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Abstract—We consider a random walk generated by a sequence of independent identically dis-
tributed random variables. We assume that the distribution function of a jump of the random walk
equals an exponential polynomial on the negative half-axis. For double transforms of the joint
distribution of the first exit time from an interval and overshoot, we obtain explicit expressions
depending on finitely many parameters that, in turn, we can derive from the system of linear
equations. The principal difference of the present article from similar results in this direction is
the rejection of using factorization components and projection operators connected with them.
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1. INTRODUCTION

We consider a sequence of independent identically distributed random variables {Xn, n ≥ 1}. Let
S0 = 0, Sn = X1 + · · · + Xn, n ≥ 1. Given arbitrary a > 0 and b > 0, we introduce the first exit time
from the interval [−a, b) for the random walk {Sn} as is follows:

N = min
{
n ≥ 1 : Sn /∈ [−a, b)

}
.

In the present paper, we study the joint distributions

P(Sn ∈ dx, N > n) and P(SN ∈ dx, N = n).

The list of the papers connected somehow with the study of the moment of the first exit of a random
walk from an interval is so numerous that it is impossible to expound the history of the problem in
the framework of this article. We only remark that the most part of the studies in this direction relates
to various approximations of the distributions under consideration, including proving limit theorems
and obtaining asymptotic expansions in different schemes of the asymptotic analysis (for instance, if
a + b → ∞ or in a triangle array scheme with decreasing jump sizes). We shift our accent to asymptotic
results since finding explicit formulas for the joint distribution of the pair (N,SN ) is available only for
some classes of jump distributions of rather particular forms. More precisely, the probabilities P(SN ≥ b)
and P(N = n) are well known in the simplest version of the ruin problem when P(X1 = 1) + P(X1 =
−1) = 1 [5], the explicit expressions are found for P(N = n, SN = k) in the case when X1 has the two-
sided geometric distribution (see [4]). In the last case and in the situation when jumps of a random
walk have an exponential density on each half-line, the explicit expressions are known for the moment
generating functions

∑
zn

P(N = n, SN ∈ A) and, as a corollary, for the probabilities P(SN ∈ A) (see
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[2, 3]). It is possible to obtain much more results in finding double transforms of the sought distributions
in the two-sided boundary crossing problem. Introduce the following notation:

Q0(z, λ) = 1 +
∞∑

n=1

zn

∫ b

−a
eλx

P(Sn ∈ dx, N > n), |z| < 1, Re λ = 0,

Q1(z, λ) =
∞∑

n=1

zn

∫ −a

−∞
eλx

P(SN ∈ dx, N = n), |z| ≤ 1, Re λ ≥ 0,

Q2(z, λ) =
∞∑

n=1

zn

∫ ∞

b
eλx

P(SN ∈ dx, N = n), |z| ≤ 1, Re λ ≤ 0.

It is well known [7] that these functions are connected by the relation

r(z, λ)Q0(z, λ) = 1 − Q1(z, λ) − Q2(z, λ), (1)

where

r(z, λ) = 1 − zϕ(λ), ϕ(λ) = EeλX1 , Re λ = 0, |z| < 1.

The application of a Wiener–Hopf type method allows us to solve this equation. The method is based on
the factorization (which is often attributed to the names of N. Wiener and E. Hopf)

r(z, λ) = R+(z, λ)R−(z, λ), |z| < 1, Re λ = 0,

where we can put

R−(z, λ) = exp

{

−
∞∑

n=1

zn

n
E

(
exp{λSn};Sn < 0

)
}

,

R+(z, λ) = exp

{

−
∞∑

n=1

zn

n
E

(
exp{λSn};Sn ≥ 0

)
}

.

The functions Qi will be expressed in terms of the operators A and B that are defined by using
the factorization components R±(z, λ). For every function g of the form

g(λ) =
∫ ∞

−∞
eλydG(y), Re λ = 0,

∫ ∞

−∞

∣
∣dG(y)

∣
∣ < ∞,

for |z| < 1 and Reλ = 0, we put

Ag(z, λ) = R−(z, λ)
[
R−1

− (z, λ)g(λ)
](−∞,−a)

,

Bg(z, λ) = R+(z, λ)
[
R−1

+ (z, λ)g(λ)
][b,∞)

,

where we use the conventional notation
[ ∫ ∞

−∞
eλydG(y)

]D

=
∫

D
eλydG(y).

