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Nonlinear solutions for χ(2) frequency combs in optical microresonators
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Experimental and theoretical studies of nonlinear frequency combs in χ (3) optical microresonators attracted
tremendous research interest during the last decade and resulted in prototypes of soliton-based steadily working
devices. Realization of similar combs owing to χ (2) optical nonlinearity promises new breakthroughs and is a
big scientific challenge. We analyze the main obstacles for realization of the χ (2) frequency combs in high-Q
microresonators and propose two families of steady-state nonlinear solutions, including soliton and periodic
solutions, for such combs. Despite periodicity of light fields inside microresonators, the nonlinear solutions can
be topologically different and relevant to periodic and antiperiodic boundary conditions. The antiperiodic states
are expected to be the most favorable for the comb generation. The found particular solutions exist owing to a
large difference in the group velocities between the first and second harmonics, typical of χ (2) microresonators,
and to the presence of the pump. They have no zero-pump counterparts relevant to conservative solitons. The
stability issue for the found comb solutions remains open and requires further numerical analysis.
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I. INTRODUCTION

Optical microresonators are the subject of numerous exper-
imental and theoretical studies during the last two decades,
as reviewed in [1–5]. Ultrahigh (up to 1011) quality factors
of the modes, quasidiscrete modal structure, and strong en-
hancement of the light intensity inside owing to the resonant
recirculation are distinctive features of the case. Both χ (3)

and χ (2) optical materials (amorphous and crystalline) can
be employed. Numerous techniques for engineering of the
modal frequency spectrum and coupling light in and out are
well developed. Applications of microresonators range from
sensors of single atoms and molecules to nonlinear optics. The
latter strongly benefit from the possibility to use low-power
continuous-wave light sources.

One of the most spectacular achievements in the nonlinear
optics of microresonators based on χ (3) materials is genera-
tion of broad high-quality frequency combs; see [6–15] and
references therein. It took about one decade to proceed from
the first observations and interpretations to the final concept
of solitons and its realization on different platforms [15].
According to this concept, the most advanced combs are a
manifestation of spatially narrow solitons circulating along
the resonator rim with a constant velocity. The solitons in
question are dissipative solitons with a double balance be-
tween (i) dispersion broadening and nonlinear narrowing and
(ii) between an external pumping and dissipative losses [15].
It turned out that such solitons are stable against small
perturbations. They are essentially different from (and more
complicated than) the so-called conservative solitons existing
without pumping and dissipation [16].

Application of the soliton concept of frequency combs
to microresonators based on χ (2) materials represents a big

scientific challenge and, simultaneously, a highly perspec-
tive field. It promises employment of lower light powers,
of different spectral ranges, and of new operation regimes.
The problem encountered has a certain basis in the previous
studies of conservative χ (2) spatial and temporal solitons
employing cascading processes of second-harmonic genera-
tion and optical parametric oscillation; see review [17] and
references therein. This basis is, however, insufficient because
of (i) incompleteness of knowledge in the field of conservative
solitons, (ii) the necessity of transfer to dissipative solitons,
and (iii) the necessity to incorporate specific features of non-
linear optics of microresonators. First models for χ (2) solitons
in microresonators were published recently [18–20]. Attempts
to explore χ (2) frequency combs regardless of solitons are
reported in [21–24]. In particular, walk-off controlled domain-
wall-like comb solutions were proposed [25]. Also, the so-
called simulton-solitons are reported recently for meter-scale
parametric oscillators [26]. The area remains, in essence,
largely unexplored.

The following features specific for the χ (2) frequency
combs have to be indicated.

(1) The first and second harmonics (FH and SH) in χ (2)

materials are not phase matched in the general case, so that
their nonlinear coupling is negligible except for special cases.
The quasi-phase-matching employing proper radial poling
of microresonators [27,28] has to be used to overcome this
problem. Properties of the radial poling have to be special for
each operation regime.

