous Time**

**Definition 8** (a) Let  $\{\xi_t\}_{t\geq 0}$  be a family of r.v. 's. It is stationary, if  $\forall l = 1, 2, ..., \forall 0 \leq t_1 < t_2 < ... < t_l, \forall B_1, ..., B_l \subseteq \mathcal{B}$ ,  $\forall u \geq 0$ 

$$\mathbf{P}(\xi_{t_1} \in B_1, \dots, \xi_{t_l} \in B_l) = \mathbf{P}(\xi_{t_1+u} \in B_1, \dots, \xi_{t_l+u} \in B_l).$$

(b) Similarly,  $\{\xi_t\}_{t=-\infty}^{\infty}$  is stationary, if ...,  $\forall u \in \mathbf{R}$ , the above equality holds.

**Definition 9** A sequence of events  $\{A_n\}_{n=-\infty}^{\infty}$  is stationary, if  $\{I(A_n)\}_{n=-\infty}^{\infty}$  is stationary.

Assume  $\{A_n\}_{n=-\infty}^{\infty}$  to be stationary,  $\mathbf{P}(A_0) > 0$ ,  $\mathbf{P}(\bigcup_{n=0}^{\infty} A_n) = 1$ . Introduce r.v.'s:

$$\nu \equiv \nu^{+} = \min\{n \geq 1 : I(A_{n}) = 1\} \equiv \min\{n \geq 1 : \omega \in A_{n}\} 
\nu^{-} = \min\{n \geq 1 : I(A_{-n}) = 1\} 
\tau \equiv \tau^{+} : \mathbf{P}(\tau > n) = \mathbf{P}(\overline{A}_{1} ... \overline{A}_{n} | A_{0}) 
\tau^{-} : \mathbf{P}(\tau^{-} > n) = \mathbf{P}(\overline{A}_{-1} ... \overline{A}_{-n} | A_{0})$$

**Lemma 11** (a)  $\nu \stackrel{\mathrm{D}}{=} \nu^{-}$ ;

(b) 
$$\tau \stackrel{\mathrm{D}}{=} \tau^{-}$$
;

(c) 
$$\mathbf{P}(\nu = n) = \mathbf{P}(A_0) \cdot \mathbf{P}(\tau \ge n) \ \forall \ n = 1, 2, \dots$$

**Remark 4** It is not obvious, in general. Examples:  $\{\xi_n\}$  — i.i.d.,  $\mathbf{P}(\xi_n > 0) > 0$ .

a) 
$$A_n = \{\xi_n > 0\};$$
 b)  $A_n = \{\xi_n + \xi_{-n} > 0\}.$ 

**Proof** of Lemma 11.

(a)

$$\mathbf{P}(\nu > n) = \mathbf{P}(\overline{A}_1 \dots \overline{A}_n) = \mathbf{P}(\overline{A}_{1+m} \dots \overline{A}_{n+m}) = \mathbf{P}(\overline{A}_n \dots \overline{A}_1) = \mathbf{P}(\nu^- > n).$$

(b)

$$\mathbf{P}(\tau = n) = \frac{\mathbf{P}(A_0 \overline{A}_1 \dots \overline{A}_{n-1} A_n)}{\mathbf{P}(A_0)} = \frac{\mathbf{P}(A_{-n} \overline{A}_{-n+1} \dots \overline{A}_{-1} A_0)}{\mathbf{P}(A_0)} = \mathbf{P}(\tau^- = n).$$

