PREVIOUS SECTION: Probabilistic Metrics

1.7  Stopping times

Let eq403 be a probability space and eq080 be a sequence of r.v.'s, eq256. Denote by eq257 the eq056-algebra, generated by eq115:  

eq258

where =eq056-algebra of Borel sets in eq259.

Then, for eq260eq261 -  eq056-algebra, generated by eq262 ; i.e.

 eq263 is a minimal eq056-algebra, so that  

eq264

Another way of description of eq261 is:

 eq265 is a random vector; eq266. Then

eq267

where eq268 eq056-algebra of Borel sets in eq269.

Finally, eq270-algebra, generated by the whole sequence eq080.

 

Good Property: For all eq272eq049  eq274eq275, such that

 eq276

Let now eq277 be an integer-valued r.v.

 

Definition 5 Random value eq278 is called a stopping time (ST) with respect to eq081, if  eq279,  

eq280

(or, equivalently - eq281).

 

Another variant of definition is:

 

Definition 6

Random value eq278 is a ST, if  eq049 a family of functions eq282 such that:  

eq283

(or, equivalently - eq284 a.s.).

Examples ...

Assume now that eq081 is an i.i.d. sequence, eq278 is a ST;  eq285.

Put

 eq286

Lemma 3 1)  eq287 is an i.i.d. sequence;

2)  eq288;

 3) eq289 and a random vector  eq290 are mutually independent.

 

Corollary 1 eq289 and  eq291 are mutually independent.

 

Proof  of Lemma 3.

We have to show that  eq292 Borel sets  eq293 and  eq294 ,

 eq295

eq184

Indeed,  eq184 eq109 1), 2) and 3).

First,  eq296 . Then,  eq297

 eq298

eq188

 

In particular,  eq299 take  eq300 and  eq301 for  eq302 . Then

the l.h.s. of eq188=

the r.h.s. of eq188=

eq109 2)

Now, take any  eq294 and replace in  eq188

 eq305     by      eq306

eq109 1)

Finally, take any  eq293 and  eq294 and replace in  eq184

  eq305     by      eq307 .

eq109 3)

 

So, let's prove  eq184:

 eq308

eq308

eq308

eq308

QDE

 

Lemma 4

(Wald identity)

Assume that  eq156 and  eq309 . Then

 eq310

 

Proof.  

(a) Show that  eq311 .

 eq312

Note, that  eq313 , and  eq314

 eq109  eq115 and  eq315 are independent  eq109  eq316 and  eq315 are independent eq109

 eq317

 eq318

(b) Therefore,

 eq319

QDE

``Induction..."

Lemma 5 Let  eq080 be an i.i.d. sequence;
eq278 be a ST w.r. to  eq080,  eq285;

 eq289 be as defined above;

 eq320 be a ST w.r. to  eq289,  eq321.

Then  eq322 is a ST w.r. to  eq080.

Proof.  

 eq323

eq323

eq323

eq109 eq323
eq109 eq323

QDE

Let's write

eq324

instead of
instead of
. . .
. . .
. . .

eq324

Lemma 6 If  eq325 is a ST w.r. to  eq326  eq327

and if  eq328,

then

 eq329 is a ST w.r. to  eq330.

 

NEXT SECTION: Generalization onto 2-dimensional case


File translated from TEX by TTH, version 1.58, Htex, and with Natalia Chernova as the TeX2gif-convertor.