(2) The group velocities of FH and SH are generally
different, so that the corresponding wave envelopes separate
from each other unless the nonlinear coupling compensates
for this separation. The effect of the group velocity difference
is typically very strong and dominating over the effects of
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frequency dispersion. Very little is known about dispersionless
soliton regimes.

(3) In the cases when the quasi-phase-matching is com-
bined with a zero group velocity difference and the effects of
frequency dispersion are important, the signs of the frequency
dispersion are typically opposite for FH and SH. This imposes
additional restrictions on the soliton regimes.

(4) There are two principal cases for generation of χ (2)

frequency combs—pumping into FH and SH modes. In the
first case, primarily pumped monochromatic FH excites a SH,
which can be unstable against generation of side FHs. Here,
the spatially uniform background states for FH and SH exist
and represent an important ingredient of soliton physics. In
the second case of pumped SH, the spatially uniform FH and
SH backgrounds do not necessarily exist leading to specific
comb generation regimes.

In this paper, we focus on the case of SH pumping and
the dominating effect of the group velocity difference. At
the same time, our basic equations incorporate the effects
of frequency dispersion. As in the previous approaches to
comb modeling, we assume that each resonator mode can be
characterized by a single modal number. This assumption can
be implemented by proper shaping of the resonator rim. It
strongly simplifies the considerations.

II. BASIC EQUATIONS

The light modes (whispering gallery modes) can be viewed
as quasi-one-dimensional waves, with wave vectors k j = j/R
and very large (∼104) integer azimuth mode number j, prop-
agating along the rim of an axisymmetric resonator with big
radius R; see Fig. 1(a).

The modal light fields depend on the azimuth angle ϕ as
exp(i jϕ). Details of localization of light fields near the rim
for the chosen modes are of minor importance for this study.
The modal frequencies are discrete and given by ω j = k jc/n j ,
where c is the speed of light and nj is the modal refractive
index. Frequency ω j corresponds to the vacuum wavelength
λ j = 2πc/ω j , and the modal refractive index can be treated
as a smooth function n(λ) to characterize the modal group ve-
locity and dispersion. For χ (2) resonators, radius R is typically
of the order of 1 mm. Here, the smooth function n(λ) is close
to the function n0(λ) characterizing the bulk material. Small
corrections n − n0 are size and shape dependent [29–31]
and can be taken into account for application to particular
resonators. Generally, two polarization types of modes, with
different dependencies n(λ), exist in microresonators.

In the case of azimuth symmetry, the phase-matching
condition for SH generation is 2ω j = ω2 j . It is valid also for
parametric generation of mode j by mode with the azimuth
number 2 j. Except for special cases, this phase-matching
condition cannot be fulfilled [32]. Moreover, the frequency
distance 2ω j − ω2 j , being much smaller than ω j , is usually
much larger than the intermodal distance δω = c/nR.

Periodic radial poling is in use to provide phase matching
in a designated spectral range [27,28]. It is illustrated by
Figs. 1(b)–1(d). Ideally, the radial poling does not influence
the linear optical properties and results in a strictly periodic
ϕ alternation of the sign of the quadratic susceptibility co-
efficient d , as indicated in Fig. 1(c). If N is the number of

FIG. 1. Resonator geometry and radial poling. (a) Resonator
shape and cross section; ϕ is the azimuth angle; the major radius
R is different from the rim curvature radius. The red spot shows
localization of light, and different colors indicate the radial poling.
(b) Micrograph of radially poled lithium-niobate-based resonator
with the number of domain periods N = 72. (c) Schematic of the
azimuth dependence of the nonlinear coefficient d (ϕ) for perfectly
periodic poling with N = 4. (d) First harmonics of the Fourier
spectrum |dj | for (c).

alternation periods, the azimuth dependence d (ϕ) is given by
the Fourier series d = d0 + d1 exp(iNϕ) + d3 exp(3iNϕ) +
. . ., where |d1| can be comparable with the bulk value of
d [27]. The Fourier spectrum of d (ϕ) for the perfect poling is
illustrated by Fig. 1(d). The higher peaks are typically unim-
portant for phase matching. The phase-matching condition for
SH generation reads now 2ω j = ω2 j±N , where the sign “plus”
is relevant to the most typical case of decreasing n(λ). By
choosing N , it can be fulfilled with a good accuracy (within
the intermodal distance) for any j. Modification of the phase-
matching conditions for generation of sum and difference
frequencies can be made similarly.