(c)

$$\mathbf{P}(\nu \ge n) = \mathbf{P}(\overline{A}_1 \dots \overline{A}_{n-1}) = \mathbf{P}(A_0 \overline{A}_1 \dots \overline{A}_{n-1}) + \mathbf{P}(\overline{A}_0 \overline{A}_1 \dots \overline{A}_{n-1})$$

$$= \mathbf{P}(A_0) \cdot \mathbf{P}(\overline{A}_1 \dots \overline{A}_{n-1} | A_0) + \mathbf{P}(\overline{A}_1 \dots \overline{A}_n) =$$

$$= \mathbf{P}(A_0) \cdot \mathbf{P}(\tau \ge n) + \mathbf{P}(\nu \ge n+1).$$

$$\Longrightarrow \mathbf{P}(\nu = n) = \mathbf{P}(\nu \ge n) - \mathbf{P}(\nu \ge n+1) = \mathbf{P}(A_0) \cdot \mathbf{P}(\tau \ge n).$$

Corollary 2  $\forall k > 0$ ,  $\mathbf{E}\nu^k < \infty \iff \mathbf{E}\tau^{k+1} < \infty$ .

Proof. Note:

$$\sum_{n=1}^{l} n^k \ge \int_0^l x^k dx = \frac{l^{k+1}}{k+1};$$

$$\sum_{n=1}^{l} n^k \le \int_1^{l+1} x^{k+1} dx \le \frac{(l+1)^{k+1}}{k+1} \le 2^{k+1} \frac{l^{k+1}}{k+1}.$$

$$\begin{split} & \Longrightarrow \qquad \mathbf{E} \nu^k = \sum_{n=1}^\infty n^k \mathbf{P}(\nu=n) = \mathbf{P}(A_0) \cdot \sum_{n=1}^\infty n^k \mathbf{P}(\tau \geq n) = \\ & = \mathbf{P}(A_0) \cdot \sum_{n=1}^\infty n^k \sum_{l=n}^\infty \mathbf{P}(\tau=l) == \mathbf{P}(A_0) \cdot \sum_{l=1}^\infty \mathbf{P}(\tau=l) \sum_{n=1}^l n^k \leq \\ & \leq \frac{\mathbf{P}(A_0)}{k+1} \cdot 2^{k+1} \cdot \sum_{l=1}^\infty \mathbf{P}(\tau=l) l^{k+1} = \frac{\mathbf{P}(A_0)}{k+1} \cdot 2^{k+1} \cdot \mathbf{E} \tau^{k+1} \\ & \text{and} \qquad \mathbf{E} \nu^k \geq \frac{\mathbf{P}(A_0)}{k+1} \cdot \mathbf{E} \tau^{k+1}. \end{split}$$

 $\Longrightarrow$   $\mathbf{E}\nu^k$  and  $\mathbf{E}\tau^{k+1}$  are either finite or infinite simultaneously.

## 1.10 On $\sigma$ -algebras, generated by a sequence of r.v.'s.

(1). Let  $\langle \mathbf{\Omega}, \mathcal{F}, \mathbf{P} \rangle$  be a probability space,  $\xi_n : \mathbf{\Omega} \to \mathbf{R}, n = 1, 2, \ldots - \mathbf{a}$  sequence of r.v.'s,  $\mathcal{F}_{[k,n]} = \sigma(\xi_k, \ldots, \xi_n); \quad \mathcal{F}_{[k,\infty)} = \sigma(\xi_k, \xi_{k+1} \ldots).$  For  $A, B \in \mathcal{F}$ , put

$$d(A, B) = \mathbf{P}(A \setminus B) + \mathbf{P}(B \setminus A).$$

- (A) Remind some properties of  $\sigma$ -algebras.
- 1) If  $\mathcal{F}^{(1)}$ ,  $\mathcal{F}^{(2)}$  are  $\sigma$ -algebras on  $\Omega \models \mathcal{F}^{(1)} \cap \mathcal{F}^{(2)}$  is  $\sigma$ -algebra, too, but  $\mathcal{F}^{(1)} \cup \mathcal{F}^{(2)}$ —not! (in general).
- 2) More generally, let T be any parameter set,  $\mathcal{F}^{(t)}$ ,  $t \in T$  are  $\sigma$ -algebras on  $\Omega \models \cap_{t \in T} \mathcal{F}^{(t)}$  is  $\sigma$ -algebra, too.