Then (see [2, 3, 7])

Q1(z, λ) = Ae(z, λ) −ABe(z, λ) + ABQ1(z, λ), (2)

Q2(z, λ) = Be(z, λ) − BAe(z, λ) + BAQ2(z, λ), (3)

where e(λ) ≡ 1.
Formulas (2) and (3) enable us to find the asymptotic representations for the functions Qi under

the Cramér conditions as a → ∞ and b → ∞ [2, 3] and obtain the representations of these functions in
the form of series containing powers of the projection operators A and B. However, these formulas are
of little use to be explicit expressions for double transforms because the factorization components and
projection operators connected with them have rather complicated structures.
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The above reveals the necessity of searching alternative methods for finding explicit expressions for
double transforms of the distributions in the two-sided boundary crossing problem. It is clear that we
should not expect simple expressions here. The algorithm proposed in the present article for finding
the functions Qi, i = 0, 1, 2, differs from methods of the previous publications by the fact that it does
not use the Wiener–Hopf factorization. At the same time, we consider a rather broad class of random
walks with the jump distribution belonging to the class R introduced in [1]. This class is characterized by
the following condition: At least one of the functions E

(
exp{λX1}; X1 < 0

)
or E

(
exp{λX1}; X1 > 0

)

is rational. The class R is dense in the sense of weak convergence in the set of all distribution functions.
It is easy to see that if, for instance, the function E

(
exp{λX1}; X1 < 0

)
is rational then, for y < 0, we

have

P(X1 < y) =
m∑

k=1

Mk(y)eαky, Reαk > 0, (4)

where Mk(y) are some polynomials. The expressions of the form (4) are conventionally called exponential
polynomials.

It is also known that, for the distributions of the class R, the factorization components are explicitly
expressible in terms of zeros and poles of the function 1 − zϕ(λ), but we do not use this fact.

The method proposed below for obtaining double transforms uses some tricks from [6].

2. FORMULAS FOR DOUBLE TRANSFORMS
Assume that

E
(
exp{λX1}; X1 < 0

)
=

Rm(λ)
Pk(λ)

, (5)

where Rm and Pk are polynomials of degrees m and k, respectively. Here we have m < k by necessity
since E

(
exp{λX1}; X1 < 0

)
→ 0 as λ = Reλ → ∞.

Lemma. Let condition (5) be satisfied. Then, for |z| < 1, the equation 1− zϕ(λ) = 0 has exactly
k roots (taking their multiplicity into account) on the half-plane Re λ < 0.

Proof. The function E
(
exp{λX1}; X1 < 0

)
exists and is bounded for Reλ ≥ 0. Therefore, all zeros

of the polynomial Pk(λ) lie on the half-plane Re λ < 0. Hence, the function

r(z, λ) = 1 − zRm(λ)
Pk(λ)

− zE
(
exp{λX1}; X1 ≥ 0

)

is analytic on the left half-plane everywhere except for k poles (with their multiplicity taken into account),
where k is a finite number. Take a rectangular contour with vertices at the points (−C,−iC), (−C, iC),
(0, iC), and (0,−iC). All zeros of the polynomial Pk for C large enough are inside this contour. If
Re λ = 0 then

∣
∣ϕ(λ)

∣
∣ ≤ 1. We now show that this estimate is valid on the other parts of the contour

considering ϕ(λ) as a result of its analytic continuation to the left half-plane. Indeed, we have |λ| ≥ C
on the other parts of the contour. Hence,

Rm(λ)
Pk(λ)

→ 0

as C → ∞. Recalling that
∣
∣E

(
exp{λX1}; X1 ≥ 0

)∣∣ < 1

for Re λ < 0, we conclude that
∣
∣ϕ(λ)