Now, we write down generic nonlinear equations for com-
plex modal amplitudes Fj and Sl relevant to the FH and
SH frequency domains and the phase-matching condition
2ω j = ω2 j+N . Assuming pumping into a SH mode with modal
number l0, we have

iḞj − (ω j − iγ j )Fj = 2μ
∑
l, j′

Sl F
∗
j′ δl− j− j′−N ,

iṠl − (ωl − iγl )Sl = μ
∑
j, j′

FjF
′
j δl− j− j′−N + ihδl−l0 e−iωpt .

(1)

Here the dot indicates differentiation in time t , γ j,l are the
modal decay constants, such that the quality factor is Qj =
ω j/2γ j � 1, μ is a coupling coefficient incorporating the
relevant susceptibility coefficient and modal overlaps [3,33],
ωp is the pump frequency, h is a variable parameter char-
acterizing pump strength, and the asterisk indicates complex
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(a) (b)

FIG. 2. Wavelength dependencies of v1,2 (a) and v′
1,2 (b) for

LiNbO3 crystals with the geometric dispersion neglected. The ver-
tical line corresponds to the case v1 = v2, where v′

1v
′
2 < 0.

conjugation. The amplitudes are normalized such that ω j |Fj |2
and ωl |Sl |2 are the modal energies. Without loss of generality,
μ and h can be treated as real positive quantities. The modes
F and S can be polarizationally the same or different. The case
N = 0 corresponds to phase matching of differently polarized
modes without radial poling [34]. Transfer to the case of FH
pumping is evident. Note that the presence of a factor of 2 in
Eq. (1) reflects the Hamiltonian nature of χ (2) interactions in
the absence of dissipation.

Further simplifications involve an assumption of relative
narrowness of the FH and SH spectra. Let the numbers j and
l be close to j0 and l0, respectively, so that the deviations
δ j = j − j0 and δl = l − l0 are much smaller than j0 and l0
in absolute values. Then we can employ expansions,

ω j = ω j0 + ν1( j − j0) + α1( j − j0)2,

ωl = ωl0 + ν2(l − l0) + α2(l − l0)2, (2)

where ν = v/R, α = v′/2R2, v = dωk/dk is the group veloc-
ity, v′ = dv/dk = d2ωk/dk2 is the dispersion parameter, and
indices 1 and 2 refer to k1 = j0/R and k2 = l0/R. Parameters
v and v′ are fully determined by the dependence n(λ).

Figure 2 shows representative wavelength dependencies of
v1,2 and v′

1,2 for LiNbO3 crystals relevant to the bulk value
n0(λ) and extraordinary polarization [35,36]. They show that
the velocity difference v1 − v2 ranges from 0 to ≈10−2c,
it can be positive and negative. The dispersion parameters
can be of the same and opposite signs, they turn to zero at
certain wavelengths. Influence of the resonator shape and size
is minor for R ∼ 1 mm. The mentioned features are crucial for
the subsequent analysis of nonlinear comb solutions.

III. PERIODIC AND ANTIPERIODIC SOLUTIONS

Here we show that in the case of SH pumping there are
two topologically different types of physical solutions for the
FH and SH slowly varying amplitudes (envelopes) F (ϕ, t )
and S(ϕ, t )—the periodic and antiperiodic solutions. They
obey the same fundamental set of coupled nonlinear equations
and differ only in the boundary conditions. The periodic and
antiperiodic solutions are relevant to pumping into SH modes
with even and odd numbers l0 − N , respectively.