Therefore,  $\mathcal{F}_{[1,\infty)}$  is a minimal  $\sigma$ -algebra,  $\supseteq \mathcal{F}_{[1,n]} \ \forall \ n \iff$  an intersection of all  $\sigma$ -algebras, that  $\supseteq \mathcal{F}_{[1,n]} \ \forall \ n$ .

Since 
$$\mathcal{F} \supseteq \mathcal{F}_{[1,n]} \ \forall \ n \quad \Longrightarrow \quad \mathcal{F}_{[1,\infty]} \subseteq \mathcal{F}$$
.

- **(B)** Some properties of d:
- 1)  $d(A, B) = d(B, A) \ge 0$ ;

2)  $d(A, C) \le d(A, B) + d(B, C)$  (triangle inequality);

Indeed, 
$$A \setminus C = (A \setminus B) \cap (A \cap (B \setminus C)) \subseteq (A \setminus B) \cup (B \setminus C)$$

$$\implies$$
  $\mathbf{P}(A \setminus C) \le \mathbf{P}(A \setminus B) + \mathbf{P}(B \setminus C).$ 

Similarly,

$$\mathbf{P}(C \setminus A) \le \mathbf{P}(B \setminus A) + \mathbf{P}(C \setminus B).$$

3) 
$$d(A, B) = d(\overline{A}, \overline{B})$$
 (since  $\mathbf{P}(A \setminus B) = \mathbf{P}(\overline{B} \setminus \overline{A})$ );

4) 
$$|\mathbf{P}(A) - \mathbf{P}(B)| \equiv |\mathbf{P}(A \cap B) + \mathbf{P}(A \setminus B) - \mathbf{P}(A \cup B) - \mathbf{P}(B \setminus A)| \le d(A, B);$$

5) 
$$d(A_1 \cup A_2, B_1 \cup B_2) \le d(A_1, B_1) + d(A_2, B_2);$$

Indeed,  $(A_1 \cup A_2) \setminus (B_1 \cup B_2) = (A_1 \setminus (B_1 \cup B_2)) \cup (A_2 \setminus (B_1 \cup B_2)) \subseteq (A_1 \setminus B_1) \cup (A_2 \setminus B_2)$ 

$$\Rightarrow$$
  $\mathbf{P}((A_1 \cup A_2) \setminus (B_1 \cup B_2)) \leq \mathbf{P}(A_1 \setminus B_1) + \mathbf{P}(A_2 \setminus B_2).$ 

**Lemma 12**  $\forall A \in \mathcal{F}_{[1,\infty)}, \quad \exists \{A_n\}_{n \geq 1}, A_n \in \mathcal{F}_{[1,n]} : d(A, A_n) \to 0.$ 

**Proof.** Let U be the set of events  $A \in \mathcal{F}$ :  $\exists \{A_n\}_{n\geq 1}, A_n \in \mathcal{F}_{[1,n]}: d(A,A_n) \to 0.$ 

1) 
$$U \supseteq \mathcal{F}_{[1,m]} \ \forall \ m = 1, 2, \dots$$
 Indeed,  $\forall \ m, \ \forall \ A \in \mathcal{F}_{[1,m]}$ , take

$$A_n = \begin{cases} \emptyset, & \text{if } n < m; \\ A, & \text{if } n \ge m. \end{cases}$$

Therefore, it is sufficient to show that U is  $\sigma$ -algebra. Then  $U \supseteq \mathcal{F}_{[1,\infty)}$ , and the proof is completed.

