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ON THE SOJOURN TIME OF A RANDOM WALK IN A STRIP
V. I. Lotov UDC 519.21

Abstract: We obtain asymptotic representations for the triple transforms of the joint distribution of
the sojourn time of a random walk in a strip (as well as in a half-plane) in n steps and of the location
at time n under the condition of unboundedly moving-off boundaries of the sets. The Cramér type
conditions are imposed on the distribution of jumps.
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1. Statement of the Problem. The Main Result

Let {X,,,n > 1} be a sequence of independent identically distributed random variables, S,, = X; +
-o-+ Xy, n > 1. Given a Borel set D C R, we introduce

Tn = Tn(D) = ZI{SkeD}’
k=1

where I4(w) =1 if w € A, and I4(w) = 0 otherwise. Thus, T, is the sojourn time of a random walk in D
on the time interval [1,...,n], i.e. the number of points k, 1 < k < n, such that Sy € D.

Throughout the sequel we assume that D = [—a,b], where —a < b. Moreover, we speak about
the two-sided boundary problem if both numbers a and b are finite. If ¢ = co and b < oo or a < oo and
b = oo then we deal with the one-sided boundary problem.

The final goal of our research is to find the probabilities P(7,, = k) and study their behavior for
large n, including the case in which the set D itself depends on n. There are various approaches to this
problem. The combinatorial methods of [1,2] can be applied to simple random walks of a special form.
Most of publications are devoted to the case D = (0, 00) and the arcsine law connected with this case (for
instance, see [3,4]). The available limit theorems for the sojourn time are based on the convergence of
the distributions of functionals of the trajectories of a random walk to the distribution of the corresponding
functionals of limit processes. A rather comprehensive bibliography and the results in this direction of
research are given in [5, 6].

Certainly, the study of the sojourn time (by its type) relates to the boundary problems for random
walks, i.e. to finding the probabilities connected with the mutual disposition of the trajectories of
a random walk and the boundary of some set. It is well known that, for many boundary problems,
the in-depth results, including the complete asymptotic expansions of probabilities, can be obtained on
using factorization identities (see [7-9] and the bibliography therein).

The factorization method of analysis is well developed by now; which explains our natural intention
to apply the technique to the study of the sojourn time so obtaining some new results. Some steps in
this direction were made in [10-12].

This method usually consists of several stages. At the first step, some factorization identities are
found for the double or triple transforms of the sought boundary functional distribution. As a rule,
they do not lead to expressions applicable for further inversion in the general case. For this reason,
some scheme of asymptotic analysis is performed at the second stage (e.g., if the boundaries of the set
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under consideration move away). At this step, the principal part of the already-found transform can be
isolated simultaneously with the estimation of the error of this approximation; the error turns out to be
negligible under wide conditions. This stage is somewhat complicated since it involves rather delicate
properties of factorization components. The third stage contains the inversion (as a rule, asymptotic)
of the principal parts of the transforms. This can be fulfilled by the contour integration procedure with
using the saddle-point method [7,9] or by direct calculations [8].

We note that, for random walks under the Cramér condition on jumps, the detailed study of the
analytic properties of the factorization components was carried out in [7]. Much research on the boundary
crossing problems is based on the results of [7].

The above-mentioned papers [10-12] correspond to the first stage of the study: finding factorization
representations for the multiple moment generating functions of the sojourn time. They use rather
complicated technique of the matrix factorization which looks inefficient for the further inversion of the
resultant representations. Some remarks in this connection are in [13]. Thus, the study of the sojourn
time in terms of the well-known one-dimensional factorization seems actual as before.

The first stage of this work was done in [13]; the identities for the triple transforms of the joint
distribution of the pair (75, .S,) were found there in terms of the ordinary factorization in one-sided and
two-sided boundary problems. These identities provide explicit expressions for the triple transforms in
one-sided boundary problems but the sought transforms enter the identities implicitly in the case of two
boundaries. In both cases, the results were stated in terms of special projection operators of factorization
components. These operators can easily be calculated if the distribution of X; has exponential density
on a half-line in one-sided boundary problems or on both half-lines in two-sided problems. For random
walks with general distribution of jumps, the identities do not give any compact expressions suitable for
further inversion. We therefore apply asymptotic analysis to the factorization representations obtained
in [13], provided that a — oo and b — oo, in order to find the main terms with a rather simple structure.

Thus, the present article is a continuation of [13] and corresponds to the second stage of the study.
The main results of this article are the asymptotic representations for the triple transforms of the joint
distribution of the pair (7, S,) in one-sided and two-sided boundary problems and, as a corollary, for the
moment generating functions for the distribution of 7;, (Theorem 1). We isolate relatively simple main
terms and estimate the remainders that turn out exponentially small as compared with the principal
parts. In addition, the Cramér type conditions are imposed on the distribution of Xj.

The asymptotic behavior of the coefficients of a power series is usually determined by the behavior of
the sum of this series in a neighborhood of the unity. The asymptotic analysis of the distribution of the
first exit time from a half-plane or a strip (see [7, 8]) shows that, even in the case of complete asymptotic
expansions of the probabilities under the Cramér condition, it suffices to determine the behavior of
the corresponding moment generating function near the unity. The modulus of the moment generating
function is exponentially small on the remaining part of the unit circle. Therefore, we below find the
asymptotic representation of the function

Jap(z,u,A) = 3 2Bl (ot ASn)

n=1
= Zz" Zuk / P (T ([—a, b)) = k, Sy, € dx)
n=1 k=0

only near the unity in z and wu.