Periodic solutions. Let the integer l0 − N be even. Then ωl0
is close to 2ω j0 with j0 = (l0 − N )/2, so that the frequency
mismatch �0 = 2ω j0 − ωl0 is smaller in the absolute value

than the intermodal distance δω = c/nR. It is convenient here
to use the discrete deviations δ j = j − j0 and δl = l − l0. The
envelopes F (ϕ, t ) and S(ϕ, t ) are linked to Fδ j and Sδl by the
relations of discrete Fourier transform,

F = ei(ω j0 −�1 )t
∑
δ j

Fj0+δ je
iδ jϕ,

S = ei(ωl0 −�2 )t
∑
δl

Sl0+δl e
iδlϕ, (3)

where �1 = (2ω j0 − ωp)/2 and �2 = �p = ωl0 − ωp. To get
equations for F and S, it is necessary to multiply the first and
second of Eq. (1) by exp(iδ jϕ) and exp(iδlϕ), respectively,
take sums in δ j and δl , and employ Eqs. (2) and (3) and the
Kronecker symbols. Finally, we obtain

L̂1F = 2μSF ∗, L̂2S = μF 2 + ih, (4)

where the linear differential operators L̂1,2 are given by

L̂1,2 = i(∂t + ν1,2∂ϕ ) + α1,2∂
2
ϕ − 
1,2, (5)

with 
1,2 = �1,2 − iγ1,2. The ν and α terms correspond
to the effects of drift and dispersion of wave envelopes,
respectively. These effects are generally substantially dif-
ferent for FH and SH amplitudes. For simplicity, we have
neglected the wavelength dependencies of small damping
coefficients γ1,2. According to the definition (3), the ampli-
tudes F (ϕ, t ), S(ϕ, t ) obey 2π -periodic boundary conditions:
F (ϕ ± 2π, t ) = F (ϕ, t ), S(ϕ ± 2π, t ) = S(ϕ, t ). Detunings
�1 and �2 have different meaning. The pump detuning �2

can be easily tuned in experiment, while detuning �1 is
greatly determined by the material and resonator properties,
it can be affected, e.g., by temperature tuning.

Remarkably, Eq. (4) possess spatially uniform steady-state
solutions F̄ , S̄; they are important for analysis of soliton
solutions. Below the threshold of parametric instability, h <

hth = |
1
2|/2μ, we have a trivial solution F̄ = 0 and S̄ =
−ih/
2. For F̄ �= 0, we obtain |S̄| = hth/|
2| = |
1|/2μ and

2μ2|F̄ |2±
|
1
2| = cos � ±

√
η2 − sin2 �, (6)

where η = h/hth = 2μh/|
1
2| is the normalized pump
strength and � = arg(
1
2).

Figure 3 illustrates the dependencies |F±|2(η,�) �= 0. For
0 � |�| < π/2, there are two branches, while for π/2 �
|�| � π there is only a single branch. For |�| � 1, the
minimum value of η is ηmin 	 |�|. The branches F̄−(η), with
negative slopes, are expected to be unstable against spatially
uniform and quasiuniform temporal perturbations; see also
below. This means the presence of bistable background so-
lutions for η < 1, |�| < π/2 and, possibly, hysteresis when
adiabatically increasing and decreasing η. The F+ branches
are stable against spatially uniform and quasiuniform tempo-
ral perturbations.

Antiperiodic solutions. Let now the integer l0 − N be odd.
It cannot be equal to a double integer 2 j0. In other words,
the l0 mode is coupled not to a single FH mode, but to
two FH modes. The phase-matching conditions say here that
l0 − N = 2 j0 + 1 and ωl0 is very close to ω j0 + ω j0+1. Our
goal is to introduce slowly varying amplitudes F (ϕ, t ) and
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FIG. 3. Dependencies |F̄±|2(η) for different values of � =
arg(
1
2). The ± branches correspond to positive and negative
slopes. The two-branch black curve with � = 0 corresponds to the
limiting case γ1,2 → 0 at �1�2 > 0, while the black line � = π is
relevant to the liming case γ1,2 → 0 at �1�2 < 0 and to the case
�1 = �2 = 0. The red segment shows the branch F̄ = 0 for S̄ �= 0.