- 2) Prove that U is an algebra, i.e.
- (i)  $\Omega \in U$ ;
- (ii)  $A \in U \implies \overline{A} \in U$ ;
- (iii)  $\forall k, A^{(1)}, \dots, A^{(k)} \in U \implies A^{(1)} \cup \dots \cup A^{(k)} \in U.$

(i) is obvious, (ii) follows from the property (3); (iii) follows from (5):

$$d(A^{(1)} \cup \ldots \cup A^{(k)}, A_n^{(1)} \cup \ldots \cup A_n^{(k)}) \le \sum_{j=1}^k d(A^{(j)}, A_n^{(j)}) \to 0.$$

3) Prove that U is a  $\sigma$ -algebra:

(iii') 
$$A^{(1)}, A^{(2)}, \ldots \in U \implies A \equiv \bigcup_{j=1}^{\infty} A^{(j)} \in U.$$
  
Put  $B^{(k)} = \bigcup_{j=1}^{k} A^{(j)}, B^{(k)} \nearrow A \text{ and } \mathbf{P}(B^{(k)}) \nearrow \mathbf{P}(A).$ 

$$\implies \exists \{B_n^{(k)}\} : B_n^{(k)} \in \mathcal{F}_{[1,n]}, \ d(B^{(k)}, B_n^{(k)}) \to 0 \text{ as } n \to \infty.$$

Choose

$$n(1) = \min\{n \ge 1 : d(B^{(1)}, B_l^{(1)}) \le 1/2 \ \forall l \ge n\}$$

and, for  $k \geq 1$ ,

$$n(k+1) = \min\{n \ge n(k) : d(B^{(k)}, B_l^{(k)}) \le 1/2^k \ \forall l \ge n\}.$$

Finally, put

$$A_n = \begin{cases} \emptyset, & \text{if } n < n(1); \\ B_{n(k)}^{(k)}, & \text{if } n(k) \ge n < n(k+1), \end{cases} A_n \in \mathcal{F}_{[1,n]}.$$

Then 
$$d(A, A_n) \leq d(A, B^{(k)}) + 1/2^k$$
, for  $n(k) \geq n < n(k+1)$ . Since  $k \to \infty$  as  $n \to \infty$ ,  $d(A, A_n) \to 0$ .

**Lemma 13** Let  $\{\xi_n\}_{n=-\infty}^{\infty}$  be a double-infinite sequence of r.v. 's,

$$\mathcal{F}_{(-\infty,\infty)} = \sigma\{\ldots, \xi_{-2}, \xi_{-1}, \xi_0, \xi_1, \xi_2, \ldots\}.$$

Then 
$$\forall A \in \mathcal{F}_{(-\infty,\infty)}, \exists \{A_n\}, A_n \in \mathcal{F}_{[-n,n]} : d(A, A_n) \to 0.$$

Problem No 8. Proof — for you!!!

(2). A sequence of independent r.v.'s.

**Definition 10** For a sequence  $\{\xi_n\}_{n\geq 1}$ , the tail  $\sigma$ -algebra is

$$\mathcal{F}_{\infty} = \bigcap_{k=1}^{\infty} \mathcal{F}_{[k,\infty)}.$$

**Note:** Since  $\mathcal{F}_{[k+1,\infty)} \subseteq \mathcal{F}_{[k,\infty)}$ ,  $\Longrightarrow \mathcal{F}_{\infty} = \bigcap_{k=l}^{\infty} \mathcal{F}_{[k,\infty)} \ \forall \ l$ .

**Definition 11** For a sequence  $\{\xi_n\}_{n=-\infty}^{\infty}$ ,

$$\mathcal{F}_{\infty} = \bigcap_{k=1}^{\infty} \mathcal{F}_{[k,\infty)} \equiv \bigcap_{k=l}^{\infty} \mathcal{F}_{[k,\infty)}, \ \forall \ -\infty < l < \infty$$

is right tail  $\sigma$ -algebra and

$$\mathcal{F}_{-\infty} = \bigcap_{k=-0}^{\infty} \mathcal{F}_{(-\infty,k]} \equiv \bigcap_{k=l}^{\infty} \mathcal{F}_{(-\infty,k]}, \ \forall \ -\infty < l < \infty$$

is left tail  $\sigma$ -algebra.