To avoid long statements, in this section we give an asymptotic representation for f, (2, u,0). To
this end, we need some notation. They all are connected with factorization components whose definition
should be recalled as well. First, introduce the ladder epochs ny and the ladder heights x+ as follows:

n-=inf{n>1:5, <0}, ny=inf{n>1:5, >0}, x+=25,,.
Here we put 4 = 00 if 5, < 0 for all n and n— = oo if S, > 0 for all n. We do not define the quantities y+
on the events {n+ = co}.
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Let Ry(z,\) = 1 — E(z"F exp{Ax+};n+ < o0) for |z] < 1 and ReA = 0. These functions are
components of the well-known factorization (for instance, see [14])

1 - 2p(A) = Ry (2 MR- (2, M) Ro(2), (1)

where

X _n
Ry(z) = exp{ - Z Z—P(Sn = 0)}
n=1
It is known also that the following representations are valid for |z| < 1 and Re A = 0:
X _n
R_(z,)\) = exp{ - Z Z—E(exp{)\Sn}; Sp < 0)},
n=1 n
X _n
Ri(z,\) = exp{ - Z Z—E(exp{)\Sn}; Sp > 0)}
n=1 n
Throughout the sequel, we suppose that the following Cramér type conditions are satisfied:
Al. The distribution of X contains an absolutely continuous component.
A2, |p(N)] < oo for —y < ReA < 3, where vy >0, 5 >0, B+~ >0, and E|X;| < co.
Below the values of v and 8 will be specified each time.
If yy = EX; =0 and v > 0, 8 > 0 then, as follows from condition A2, for some §; > 0 the function
1 — zp(\) has exactly the two real zeros A1(z), z € [1 —01,1], A_(2) < 0 < Ai(z). The functions
At (z) admit analytical continuation in some d-neighborhood of the interval [1 — d1,1] with a cut along
the ray z > 1. Moreover, Ay (z) retain the zeros of the function 1 — zp(A). If g3 > 0 and 8 > 0 then,
for the same z, we can guarantee only existence of the zero Ay(z) > 0. This zero also exists under
the condition p; < 0, 8 > 0, and ¢(B) > 1. Analogously, the zero A_(z) always exists if 43 < 0and v > 0
as well as for pug > 0, v > 0, and @(y) > 1. If condition A2 is satisfied then (1) is valid in the domain
—v < Re A < 3. The functions Ay (z), provided that they exist, are zeros of the factorization components
too: Ry(z,Ax(z)) = 0. These and the other facts to be used in the sequel are presented in detail in [7].
Put A+ = A1 (1). Then, clearly, Ay =0 for u3 =0; A\_ =0, AL > 0 for 3 < 0; and \_ < 0, AL =0 for
p1 > 0.
All subsequent assertions that use the functions Ai(s) and Ai(z) extend only to those situations
when these functions exist in accord with condition A2 and the above remarks.
Put
s)

- Ri(s, )Ry (2,\(s))
Vi(z,8,A) = (A= As(8) R (5, A () Ry (2, A)]
B R_(s,\R ( A_(s))
U(z,s,)\)—(/\_/\_( DR (s, _(8))R—_(2,\)’ 2

Hi(z,8) =U(z,8,A+(5)), Ha(z,8) =V(z,8A_(s)),
H(Z,S) = Hl(zvs)HQ(Z78)7 /'L(S) = 6)\_( )7 A+(s )7
and let Ls = {s:|s| <1,|s — 1| < d}.

Theorem 1. Let EX; =0, a > 0, and b > 0 and let conditions A1 and A2 be satisfied with v > 0
and B > 0. Then there are 6 > 0 and € > 0 such that the following representation takes place for z € Lg
and s = zu € Lg:

- zZ,8 b S
(1= 8)(1 4 fap(z,u,0)) =1 —Ul(z,s,0) 11_ ;22( g);ﬁj(z) A (9)a
1 — Hi(z,s)u(s)
= H(z, )b (s)

where |A(z,s)| < Cre™%% + Cye™2P for |z] < |s|.

~V(z,s,0) e M L (= 1)A(z, ), (3)
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Here and in the sequel, the symbols C,Cq,Cs,... denote various constants; moreover, the same
symbol may correspond to different constants in different expressions.

REMARK. 1. We observe that the values of a = co or b = oo in (3) are not excluded. Considering
lu(s)] <1, ReA_(s) <0, and Re Ay (s) > 0 for s € L with small §, from (3) we obtain the corresponding
representations for one-sided boundary problems. For instance,

(1= 8)(1+ foop(2,u,0)) =1 = V(2,5 0)e b 4 (4 —1)A(z, 5),
where |A(z, s)| < Ce™2 for |z| < |s].
2. As will be shown below, the functions in (3)
1 — Hy(z,s)ul(s) 1— Hi(z,8)u(s)
L= H(zs)ib ()| |T— Hz, )b (s)
are separated from 0 uniformly in a and b; and the convergence Ai(s) — 0 takes place as s — 1. For
this reason, the remainder A(z,s) in (3) decreases exponentially rapidly with the growth of a and b in
comparison with the principal terms.
3. The representation (3) is essentially simplified if we assume that the distribution of X has density
of the form et g
cie s >0,
t) = 4
ro={ (@)

where a; > 0 and cjae + coa1 = ajas. In this case A(z,s) =0,
AMeg — 1) — ajan

A pr—
PN = a0 T ag)
(the function exists in the strip —as < Re A < ay), and
M= XNar —az+2(cg — 1)) + qag(z — 1) (A= Ap(2))(A = A_(2))