S(ϕ, t ) obeying again Eqs. (4) and (5). This can be done with
expressions F = F̃ exp(−iϕ/2),

F̃ = ei(ω j0 −�1+δω1/2)t
∑
δ j

Fj0+δ j eiδ jϕ,

S = ei(ωl0 −�2 )t
∑
δl

Sl0+δl eiδlϕ, (7)

where �1 = (ω j0 + ω j0+1 − ωp)/2 and, as earlier, �2 =
�p = ωl0 − ωp. Here, the most remarkable feature is the
presence of factor exp(−iϕ/2) in the definition of F . Owing
to this factor, the amplitude F (ϕ, t ) is 2π antiperiodic, F (ϕ ±
2π, t ) = −F (ϕ, t ), whereas the amplitude S(ϕ, t ) is again 2π

periodic.
Note that the FH amplitude F̃ (ϕ, t ), which differs from

F (ϕ, t ) by a factor of exp(iϕ/2), remains 2π periodic. Em-
ployment of the pair of amplitudes F̃ , S leads us to the set,

L̂′
1F̃ = 2μSF̃ ∗eiϕ, L̂2S = μF̃ 2e−iϕ + ih, (8)

where operator L̂′
1 is different from L̂1 [see Eq. (5)], by the

replacement �1 → �′
1 = �1 − δω1/2. In contrast to set (4),

it includes 2π -periodic factors exp(±iϕ) in the right-hand
sides. This is inconvenient for analytical treatments but useful
for numerical calculations.

The set of nonlinear equations (4) is thus quite general; it is
valid for both the periodic and antiperiodic physical solutions.
The same set serves also as the staring point of many χ (2)

comb studies; see, e.g., [18–20] and references therein. Lastly,
it can be considered as a generalization of the conservative
equations for χ (2) solitons [17]. In essence, set (4) plays the
role of the nonlinear Schrödinger equation supplemented by
driving and decay terms (the so-called LL equation [10,37–
39]) for the χ (3) combs. However, set (4) is much more
complicated and much less investigated compared to the LL

equation. In particular, no attention was paid to the fact that
the antiperiodic comb solutions of this set can be physical and
relevant to the excitation of the SH modes with odd azimuth
numbers.

The antiperiodic solutions (states) are topologically dif-
ferent from the conventional periodic states. No temporal
evolution can make conversion between these two states. In
contrast to the periodic states, the antiperiodic ones have
no spatially uniform background. The schemes of nonlinear
generation of FH and SH harmonics are also fundamentally
different: The primary FH harmonics Fj0 and Fj0+1 not only
influence the SH harmonic Sl0 , but induce immediately the
side harmonics Sl0±1. Generally, not only parametric, but
also nonlinear driving terms for FH harmonics are present
in the antiperiodic case. For this reason, broad FH and SH
spectra appear above a single parametric oscillation threshold;
see also Sec. V. This is why the antiperiodic states have
advantages over the periodic states for the comb generation.
Note finally that the notion of antiperiodic solutions is not
applicable to the χ (3) case.

IV. STEADY-STATE SOLUTIONS

A. General properties

Steady-state nonlinear solutions, where the FH and SH
envelopes propagate with the same velocity, are of our prime
interest. For such a solution we have F (ϕ, t ) = F (ϕ̃) and
S(ϕ, t ) = S(ϕ̃), where ϕ̃ = ϕ − ν0t is the moving frame co-
ordinate, and ν0 is a common angular velocity. This angular
velocity corresponds to the linear velocity v0 = ν0R. We are
interested in solutions strongly localized in ϕ̃.