∣
∣ ≤

∣∣
∣
∣
Rm(λ)
Pk(λ)

∣∣
∣
∣ +

∣
∣E

(
exp{λX1}; X1 ≥ 0

)∣∣ ≤ 1

on all parts of the contour for sufficiently large C. This means that, for |z| < 1, the argument of
r(z, λ) = 1 − zϕ(λ) has no increment after path-tracing. In view of the well-known argument principle
for analytic functions, we infer that r(z, λ) has exactly k roots (taking their multiplicity into account) on
the left half-plane.
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Denote by λ1(z), . . . , λk(z) the zeros of the function r(z, λ) lying on the left half-plane (the zeros in
this sequence can be repeated and the number of repetitions of zero is equal to its multiplicity). Let

Λ(z, λ) =
k∏

i=1

(
λ − λi(z)

)
. (6)

We need the following functions:

ω−
t (z, λ) =

∞∑

n=0

zn

∫ t

−∞
eλx

P(Sn ∈ dx), |z| < 1, Reλ ≥ 0, (7)

ω+
t (z, λ) =

∞∑

n=0

zn

∫ +∞

t
eλx

P(Sn ∈ dx), |z| < 1, Reλ ≤ 0. (8)

It is easy to see that, for every t, the equality r−1(z, λ) = ω−
t (z, λ) + ω+

t (z, λ) is valid for |z| < 1 and
Re λ = 0. For any t, the function ω−

t (z, λ) is analytic on the half-plane Re λ > 0 and continuous on
the boundary of this set, and the function ω+

t (z, λ) possesses similar properties on the left half-plane.

Now we can formulate the main result of the article.
Theorem. Let condition (5) be satisfied. Then the following representations take place for

|z| < 1:

Q0(z, λ) =
C(z, λ)eλb

Pk(λ)Λ(z, λ)
+ ω−

b (z, λ) − B(z, λ)e−λa

Pk(λ)
ω−

b+a(z, λ), (9)

Q1(z, λ) =
B(z, λ)e−λa

Pk(λ)
, Re λ ≥ 0, (10)

Q2(z, λ) =
[
ω+

b (z, λ) − C(z, λ)eλb

Pk(λ)Λ(z, λ)
− B(z, λ)e−λa

Pk(λ)
ω+

b+a(z, λ)
]
r(z, λ),

Re λ ≤ 0,
(11)

where B(z, λ) and C(z, λ) are polynomials in λ of degrees k − 1 and 2k − 1. The coefficients of
these polynomials are the solution to the system of linear equations (12)–(14) below.

Proof. Given |z| < 1, we introduce the function

Φ1(z, λ) =

⎧
⎪⎨

⎪⎩

eλaQ1(z, λ)Pk(λ), Reλ ≥ 0,

eλa
(
1 − Q0(z, λ)r(z, λ) − Q2(z, λ)

)
Pk(λ), Reλ ≤ 0.

By (1), the function Φ1(z, λ) is well defined for Reλ = 0. Show that this function is entire in λ and has
polynomial growth as |λ| → ∞. This is so since the functions Pk(λ) and Q1(z, λ) have no singularities
if Reλ ≥ 0, and Pk(λ), Pk(λ)r(z, λ), eλaQ0(z, λ), and Q2(z, λ) have no singularities if Reλ ≤ 0.

If Reλ ≤ 0 then the functions eλaQ0(z, λ) and eλaQ2(z, λ) are bounded and if Reλ ≥ 0 then
the function eλaQ1(z, λ) is bounded. Hence, Φ1(z, λ) increases at infinity no faster than O

(
|λ|k

)
and,

therefore, is a polynomial of degree at most k which is denoted by B(z, λ).