)

1—2zp(A\) = =
P A —a1)(A + a2) O —a)(A + a2)
In view of the uniqueness properties for (1), we can put
A=A (2) A=A (2)
R-i-(Z?)‘) - )\_al ) R—(Z))‘) - )\+O£2 ) (5)
and, using rather routine calculations, obtain the formulas
A(s) = A_(2) () = A (2)
Hi(z,s ———= Hs(z,s8) = , 6
D W S WS M A WS S W ©)
A (2) = A+ (s) A—(2) = A=(s)
V(z,s,0) = —F——F—=, Ul(z,50) = ——F—F—. 7
(05,0 = 05 (00,00 = =55 7)

2. Preliminary Results

The results of [13] are a starting point of our studies; therefore, we give their statements.
Let D = [—a,b]. Introduce the functions

o(z,u, A) Z Zu / P (T, =k, S, € du),
n=1

[—a,b]

1(z,u, ) Z Zu / P (T, =k, Sy, € da),

(—00,—a)
2(z,u, A) Z Zu / AP (T, = k, Sy, € dx),
(b,00)
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where |z| < 1, |uz| < 1, and Re A = 0. It is established in [13] that
w(@1(z, 1, A) + Q2(2,u, A))(1 = 20(A)) + (1 + Qolz, u, A) (1 — zup(X)) = L. (8)
Rewrite (8) as follows:
1+ Qi(z,u,\) + Q2(z,u, A) + Qo(z, u, )

= m(l + (1 —u)(Qu(z,u, A) + Q2(z,u, A))).

Clearly, the left-hand side of this equality is equal to 1 + f, (2, u, A), i.e.

]-+fa,b(zaua >‘) = (1+ (1—’LL)(Q1(Z,’LL, )\)—FQQ(Z,U,/\))) (9)

1 — zup(X)

Thus, to find f,5(2,u, ), it suffices to know @Q;, i« = 1,2. In [13] the equation (8) was solved by

a Wiener—Hopf type method; in result, the representations of @);, ¢ = 1, 2, were found via the factorization

components of 1 —z¢(A) and 1—zup(A). To formulate this result, we introduce some additional notation.
For every function g of the form

[e. o]

g(z,8,A) = /e)‘xdGzys(x), Where/ |dG s(z)| < o0,

— 00

we define the operators L4 as follows:

S z (5,00)

(Lag)es ) = = [ o]

R_(s,\) [R_(z,)\) (—o0,—a)
(Log)es N = o eS|

Here we use the notation -
A
MdG(x)| = [ MdG(z).
J ] -

The so-defined operators themselves depend on z and s; but for brevity we do not emphasize this fact in
their notation.

Put s = zu, q;(z,s,\) = Qi(z,5/2,)), and h(z,s,\) = z(s — z) L.

The following theorem was proven in [13].

Theorem 2. Let D = [—a,b], —a <0 <b. Then the following representations are valid for |z| < 1,
|s|] <1, and Re A = 0:

q1(z,8,\) = (L_h)(2z,8,\) — (L_Lyh)(z,8,A) + (L_Lyq1)(z,s,\),

10
(25 0) = (Leh)(28.0) = (Lo Loh)(z.8, ) + (L L 2) (2,5 A). 1o
Corollary 1. For D = [—a,>), —a < 0, we have
q1(z,8,A) = (L_h)(z,s,\) (11)
and, similarly, for D = (—o00,b], b > 0,
Q2(2787A) = (L-Fh)(Z:s?)‘)- (12)
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Although the formulas (10) determine iteration processes for finding ¢;, they lead to sufficiently
simple explicit expressions for ¢; only in the particular cases when the factorization components, for
instance, are linear-fractional functions (see [13] and also Theorem 4 below). However, simple expressions
for ¢; are unavailable if X7 has distribution of a general form. Therefore, for the further inversion of
the moment generating functions we have to use their asymptotic representations which will be found
below. If a — 0o, b — 0o, and the Cramér condition holds (see below) then the expressions of the form
(L+g)(z,8,\) can be approximated by simpler expressions in a neighborhood of the unity (in variables
z and s) with exponentially small error of this approximation. Inserting the resultant approximating
expressions into (10) leads to the asymptotic representations for ¢; and g2 and then for f, 5(z,u, A). This
all will be done in the following sections.

As is seen from the formulas (10), we pass from the variables z and u to the variables z and s. In
many cases, this fact justifies the passage from the double transform over T, (D) to the transform over

T,(D), since

Z 2By = Z BT (D) = Z SnEan(E)a (13)
n=1 n=1 n=1

where s = zu and v = v~ 1.

3. Asymptotic Analysis of the Operators L
Denote by 1I the set of functions g of the form

g(\) = / MAG(y). ReA=0, |g] = / 4G (y)] < oo.

In line with [8], given arbitrary ¢ € R, introduce the sets
1(t) = {g(N) : g(A + 1) € 11},

n(w:{genwzmnz /ﬁeMﬂXMJ%A:t}

(70070]

I, (t) = {g ell(t) : g(\) = / eMdG(y), Re) = t}
[0,00)
and, for g € II(t) and g € IL.(¢), put |glls = [€"¥|dG(y)| with the obvious agreements on domains
of integration. We may assume that the variables z and s are independent in the formulations of the

forthcoming Lemmas 1-3.
First of all we need Lemma 1 of [8] and its modification.