#### Examples...

**Lemma 14** If  $\{\xi_n\}_{n\geq 1}$  is a sequence of independent r.v.'s, then  $\mathcal{F}_{\infty}$  is trivial, i.e.

$$\forall A \in \mathcal{F}_{\infty}, \quad \mathbf{P}(A) = 0 \lor 1.$$

Proof.

- 1)  $A \perp \mathcal{F}_{[1,n]} \forall n$ ;
- 2) Since  $\mathcal{F}_{\infty} \subseteq \mathcal{F}_{[1,\infty)}, \exists \{A_n\} \in \mathcal{F}_{[1,n]} : d(A_n, A) \to 0.$

Therefore,

$$\mathbf{P}(A) = \mathbf{P}(A \cap A_n) + \mathbf{P}(A \setminus A_n) = \mathbf{P}(A) \cdot \mathbf{P}(A_n) + \mathbf{P}(A \setminus A_n);$$
$$0 \le \mathbf{P}(A)[1 - \mathbf{P}(A_n)] = \mathbf{P}(A \setminus A_n) \le d(A_n, A) \to 0.$$

**Lemma 15** If  $\{\xi_n\}_{n=-\infty}^{\infty}$  is a sequence of independent r.v. 's, then both  $\mathcal{F}_{-\infty}$  and  $\mathcal{F}_{\infty}$  are trivial.

Problem No 9. Proof — for you!!!

(3). A stationary sequence of r.v.'s.

**Definition 12** A sequence  $\{\xi_n\}_{n\geq 1}$  (or  $\{\xi_n\}_{n=-\infty}^{\infty}$ ) is stationary, if  $\forall l\geq 1$ , for all  $1\leq n_1< n_2<\ldots< n_l$  (or without " $1\leq$ "),  $\forall k\geq 1$  (or  $\forall -\infty < k <\infty$ ),  $\forall B_1,\ldots,B_l$ 

$$\mathbf{P}(\xi_{n_1} \in B_1, \dots, \xi_{n_l} \in B_l) = \mathbf{P}(\xi_{n_1+k} \in B_1, \dots, \xi_{n_l+k} \in B_l).$$

In particular, all  $\xi_n$  are identically distributed and all finite-dimensional vectors  $\vec{\xi}_n = (\xi_n, \xi_{n+1}, \dots, \xi_{n+l})$  are i.d. (for a fixed l).

#### **Examples**

- 1)  $\{\xi_n\}$  i.i.d.
- 2)  $\xi_n \equiv \xi_1$

3) 
$$\xi_{n+1} = -\xi_n$$
,  $\xi_1 = \begin{cases} 1, & 1/2 \\ -1, & 1/2 \end{cases}$ 

Introduce a shift transformation  $\theta$  on the set of  $\mathcal{F}_{[1,\infty)}$ -measurable (or  $\mathcal{F}_{(-\infty,\infty)}$ -measurable) r.v.'s:

- 1)  $\theta \xi_n = \xi_{n+1} \ \forall \ n$
- 2) if  $\psi = h(\xi_n, \xi_{n+1}, \dots, \xi_{n+l})$ , then  $\theta \psi = h(\xi_{n+1}, \xi_{n+2}, \dots, \xi_{n+l+1})$
- 3) if  $\psi = h(\dots, \xi_n, \xi_{n+1}, \dots)$ , then  $\theta \psi = h(\dots, \xi_{n+1}, \xi_{n+2}, \dots)$ .

**Note:**  $\theta$  is measure-preserving:  $\psi \stackrel{\mathrm{D}}{=} \theta \psi$ .

Introduce a shift transformation  $\theta$  on  $\mathcal{F}_{[1,\infty)}$  (or  $\mathcal{F}_{(-\infty,\infty)}$ ):

$$A \in \mathcal{F}_{[1,\infty)} \iff I(A) \text{ is } \mathcal{F}_{[1,\infty)} - \text{ measurable} \iff \exists h : I(A) = h(\dots, \xi_n, \xi_{n+1}, \dots),$$

h is  $\{0,1\}$ -valued. Then

$$\theta A = \{h(\dots, \xi_{n+1}, \xi_{n+2}, \dots) = 1\} \iff \theta I(A) = h(\dots, \xi_{n+1}, \xi_{n+2}, \dots).$$

For any m, introduce  $\theta^m \equiv \underline{\theta \cdot \ldots \cdot \theta}$ .