In the case of even l0 − N , the 2π -periodic amplitudes
F (ϕ̃) and S(ϕ̃) can be expanded in Fourier series,

F =
∑

j

Fj ei jϕ̃ , S =
∑

l

Sl eilϕ̃ . (9)

This means that the frequency spectra of F and S consist of
equidistant peaks separated by the same distance ν0 = v0/R,
i.e., we have a frequency comb. The smaller the scale of
localization of F (ϕ̃) and S(ϕ̃), the broader is this comb.
Note that positions of the equidistant frequency peaks cannot
coincide with nonequidistant modal frequencies. This means
that nonlinear frequency shifts must be involved in formation
of the steady states.

In the case of odd l0 − N , when S(ϕ̃) is 2π periodic and
F (ϕ̃) is 2π antiperiodic, we must multiply F by the factor
of exp(iϕ̃/2) to get true 2π -periodic ϕ̃ dependence of the FH
amplitude. This leads us again to a slightly different frequency
comb with the frequency separation ν0.

Importantly, velocity v0 (or the angular frequency ν0)
cannot be chosen arbitrarily. It has to be determined simul-
taneously with nonlinear solution for F (ϕ̃) and S(ϕ̃). It can be
different for the periodic and antiperiodic solutions.

As follows from Eqs. (4) and (5), the steady-state am-
plitudes F (ϕ̃) and S(ϕ̃) obey the set of nonlinear ordinary
differential equations,(

iν0
1∂ϕ̃ + α1∂

2
ϕ̃ − 
1

)
F = 2μSF ∗,(

iν0
2∂ϕ̃ + α2∂

2
ϕ̃ − 
2

)
S = μF 2 + ih, (10)
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where ν0
1,2 = ν1,2 − ν0. They have to be solved with 2π

periodic and antiperiodic boundary conditions. The ν terms
account for drift of F and S with different velocities, while
the α terms are relevant to the effects of dispersion. The limit
γ1,2 → 0, when 
1,2 = �1,2, corresponds to the absence of
dissipation. Generally, nonlinear set (10) with two complex
amplitudes and several variable parameters, including velocity
v0, is much more complicated compared to the single equation
describing the χ (3) combs.

While we do not know velocity v0 for nonlinear solutions,
it is likely that it lies in between v1 and v2. Setting |ν0

1 | ≈
|ν0

2 | ≈ |v1 − v2|/2R, |α1| ≈ |α2| ≈ |v′|/2R2, and assuming
that δϕ̃ � 2π is the scale of localization of F (ϕ̃) and S(ϕ̃),
we can estimate the ratio of the drift to dispersion terms. It
is about |v1 − v2|Rδϕ̃/|v′|. Adopting parameters of Fig. 2, we
see that, except for the close vicinity of the point of equal
group velocities, we have |v1 − v2| � 108 cm/s and |v′| ≈
104 cm2/s. For R ≈ 1 mm, this gives the ratio �103/δϕ̃. Thus,
for δϕ̃ � 10−3, which means the number of comb peaks �103,
the drift terms are dominating, and the dispersion terms can be
omitted in the leading approximation. In order to omit the drift
terms, we must stay practically at the point v1(λp) = v2(λp).
Slight deviations from this point switch the strong drift terms
on. This situation is generic for χ (2) resonators.

Note that the zero point of the frame coordinate ϕ̃ (and of
the polar angle ϕ) can be chosen arbitrary. If f (ϕ̃), s(ϕ̃) is
a particular steady-state solution, then f (ϕ̃ − ϕ0), s(ϕ̃ − ϕ0)
with an arbitrary ϕ0 is an equivalent solution. This degeneracy
in ϕ0 can be crucial for analysis of corrections to the primary
steady states caused by various small perturbations, such as
weak dissipation and dispersion.