Lemma 1. Let conditions Al and A2 hold. Then there are § > 0 and € > 0 such that, for
seLs={s:|s| <1, [s—1| <}, |z <1,
there exists at least one of the functions Ay (s), and the representations
Ri(z, A\ Ri(z, A
Ri(s,A) (A= As(s))Re(s, Ax(s))

are valid in which the derivative is calculated in the variable \, ¥y (z,s,\) € IIL(Ay * €); moreover,
the norms |1+ (2, s, .)||x.+e of these functions are bounded uniformly in s € Ls and |z| < 1.

PROOF. Put

Ri(s, A+ +1)

_ R (s N(A-8-1)
A=A (s) 7 '

wi(sA) = X — A ()

w_(s,\)
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It is known [8] that
wit(s,\) € Ay +e), wi(s,\) €I_(A_—¢), s€ Ls,
for some § > 0 and € > 0, and the norms of these functions are bounded uniformly in s € Ls. Extracting
the singularity at A = \;.(s), we obtain
Ri(z,A)  Ry(z, ) (A+~v+1)
Ri(s,A) (A= As(s) )Uﬂ+(3 A)
_ B @A () Aty D) (B2 d) - (z, Ar(s)(A+v+1)
(= A (3))w (5, N) = A ()]s (5, V) |

Clearly,

e = e Ry e
Moreover,

At+y+1

=w'(s,\)

(A= As(s))w(s, A)
wil(s 71 s
A Lt s a9 + (1= du (o) A S (2 )

o
_ 1 L +< 3 = w75, 4(5))
R e AW R S R v W

1
O = () (5, 05 (5))
where 1/153)(3, A) € IL (A4 +¢€) as well as wi'(s, \) (see [7]). We are left with putting
Yulz5,0) = 01 (2,5, 0) + Ry (2,04 ()9 (s, 1),

The assertion for R_(z, \)R~'(s, \) can be proven similarly. The lemma is proven.

+ 9P (5,0,

In what follows, the number € > 0 is chosen according to the claim of the above lemma. Observe also
that the equality ¥ (s, s, \) = 1 follows from the definition of 14 (z, s, A). For this reason, 14 (z, s, ) can
be representable as

¢+(S’U,S,)\) =1+ (U - 1)¢-(B)(5Ua S’)‘)a )

with the same properties of analyticity in A\ for 1/158)(2, s,A\) and ¥4 (z,s,A). The case of ¥_(z,s,\) is
exactly the same. We will use this fact in proving the following lemmas.

Lemma 2. Let conditions Al and A2 hold. In addition, we assume that > 0 and ¢(8) > 1
if EX; < 0. Then, for every function g(\) = f(ioo 0 eMdG(y) € T1_(0) there exists § > 0 such that
the following representations take place for |z| < 1, s € Ls, and Re A < A,:

(L) (a5 ) = Vs NN g o)) 4 EZDTEED [ owag ),

b,00)

where V (z, s, \) is defined in (2) and, for all z > 0, we have

[ eMdenst)l < Cm =g, r e,
(b+z,00)

’ / eTydgoz,S(y)’ < O~ (A+te—Rer)(bta) lg(T)], Rer <Ay +e.
(b+x,00)
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PrROOF. We make use of Lemma 1 and the remark after its proof. If s € Ls then we have the in-
equality Re A (s) > A4 and so, for Re A < A4, obtain

gy 1P _7 Ay / A (8)(y—t)
[}\ = )\+(s)} = e e dG(t)dy
b (—00,0]

A—=A1(8))b
(AN gy — g(Ai(s))ePr ()

_g(>‘+(3)) A\ — )\+(8)

@\8

Therefore,

(L1g)(z,5,\) = Ri(s,3) [( Ry (2, A4 (s)

2 A+(5) 2 —5)s 10 (2, s
R GEste arswe RERICRRUR TR ey
(

=V (2, 5, )M MOy (2, (s)) + 2812%(;7” /eAydy / U, (y — t)dG(2),

] (b,00)

(b,00) (—00,0]

where W, ; satisfies the relation

o0

f)(z,s,)\) = /eAy d¥,s(y), Rel < Ap+e.
0

Put

@z,s(y) = / \Ilz,s(y - t) dG(t)

(70070]

From the properties of ¥4 (z, s, \) in Lemma 1 it follows that

’/erydwz7s(y)‘ < /eTy\d\I/zs( )| _/ (A+e)y (’\++E*T)y]d\I/z,s(y)\ < Ce—(Mte—T)v

for 7 < A4 + € uniformly in s and z (see Lemma 2 in [7]). Therefore,

[ edewis [ e, [ e ollaca

(b+z,00) (b+w,00) (=00,0]
_ / eTu|d\Ifz7s(u)| / 6Tt|dG(t)| < Ce— (M te—7)(b+x) lgll-
(b+z,00) (—00,0]

and, for Re7 < A4 + ¢,
[ aew|=| [ v [ etac)] s ce ety
(b+x,00) (b+x,00) (—00,0]

The lemma is proven.

The following lemma can be proven by analogy.
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Lemma 3. Let conditions Al and A2 hold. In addition, we assume that v > 0 and ¢(y) > 1
if EX; > 0. Then, for every function g(\) = [ e dG(y) € I1.(0) there exists § > 0 such that
the following representation takes place for |z| < 1, s € Ls, and Re A > A_:

(L_g)(2:5,A) = Ulz,5, \)el D Nag(r_(s)) 4 G D54 / N d. (1),

SR_(z,\)
where U(z, s, A) is defined in (2) and, for all x > 0, we have
/ e7V|df:,s(y)| < O g|| 7> A —¢,
‘ / eTdeZ,s(y)' < CeP-—s"Rem)(a+a) ()| Rer > A —e.