In the case of  $\mathcal{F}_{(-\infty,\infty)}$  we can introduce  $\theta^{-m}$ , too. And  $\theta^0$  — identical transformation.

**Definition 13** A  $\mathcal{F}_{[1,\infty)}$ -measurable (or  $\mathcal{F}_{(-\infty,\infty)}$ -...) r.v.  $\psi$  is invariant  $(w.r.to\ \theta)$ , if

$$\theta \psi = \psi \text{ a.s.}$$
 (i.e.  $\mathbf{P}(\theta \psi = \psi) = 1$ ).

An event  $A \in \mathcal{F}_{[1,\infty)}$  (or  $A \in \mathcal{F}_{(-\infty,\infty)}$ ) is invariant (w.r.to  $\theta$ ), if

$$\mathbf{P}(A \cap \theta A) = \mathbf{P}(A).$$

Note that  $\theta \psi = \psi$  a.s.  $\iff \forall x$ ,

$$\mathbf{P}(\{\psi \le x\} \cap \{\theta\psi \le x\}) = \mathbf{P}(\psi \le x).$$

Comments, examples...

**Definition 14** A stationary sequence  $\{\xi_n\}$  is ergodic (w.r.to  $\theta$ ), if  $\forall A \in \mathcal{F}_{[1,\infty)}$   $(A \in \mathcal{F}_{[1,\infty)})$ ,

$$A \ is \ invariant \qquad \Longrightarrow \quad \mathbf{P}(A) = 0 \lor 1$$
 
$$(or \ \psi \ is \ invariant \qquad \Longrightarrow \quad \psi = \mathrm{const} \ a.s. \ ).$$

**Remark 5** All invariant events (sets) form a  $\sigma$ -algebra  $\mathcal{F}^{(inv)}$  (invariant  $\sigma$ -algebra).

- **Lemma 16** (1)  $\forall A \in \mathcal{F}_{[1,\infty)}$  (or  $\forall A \in \mathcal{F}_{(-\infty,\infty)}$ ) the sequence of events  $\{\theta^n A, n \geq 0\}$  (or  $\{\theta^n A, -\infty \leq n \leq \infty\}$ ) is stationary;
  - (2) If  $\{\xi_n\}$  is stationary egrodic, then  $\forall A \in \mathcal{F}_{[1,\infty)}$  (or  $\forall A \in \mathcal{F}_{(-\infty,\infty)}$ ),  $\mathbf{P}(A) > 0$

$$\implies \mathbf{P}(\cup_{n=l}^{\infty}\theta^{n}A)=1 \ \forall \ l \quad (\ and \ \mathbf{P}(\cup_{n=l}^{-\infty}\theta^{n}A)=1 \ \forall \ l).$$

**Proof.** (1) follows from definitions.

(2) Set  $B = \bigcup_{n=l}^{\infty} \theta^n A$ , then

$$\theta B = \bigcup_{n=l}^{\infty} \theta(\theta^n A) = \bigcup_{n=l+1}^{\infty} \theta^n A$$

and  $B \supset \theta B$ 

$$\Rightarrow$$
  $\mathbf{P}(B \cap \theta B) = \mathbf{P}(\theta B) = \mathbf{P}(B)$   $\Rightarrow$   $B$  is invariant  $\Rightarrow$   $\mathbf{P}(B) = 0 \lor 1$ .

$$\operatorname{But} \mathbf{P}(B) \geq \mathbf{P}(\theta^l A) = \mathbf{P}(A) > 0 \quad \Longrightarrow \quad \mathbf{P}(B) = 1. \qquad \qquad \square$$