In view of the obvious inequality

P(SN ∈ A, N = n) ≤ P(Sn ∈ A), A ⊂ (−∞,−a),

and absolute continuity of the measure P(Sn ∈ A) on the half-plane (−∞, 0), we infer that the density

dP(SN < x,N = n)
dx

= fn(x), x < 0,
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exists. Therefore,

lim
λ→+∞

B(z, λ)
Pk(λ)

= lim
λ→+∞

Q1(z, λ)eλa = lim
λ→+∞

∫ −a

−∞
eλ(x+a)

∞∑

n=1

znfn(x)dx = 0

by the Riemann–Lebesgue lemma. This means that B(z, λ) is a polynomial of degree at most k − 1.
Thus,

Q1(z, λ) =
B(z, λ)e−λa

Pk(λ)
.

Hence, relation (10) is established.

We now introduce the function

Φ2(z, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ω+

b (z, λ)−Q2(z, λ)
r(z, λ)

−B(z, λ)e−λa

Pk(λ)
ω+

b+a(z, λ)
)

Pk(λ)Λ(z, λ)e−λb

if Reλ ≤ 0,(
Q0(z, λ)−ω−

b (z, λ)+
B(z, λ)e−λa

Pk(λ)
ω−

b+a(z, λ)
)

Pk(λ)Λ(z, λ)e−λb

if Reλ ≥ 0.

This function is well defined on the imaginary axis since (1) implies the relation

ω+
b (z, λ) + ω−

b (z, λ) − Q2(z, λ)
r(z, λ)

= Q0(z, λ) + Q1(z, λ)
(
ω+

b+a(z, λ) + ω−
b+a(z, λ)

)

= Q0(z, λ) +
B(z, λ)e−λa

Pk(λ)
(
ω+

b+a(z, λ) + ω−
b+a(z, λ)

)
.

As in consideration of Φ1(z, λ), we show that the function Φ2(z, λ) is entire and has polynomial growth
as |λ| → ∞. First we show that Φ2(z, λ) is an entire function. This is actually so since the functions

e−λbω+
b (z, λ),

e−λbQ2(z, λ)Pk(λ)Λ(z, λ)
r(z, λ)

, B(z, λ), and e−λ(b+a)ω+
b+a(z, λ)

have no singularities if Reλ ≤ 0, and the functions

e−λbQ0(z, λ), ω−
b (z, λ)e−λb, and ω−

b+a(z, λ)e−λ(b+a)

have no singularities if Re λ ≥ 0. It is easy to see that Φ2(z, λ) increases at infinity no faster than
O

(
|λ|2k

)
, i.e., Φ2(z, λ) is a polynomial which is denoted by C(z, λ).

Thus, for Re λ ≥ 0, we have

C(z, λ) =
(

Q0(z, λ) − ω−
b (z, λ) +

B(z, λ)e−λa

Pk(λ)
ω−

b+a(z, λ)
)

Pk(λ)Λ(z, λ)e−λb

and, for Re λ ≤ 0,

C(z, λ) =
(

ω+
b (z, λ) − Q2(z, λ)

r(z, λ)
− B(z, λ)e−λa

Pk(λ)
ω+

b+a(z, λ)
)

Pk(λ)Λ(z, λ)e−λb,

which yields both representations (9) and (11).

Since the relations

e−λbQ0(z, λ) → 0, ω−
b (z, λ)e−λb → 0,

B(z, λ)
Pk(λ)

ω−
b+a(z, λ)e−λ(b+a) → 0

SIBERIAN ADVANCES IN MATHEMATICS Vol. 23 No. 2 2013



96 LOTOV, TARASENKO

hold as Reλ → +∞, we have
C(z, λ)

Pk(λ)Λ(z, λ)
→ 0. Hence, C(z, λ) is a polynomial of degree at most

2k − 1.
We are left with finding exactly 3k coefficients of the polynomials B(z, λ) and C(λ, z).

First, suppose that all roots of the polynomial Λ(z, λ) are prime. Observe that all the quantities
Q0

(
z, λi(z)

)
, ω+

b (z, λi(z)), and ω+
b+a

(
z, λi(z)

)
are finite. From (10) and (1) it follows that

B
(
z, λi(z)

)
e−λi(z)a

Pk

(
λi(z)

) = Q1

(
z, λi(z)

)
= 1 − Q2

(
z, λi(z)

)
.