—00
REMARK. 1. The principal parts of the resultant asymptotic representations and the remainder
estimates do not change if we take [b, c0) instead of (b, 00) in the definition of Ly and (—oo, —al instead
of (—oo, —a) in the definition of L_.
2. Easy calculations show that the remainder in Lemma 2 vanishes if P(X; > t) = ce= % ¢ > 0. In
the same way, we have 6, 5(y) = 0 in Lemma 3 under the condition P(X; < t) = ce®?!, ¢ < 0.

4. Asymptotic Representations for the Moment
Generating Functions in One-Sided Boundary Problems

Using the above-obtained lemmas, we turn now to finding the asymptotic representations for the func-
tions f, (2, u, ) in one-sided boundary problems.
Let a = 00, 0 < b < 00, and e(z,s,\) = 1. Employing (12) and Lemma 2, for |z| < 1, we obtain

) R (S )\) R (Z )\) (b,OO)
B . _ (L _ +(S, +\~
(s — 2)2 'qa2(z,5,A) = (Lye)(z, 8, ) Ri(z,A) | Ri(s,)\)
) — 8)Ry(s,\)
_ A)e(A=As ()b (z — s)R (s, / M dp) 14
Viz,s,N)e + sRi(z,\) ‘ QDZﬁ(y)’ "
(b,00)
where
e |dp()(y)| < CeCrtenlro) <\ e 1)
(b+z,00)

uniformly in z and s € Ls for > 0.
Similarly, using (11) and Lemma 3, we have

_ R_(s,\) [R_(z,A)]°~%
. 1 — L_ — ) ]
(s—2)z2 " q1(z,8,\) = (L_e)(z,s,\) R (o0 {R_(s,)\)
_ O (s)-Na , (2= 8)R_(s,}) / N g(1
Uz.5 e + EPESH [ vanti) (16)
for b = 0o and |z| < 1 with
[ evlani)] < ot s e < (17)

uniformly in s € Ls for x > 0.
Inserting the so-obtained representations (14) and (16) into (9) and passing to the variable v = u~
in accord with (13), we arrive at the following assertion.
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Theorem 3. Let a > 0 and b > 0 and let conditions Al and A2 be satisfied. Then there are § > 0
and € > 0 such that the following representations take place for |sv| < 1, s € Ls, and Re A = 0:
1) If B > 0 and, moreover, ¢() > 1 for EX; < 0 then

e 1
1+ S"E UTn((b,oo))e)\Sn - -
; ( )= 1= sp(A)
B Org (s (0 —1)Ry(s,A) / Ay g (1)
x{l Vsv,s,Ne R (50, ) eVdpg)s(y) ¢ (18)
(b,00)

where
/ ldpll) (y)| < CemPeTol
(b,00)

uniformly in |sv| < 1, s € Ls.
2) If v > 0 and () > 1 for EX; > 0 then

> 1
1 ng Tn((—00,—a)) ,ASn _
+n§1s (v e =50y
Coene_ =DR (N [
x{l — U(sv, s,)\)e(’\ (8)=Na _ R (s0.) / e’\ydegj?s(y) , (19)
where
[ a6, w] < et
uniformly in |sv| < 1, s € Ls.
Corollary 2. Let a <0 and P(X; <t) = ce™, t < 0. Then
> e 1 A_(s) — A_(sv) _
1 "R Tn((—00,—a)) JASny 1 — (A=(s)=N)a .
+n2::15 (v ) 1—sp(A) A —A_(sv) ¢
Ifb>0and P(X; >t) = ce ", t > 0, then
> 1 Ai(s) = Ap(sv) (_
1 g (pTn (0:50)) ASny _ 1A+ + A-Ap ()b )
+n§_:18 (v ) 1 —sp(A) A — Ay (sv) c

This assertion ensues from Remark 2 of Item 3 and the following simple forms of the factorization
components:
A—A_(s)

R-(s,%) = A+«

if P(X; <t)=ce™ t<0,

A=A
R+(87 A) = )\_JFOES) if P(Xl > t) = Ceiat, t>0.

Let for brevity T;, = T,,((b,00)). From (18) it follows that

1 [e.e] o)

n Thn n _ Th

1_8—1—215Ev —2:15 (1-Ev™)
n= n=

_ Vi(sv,s, 0)e M0 (y —1)R,(s,0) W
B (1 — S) (]_ — S)R+(SU,O) / d sv,s(y)' (20)

b,00)
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Next,

T, (v— 1)2
Ev'" =14 (v—1)ET, + 5 ET,.(T,—1)+....
Denote
o RJr(Sa 0)
A+ (8)R (5, A1(s))

s)Z(s,v). The function Z(s,v) is analytic in v in some neighborhood of the unity
) = 0; therefore,

_ Ri(sv M (5)
Z(s,v) = R, (50.0)

v(s) =

Here V(sv,s,0) = v(
for s € Ls and Z(s,1

_ 0Z(s,v)

Ri(s0 A4 (5) _ 1y 40) +
. ov

R (50,0) oy A(s)

v=1
Thus, if v = 1 then (20) implies the following representation.

Corollary 3. Under the conditions of Theorem 3, there is a number § > 0 such that

> v(s)e M A(s 1
n=1
(b,00)

A similar assertion can be easily stated for ET,,((—o0, —a)) as well.