**Lemma 17** If A is invariant, then  $\exists B \in \mathcal{F}_{\infty}$  such that d(A, B) = 0.

**Proof.** (a) The case  $\mathcal{F}_{[1,\infty)}$ ; (b) the case  $\mathcal{F}_{(-\infty,\infty)}$ .

**Problem No 10.** Proof at (b) — for you!!

1) Set 
$$B_{0,m} = A \cap \theta A \cap \theta^2 A \cap \ldots \cap \theta^m A$$
,  $B_0 = \bigcap_{n=0}^{\infty} \theta^n A$ . Then

$$A = B_{0,0} \supseteq B_{0,1} \supseteq \ldots \supseteq B_{0,m} \supseteq B_{0,m+1} \supseteq \ldots \supseteq B_0$$

and  $\mathbf{P}(B_{0,m}) \searrow \mathbf{P}(B_0)$ . But

$$\mathbf{P}(B_{0,m}) = \mathbf{P}(A) \ \forall \ m! \quad \Longrightarrow \quad \mathbf{P}(B_0) = \mathbf{P}(A) \ \text{and} \ d(B_0, A) = 0.$$

2) For  $k \geq 1$ , put  $B_k = \theta^k B_0 \equiv \bigcap_{n=k}^{\infty} \theta^n A$ .

Note:  $B_{k+1} \supseteq B_k$  and  $B_k \in \mathcal{F}_{[k,\infty)}$ ,

$$\mathbf{P}(B_k) = \mathbf{P}(B_0) = \mathbf{P}(A)$$
 and  $d(B_k, A) = 0$ .

Set

$$B = \lim_{k \to \infty} B_k \quad \Longrightarrow \quad \mathbf{P}(B) = \mathbf{P}(A) \quad \text{and} \quad d(B, A) = 0.$$

But 
$$B \in \mathcal{F}_{[k,\infty)} \ \forall \ k \quad \Longrightarrow \quad B \in \mathcal{F}_{\infty}$$
.

**Remark 6** In the case  $\mathcal{F}_{(-\infty,\infty)}$ , the "symmetric" statement is true, too: if A is invariant, then  $\exists B \in \mathcal{F}_{-\infty}$  such that d(A,B) = 0.

Corollary 3 Any i.i.d. sequence is stationary ergodic.

Indeed,  $\mathcal{F}_{\infty}$  is trivial  $\Longrightarrow$  if A is invariant,  $B \in \mathcal{F}_{\infty}$ ,  $\mathbf{P}(B) = 0 \vee 1$  and  $d(A, B) = 0 \Longrightarrow \mathbf{P}(A) = 0 \vee 1$ .

**Remark 7** There exists a number of more weaker conditions (than i.i.d. ones) that imply the "triviality" of the tail  $\sigma$ -algebra  $\mathcal{F}_{\infty}$  and, as a corollary, the ergodicity of a stationary sequence.

For instance, introduce the following "mixing" coefficients:

$$d_k = \sup_{B \in \mathcal{F}_{[k,\infty)}, A \in \mathcal{F}_{(-\infty,0]}} |\mathbf{P}(A \cap B) - \mathbf{P}(A) \cdot \mathbf{P}(B)|.$$

One can show that if  $d_k \to 0$  as  $k \to \infty$ , then  $\mathcal{F}_{\infty}$  is trivial.

But, in general, there are examples when  $\mathcal{F}_{\infty}$  is not trivial, but  $\mathcal{F}^{inv}$  is (i.e. the sequence is ergodic).

**Example** 
$$\xi_{n+1} = -\xi_n \ \forall \ n; \ \xi_1 = \begin{cases} 1, & \text{w.pr. } 1/2 \\ -1, & \text{w.pr. } 1/2 \end{cases}$$
 Then

$$\mathcal{F}_{\infty} = \sigma(\xi_1), \quad \mathcal{F}^{inv} = \{\Omega, \emptyset\}.$$

Next Part