B. Dispersionless solitons and periodic states

Here we demonstrate the possibility of different soliton
solutions with the dissipative and dispersive terms neglected.
To do so, we put α1,2 = γ1,2 = 0 and set

v0 = (2�1v2 + �2v1)/(2�1 + �2). (11)

This common propagation velocity lies inside the inter-
val [v1, v2] for �1�2 > 0 and outside this interval for
�1�2 < 0. Furthermore, we change from ϕ̃, F , and S to
the normalized quantities ζ = R(2�1 + �2)ϕ̃/(v2 − v1), f =
μ(2/|�1�2|)1/2F , and s = −2μS/�1. After that we have
from Eq. (10),

iu̇ − u + s|u| = 0,

iṡ + s − qu = η, (12)

where, as earlier, η = 2|μh/�1�2| is the normalized pump
strength, u = f 2, the dot indicates differentiation in ζ , and
q = sgn(�1�2) = ±1. The spatially uniform background
values of s and u in our case are as follows (compare to
Fig. 3): s̄± = ∓1, ū± = ∓1 − η for q = 1 (� = 0), and s̄ = 1,
ū = η − 1 for q = −1 (� = π ).

Remarkably, set (12) possesses a family of solutions with
real s and complex u. To see it, we indicate that the equality
s − qRe(u) = η, being valid for an arbitrary ζ0, holds true for
any ζ . Transferring next to the absolute values and arguments
of s and u, one can make sure that the conservation law p0 ≡

(a) (b)

(c) (d)

FIG. 4. Potentials U (s, s0) for different stopping points s0 (cir-
cles) and values of η. (a)–(c) The cases s0 = 1, −1, η for q = 1.
(c) Shown also is the effect of small shifts of s0 against η. (d) The
case s0 = η > 1 for q = −1. The horizontal dotted lines correspond
to the soliton states.

s2/2 − q|u| = const is valid for such solutions. It corresponds
to a constant energy flux along the coordinate ζ . Employing
this conservation law, we obtain a single second-order equa-
tion for s:

s̈ = η − s(1 + p0) + s3/2. (13)

This equation admits an obvious mechanical analogy with a
unit-mass particle with coordinate s(ζ ) moving in the poten-
tial U (s) = −ηs + (1 + p0)s2/2 − s4/8; ζ has to be treated as
an effective time. For “initial” values s0 = s(0) and ṡ0 = ṡ(0),
Eq. (13) enables one to find the “trajectory” s(ζ ) for ζ ≷ 0.
Note that the choice of the zero point of ζ is arbitrary.

The potential profile U (ζ ) is generally different for differ-
ent trajectories via the dependence of p0 on s0 and ṡ0. The
treatment is strongly simplified if we characterize each trajec-
tory by its turning point s0 corresponding to zero “velocity”
ṡ0. In this case, we have p0 = s2

0/2 − q|η − s0| according to
Eq. (12) and, consequently, the potential profile U = U (s, s0)
in an explicit form:

U = −ηs + s2

2

(
1 + s2

0

2
− q|η − s0|

)
− s4

8
. (14)

With this profile, one can find, analytically or numerically,
trajectory s(ζ ) for any s0, η, and q.

A key point in our analysis of the localized and periodic
solutions for s(ζ ) is determination and classification of the
turning points s0 corresponding to maxima of U (s, s0). Equat-
ing to zero the derivative ∂sU (s, s0) at s = s0, we get the fol-
lowing: qs0|s0 − η| − s0 + η = 0. Solutions of this equation
for s0 depend on q = sgn(�1�2).