5. Asymptotics of the Moment Generating
Functions in Two-Sided Boundary Problems

Here we consider the case in which D = [—a,b], a > 0, and b > 0. Suppose that the conditions of both
Lemmas 2 and 3 hold simultaneously; this provides the existence of the two zeros Ay (s) for s € Ls. The
rest of the article is organized as follows: We first find the asymptotic representations for the remaining
summands on the right-hand sides of (10) (the asymptotics of the first summands (Lih)(z,s, \) was
found above). Inserting these representations into (10) with the subsequent rather difficult analysis of
so-obtained expressions leads to the asymptotic representations for the functions ga(z, s, A) (Theorem 5)
and ¢i(z,s,A) (Theorem 6). For finding the asymptotic representation of f, (2, u,A), we are left with
inserting the expressions for g;(z, s, A) into (9). In result, we obtain a rather bulky expression that we
omit for saving room. Instead of it, we give a more compact expression for f, (2, u,0), which completes
the proof of Theorem 1 at the end of this article.

So, in accordance with Lemma 3 we find

(L-)(z,5,0) = U(z, 5, e Nagy( 5 3 (s)) + C ;;fijf)’” [makw. e

—00
where, for £ > 0, the relations

—a—x

eV[dOP) (y)| < CeP-= D go (2,5, ), Ao —e < T

Z,8 =

—0o0

’ / e deg?s)(y)‘ < Cetmer et Dgy(2,5, 7)), A~ — e <Rer, (22)

—00
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hold uniformly in |z| < 1 and s € Ls. Using Lemma 2 and (16) and recalling that u(s) =
we obtain

2U (2, 8, A4(s))pu“(s)

(s —2)
_2R_(s,A4(5)) _ae)\+(s)y (1 (z —8)Ri(s,7) RYNE)
o) [ eemanti |+ ESDEEN [ ovage),

- (b,00)

(LyL_h)(2,5,\) = V(z,5, A)G(Au(s))b{

where, for x > 0,

e dp?)(y)| < Ce” Ot =D (L_R)(2,s, ), 7 < Ay +e,

(b+z,00)

e 4p2()| < Ce ORI LR sy, Rer <A+
(b+x,00)
uniformly in s € Ls and |z| < 1.
Employing Lemma 2 and (21), we find

(LyL_q2)(2,8,\) = V(z,5,\)ePA+(Db

><{U(z,s,)\+(8))q2(z,5,)\_(s))u“(s)+ < S;Zi’ggs)) / MO g2 (y )}

(z —8)Ri(s,A) M )
" sRy(z,)) / dotsw)

—0o0

(b,00)
here
| s < et g s )l T <A e

(b+z,00)

| / dsos’:z<y>1 < CemMete RN (L _g,)(2,5,7)], ReT < Ay +¢,
(b+x,00)
uniformly in |2| < 1 and s € Ls for x > 0.
Inserting (14), (23), and (24) into (10) and using (2), we obtain
2V (2,5, \)eX A+ ()P

(s —2)
q2(z, s, )\_(s))>

QQ(Za S, )‘) =

s§—Z

X{I—Hl(z,s);ﬂ(s)<1— (z,s)} + As(z,8,N),

where
R_(s,A1(s)) [ =z ]a A ( es [
A =2 T /(= +(9)y g1 / A+ (s)y gp(2
1(2, 5) R,(z,)\+(s)) s € d zs( ) s € z,s(y) s

A ()24 (5),

(26)

Ao(z,5,\) = Zr(5:A) (Z;S / e d(oP)(y) — P (y)) —g / M dpM) (y )>-

(b,00) (b,00)
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To find g2(z,s,A_(s)), we put A = A_(s) in (25). Using (2) for the functions H, Hi, and Ha, we

deduce
Q2(zv Clp - (S))(l - H(za S)Nb+a(3))
= 2(s — 2) "L Hy(z, s) () (1 — Hi(z,s)u(s) + o (z, s)> + As(z,5,A_(s)),
1—(s—2)z (2, 5,2_(s))
L Hy(z,s)pb(s) (1 — Hi(z, s)u(s) + 52 A1 (2, 8)) + 22200 (2,8, A—(s))
1= H(e5)ya(s)
_ 1— Ha(z,8)pb(s) (1 4+ 52 A4 (2, 8)) + 5200 (2,8, A= (s))
1 — H(z,s)ub(s) ’
and, finally,
2V (2. 5. N)eP—A+(5)
o L= Ha(z,s)ub(s) (1 + 52 A1(z,8)) + 222 As(2, 5, A_(5))
SOEEEEE T Az 7(s)
2V (2,8, A)eP A6 (1 — Hy (2, 8)u%(s)
R e = e te
(s — 2)(H(z, s)ub*(s)A1(z, s) — Hi(z,8)u(5)As(2,8,A_(s5))) s—2
* A H () als)
B 2V (2,8, \)eP=2+6D0 (1 — H\ (2, 5)u’(s) s L
+As(z,8,A) = G—2) {1—H(z,s)ub+“(s)+A3( , )}+A2( LS, A),
where
5= 2A1(2,5) — Aa(z,5,A_(5))Hi(z,s)u’(s)
As(z5) = 2 : 1 —2H(z, 3),ub+“(sl)

Recalling that, in view of (4), the remainders in the assertions of Lemmas 2 and 3 are absent, we
conclude that Aj(z,s) and As(z, s, A) vanish in this particular case. Using (5)—(7), we obtain

2(A1(s) — a1)(As(s) +az) 1= Hilz,8)u(s) n.(onn
S(A = A4 (2)) (A (s) = A=(2)) L — H(z, s)ub*a(s)
The right-hand side of this expression can be simplified, since
At(s) = A4 (2))As(s) =A-(2) _ | o1 Z
e —a) (o) Fag) PN =T

In a similar manner, we can calculate ¢ (z, s, A) for this situation. We thus arrive at the following assertion
(see also [13]).