Inserting λ = λi(z) into (11) implies

1 − Q2

(
z, λi(z)

)
= 1 +

C
(
z, λi(z)

)
eλi(z)bSi(z)

Pk

(
λi(z)

) ,

where

Si(z) =
[

r(z, λ)
Λ(z, λ)

]

λ=λi(z)

.

So we have k equations

B
(
z, λi(z)

)
e−λi(z)a − C

(
z, λi(z)

)
eλi(z)bSi(z) = Pk

(
λi(z)

)
, i = 1, . . . , k. (12)

Let

Pk(λ) =
k∏

i=1

(λ − pi),

where all roots p1, . . . , pk are prime. Multiply both sides of (11) by e−λb and put λ = pi. Note that
the quantities Q2(z, pi)e−pib are finite for all i. The same is true for the right-hand side of (11). Obviously,
r(z, pi) = ∞; therefore,

[
C(z, λ) + B(z, λ)e−(b+a)λω+

b+a(z, λ)Λ(z, λ)
]

λ=pi

= 0, i = 1, . . . , k, (13)
[

e−bλω+
b (z, λ) − λ − pi

Pk(λ)
d

dλ

(
C(z, λ)
Λ(z, λ)

+ B(z, λ)e−(b+a)λω+
b+a(z, λ)

)]

λ=pi

= 0, i = 1, . . . , k. (14)

We thus obtain 3k equations (12)–(14) to define 3k unknown coefficients of the polynomials. It is easy to
see that the coefficients of these equations are analytic functions in the variable z in the disk |z| < 1. The
same holds for the determinant of this system. Hence, this determinant vanishes only at finitely many
points z.

In the case of the multiple roots λi(z) and pj , we need obviously to differentiate the corresponding
equations before substitution. Observe also that, like ϕ(λ), the function ϕ′(λ) is analytic on the left
half-plane everywhere except for finitely many poles. Therefore, ϕ′(λ) can vanish on this half-plane
only at some finite set of points λ1, . . . , λT . Hence, among the roots λi(z), there may be multiple

only for the points zi =
[
ϕ(λi)

]−1, i = 1, . . . , T . Clearly, for these z, we can define the coefficients of
the polynomial B(z, λ) by continuity.

As an example, we calculate the functions Qi in the case when X1 has the density

f(x) =
α

2
e−α|x|.
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Then

ϕ(λ) =
α2

α2 − λ2
, r(z, λ) =

λ2 + (z − 1)α2

λ2 − α2
.

Here

k = 1, p1 = −α, λ1(z) = −α
√

1 − z,

S1(z) =
2λ1(z)

λ1(z)2 − α2
.

Put B(z, λ) = b0(z) and C(z, λ) = c1(z)λ + c0(z). Denote

W0(z) = ω+
b (z, p1),

W1(z) = e−(b+a)p1ω+
b+a(z, p1),

W2(z) = e−(b+a)p1

[
dω+

b+a(z, λ)
dλ

]

λ=p1

.

Then the system of equations (12)–(14) takes the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b0(z)e−λ1(z)(b+a)

S1(z)
− c1(z)λ1(z) − c0(z) =

(λ1(z) + α)e−λ1(z)b

S1(z)
,

W1(z)
(
p1 − λ1(z)

)
b0(z) + c1(z)p1 + c0(z) = 0,

(
(b + a)W1(z) − W2(z)

)
b0(z) +

c1(z)p1 + c0(z)
(p1 − λ1(z))2

= −e−bp1W0(z).

From the second and third equations it follows that

b0(z) =
e−bp1W0(z)

(
p1 − λ1(z)

)

W1(z) +
(
W2(z) − (b + a)W1(z)

)(
p1 − λ1(z)

) .

Summing the first and second equations, we find

c1(z) =

(
λ1(z) + α

)
e−λ1(z)b

(
p1 − λ1(z)

)
S1(z)

−
(

W1(z) +
e−λ1(z)(b+a)

(
p1 − λ1(z)

)
S1(z)

)

b0(z).

Finally, the second equation yields

c0(z) = W1(z)
(
λ1(z) − p1

)
b0(z) − p1c1(z).
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