Theorem 4. Let condition (4) hold. Then
2A(5) =A(2)) 1= Ha(z,5)p°(s) (x (o Na
(s =)A= A_(2)) T H(z,s)ura(s)"

o ) S A E) 1 i ) oo
BN = A ) L H G ()

QQ(Zv S, )\) =

q(z,s, ) =

fora>0andb>0.

The expressions for ¢;(z, s, \) can be easily inverted in the variable .
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Corollary 4. Under the conditions of Theorem 4, for every x > 0 we have

oo n
Zz”ZukP(Tn =k, S, >b+x)
n=1 k=0

_ A(8) = A (2) 1= Hi(2,8)1%(5) 3, (s)p-ri (20
(I —w)Ai(z) 1 — H(z,s)ubte(s) ’

S = ZU.

We could further apply the identity (9) and use the equality Ay (s)A_(s) = ayaa(s — 1) (this follows
from Vieta’s theorem). We finally obtain the following:

Corollary 5. Under the conditions of Theorem 4, we have

1 Ap(s) = A4 (2) 1= Hi(z,8)p(s)  (a-ap(s
1+ fap(z,u,\) = 1—s<p()\){1_ +)\_)\+(2) 1—H(1z,s)ub+“(s)e(/\ A+ ( ))b}
1 {)\_(s) — A_(2) 1— Ha(z,s)ub(s) e()\_(s)—/\)a} s o

L—spA\) | A=A_(2) 1— H(z s)ub+e(s) ’ '

We turn now to estimating the remainders A; in the general case. We will do this on assuming that
E X; = 0. In this case A+ = 0, and the following expansions take place in a neighborhood of the unity
with a cut along the ray z > 1 (see [7]):

Ae(2) = 21 (1 = 2) 2 4 (1= 2) + -

(throughout the sequel, we bear in mind the principal value of the square root), where ¢ = /2/02,

o = ,113/(30'4), HE = EX{Ca and 0 = K2 — M%
In what follows, we assume that z € Ls alongside s € L for small 6 > 0; moreover, |z| < |s|.
We first estimate Aj(z,s). Observe that

'R_<S,A+<s>>‘< R_(500(5) [|Me(9) = A (2) || Mals) = A_(5)
B o) | = ) - ) || B2 ) | () = A (2)
C1 — s|'/? <C
OO S .
Therefore,
|A1(z,8)] < Oy /e)‘+ ydﬁg )‘-1—02 Ss/ ”(S)yd@fﬁ( )‘

Given small 6, we have 0 < Re Ay (s) < €/2; hence, by (17) and (22),

‘ / 6A+(s)y dHSS (y)‘ < Ce—(a—ReAJr(s))a < Ce—ea/Q’ (27)
[ X < e Plnts o) (28)

The function go(z, s, A) is determined for Re\ < 0 and analytic in the domain Re A < 0. Expressing Q2
from (8), we obtain

1— (14 Qo(z,u,A)( = zup(N))
u(l = zp(X))

q2(z,8,\) = Qa2(z,u, A) = — Q1(z,u, ), (29)
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from which we see that g2(z, s, A) admit analytic continuation to the domain Re A < Re Ay (2). If |z] < |s]
then Re Ay (s) < Re Ay (z), which justifies the use of ¢2(z, s, \+(s)) on the right-hand side of (28).
Putting A = Ay(s) in (29), for |z| < |s|, we infer

z

q2(z>5a)‘i(5))+Q1(Z75’)‘i(5)) = (30)

s—z
This relation is of interest in its own right and, in its form, looks like one of the well-known Wald
identities.

Next, let g2(z, s, A) coincide with ¢a2(z, s, \) for a = co. Then, clearly,

Go(2, 8, \i(s)) = —

5—z
and, provided that z € (1 —4§,1) and s € (z,1) are real,

s§—Z

Z(}Q(z,s,)\i(s)) =1.

z z

s
qQ(Z)Su )\i(S))‘ S ‘
Hence, for z € Ls, s € Lg, and |z| < |s|, with § sufficiently small, we have

(s = 2)qa2(2, 5, Ax(s))| < 2. (31)
This estimate can be obtained on using the above representations for (L4 h)(z, s, A+ (s)), (Ly+L_h)(z,s,
A4 (5)), and (Ly L_g2)(2, 5\ (5)).
Together with (27) and (28), this yields the following estimate for these z and s:
A (z,5)] < Ce®9/2,

We now estimate the quantity

Baesr () = o T (550 [ e - B0 - [ Mratn).

s s
(b,00) (b,00)
As above, we establish that
Ri(s A ()| _ .
REPP)
and, by (15),
‘ / —(s)y d90 )' < Ce—(e—Re)\,(s))b < Ce—sb'
(b,00)
Moreover,
[ e - ol < | [ M rad)
(b,00) (b,00)
+‘ / A dsoéi%(y)' < e CTRAD(|(L_h) (2, 5,2~ (9))]
(b,00)

+H(L-g2)(z, 8, A=(5))]) < e P((L-R)(2, 8, A= ()] + |(L-2) (2, 8, A=(5))])-
Employ the relations

(L*h)(zasv)‘*(s)) = ) (L*QQ)(ZV%)‘*(S)) = QQ(Z,S,)\f(S))

s§—Z
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which are immediate from (16) and (21) (the first of them also follows from (29) if b = oo, the second

ensues from the comparison of (10) and (30)). Considering (31), we conclude that
|As(z,8,A_(5)] < Ce™ (1 + |(s — 2)qa(2, 8, A_(5))]) < Cre~=.
Finally, show that
1
<C<oo

1= H(z,s)u"*(s)| —

for s € Ls, z € Ls, and |z| < |s|. Recall (see (2)) that

R_(5,)(5)) Rel2 e (5))
Hz5) = 0=+ O - 030 B (0))

where
R_(5,\+(s)) wls) - Ri(s,\(s))
(A (s) = A(s)R_(5,A-(s))" " (A= (8) = A+ ()Rl (s, A4 (s))

a_(s) =

(32)

Clearly, |u(s)] < 1and a_(s)ay(s) = 1+O0(v/1 — s) as s — 1. Further, the quantity 7= Ez /\+ES;§ gig ﬁsgg

vanishes for s = z; hence, its absolute value is at most 1/2 if s and z are sufficiently close.

implies (32).
The remainder Ay(z, s, A) has the form

o0

As(z,8,\) /eAy dp. s(y
b

Show that |Aa(z,s,0)| < Ce . Note that

B0 | MO | VI (R0
R (2,0) A (2) R (2, A4 (2)0) + . .. VI—2\ R (2, (2))

In view of (26), we infer

VA
‘ / dsoz,s(y)‘ <
S
b

< Cre P + Cyls — z|e =2 (|(L_h)(z,5,0)| + |(L_gq2)(z, 5,0)]).
By (16) and (21), we have

z— S

S

/ (dpP(y) + dsoé?ﬁ(y))'
b

(s — 2)(L_h)(2,5,0)] < L [ 9f(5,0) / dag”(y)' <c,

R_(z,0) sR_(z,0) E #
e ‘R_ ()| _ ' (A_(5) = A_(2) R (. A_(2)) + ... ’
R_(z,0) —A_(2)R_(z,A\_(2)) + ...
_ ‘(\/1 —s—V1—-2)R (2,A_(2)) —l—‘ <c
V1—2zR (z,A\_(2)) +. -
and
0 () IR_(2A_(5)(s — DA (5))
(5= (L) 5,0)| < N |

“ Z)QR_(T . / d9£2><y>\ < O+ Cae™*|(s — 2)%g2(2,5,0) .

+ sR_(z,0 ”

—00
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Let, as above, ¢a2(z, s,0) coincide with ga(z,s,0) for a = co. If z € (1 —,1) and s € (z,1) are real
then
s—2z

§—z s—z 1
O <|—gq O <|—aq A < —.
2 QQ(Z,S, )‘ = ‘ 5 Q2(z>57 )‘ = ‘ 5 Q2(Z>87 +(S)) = ’Z‘

Hence, for z € Lg, s € Lg, and |z| < |s|, with § sufficiently small, we have the estimate
(s — 2)qa2(z,5,0)] < 2.

We thus proved the assertion to appear below. Before formulating it, we recall that the quantities
V(z,s,A), U(z,s,\), H(z,s), Hi(z,s), and pu(s) were introduced before Theorem 1 and the functions
qi(z, s, A), before Theorem 2.

Theorem 5. Let EX; =0, a > 0, and b > 0 and let conditions A1 and A2 be satisfied with v > 0
and B > 0. Then there are 6 > 0 and € > 0 such that the following representation takes place for z € Ly,
s € Ls, and Re X <0:

2V (z,8,A) eA A0 ( 1 — Hi(z,s)u*(s)

(2,8, A) G—2) T H(zs)07(s) + (s — 2)ei(z, S)) + A(z,s,N),

where |e1(z, 5)| < Cre % + Cae™%? for |z| < |s| and the function A(z,s,\) has the form

R+(S, )‘)

Az, 8,\) = ORER))

/ Mg, (y), |A(z5,0)] < Ce .
(b,00)

Using symmetric arguments, we can prove the following

Theorem 6. Let EX; =0, a > 0, and b > 0 and let conditions Al and A2 be satisfied with v > 0
and 8 > 0. Then there are § > 0 and € > 0 such that the following representation takes place for z € Ly,
s € Lg, and Re A > 0:

2U (2,8, \) e=(s)=Aa — 2, 8)b(s ~
iers ) = FES S (R + - a(es)) + Bl )

where |e2(z, s)| < Cre ™% + Cye™= for |z| < |s| and the function A(z,s,\) has the form

&(z,s,A)_M/ewdez,s(y), A (z,5,0)| < Ce=e.

—00
Recall the above-proven identity (see (9))

1
1—sp(A)
Inserting the asymptotic representations of Theorems 5 and 6 for the functions ¢; and ¢s in the right-hand

side of this identity, we arrive at the corresponding representation for fq (2, u, A). The corollary to this
assertion with the condition A = 0 was given in the beginning of the article (Theorem 1).

1+ fa,b(za u, )‘) = (1 + (1 - u)(Ql(zv S, )‘) + QZ(Za S, )‘)))

The author expresses his sincere appreciation to the reviewer for his useful remarks that made it
possible to improve presentation.
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