For q = 1, there are three solutions for s0. The first one,
s0 = s̄− = 1, is valid for η � 1. The corresponding profiles
U (s, 1, η) are illustrated by Fig. 4(a). The particle can move
here between the right (shown by circles) and left turning
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points. A small decrease of s0 changes U (s, s0) such that the
particle oscillates periodically between two turning points,
and the oscillation period tends to infinity for s0 → 1. For
s0 > 1, the regular solution breaks: The particle infinitely
accelerates and s(ζ ) → ∞. The second solution, s0 = s̄+ =
−1, is relevant to the potential profiles of Fig. 4(b). This case
is not physical because solution s(ζ ) breaks for any small
deviation of s0 from −1. For the third solution, s0 = η > 1,
any small deviations of s0 against η change the potential such
that the particle finds oneself to the right of the potential
maxima [see Fig. 4(c)], leading to an infinite growth of s(ζ ).
Thus, only the first solution, where the value s0 = 1 coincides
with the background value s̄−, is physical for q = 1.

For q = 1, s0 = 1, and η < 1, Eq. (12) admit an exact
soliton solution:

s =
√

η cosh(ζ
√

1 − η) + 2η − 1√
η cosh(ζ

√
1 − η) + 1

,

f = ±
√

1 − η

√
η sinh(ζ

√
1 − η) + i

√
1 − η√

η cosh(ζ
√

1 − η) + 1
. (15)

The normalized SH amplitude s is even in ζ , tends to the
background value s̄− = 1 for |ζ | → ∞, and possesses the
minimum value 2

√
η − 1, that can be positive and negative

depending on η. This solution corresponds to an infinitely
long movement of the particle from the right turning point
s0 = 1 to the left turning point and back. The normalized
complex FH amplitude f tends to opposite real values for
ζ → ±∞, while u = f 2 tends to u− = 1 − η. This means that
f (ζ ) is antiperiodic within the interval [−∞,∞]. Unless η

is very close to 1, approaching the background values with
increasing |ζ | occurs exponentially, i.e., very fast. For η → 1,
the soliton width tends to infinity. The soliton solution (15)
has no limit for η → 0: For η � 1, the values of s(ζ ) and u(ζ )
stay very close to the background values s̄+ 	−1, and ū+ 	
−1 within a finite range of |ζ | near 0 and tend exponentially
to s̄− 	 ū− 	 1 for larger |ζ |. With decreasing η, the left
and right boundaries between these background regions shift
to ±∞.

While the above soliton solution is valid, strictly speaking,
only for an infinite range of ζ , it is of big value for finite
ranges, provided that these ranges substantially exceed the
soliton width. First, the difference between the peripheral
values of s and f and the corresponding background values
can be smaller than a natural noise level. Second, existence
of soliton solutions ensures, as shown below, the presence of
periodic solutions which are very close to the soliton ones.

To get periodic solutions for s and the corresponding
solution for f , we employ the values s0 slightly below 1. This
is illustrated by Figs. 5(a) and 5(b).

Within the line width, the shape of each dip in Fig. 5(a) co-
incides with the soliton one. The difference is substantial only
when s(ζ ) and f (ζ ) are very close to the background values
1 and

√
1 − η 	 0.837, respectively. The π -step dependence

of arg [ f (ζ )] is clearly seen; this shows that our solution
satisfies the antiperiodic boundary conditions. The period ζ0

depends on the deviation δs0 = s0 − 1 and tends to infinity for
δs0 → 1. This allows one to adjust the period to the dimen-
sionless resonator length ζR = 2πR|2�1 + �2|/|v1 − v2|.

(a) (b)

FIG. 5. Antiperiodic solitonlike solution for s and f at q = 1,
η = 0.3, and 1 − s0 	 1.27 × 10−2. The quantities s and | f | are
periodic with the period ζ0 = 16 (a), while the phase arg( f ) changes
by π within this period (b).

For sufficiently large values of ζR, periodic multisoliton so-
lutions become possible.

Now we switch to the case q = sgn(�1�2) = −1. Only
the values s0 = η for η > 1, which correspond to p0 = η2/2,
give here potential profiles with maxima at s = s0. This is
illustrated by Fig. 4(c). For each value s0 = η, there is a left
partner turning point providing the soliton state. In contrast to
the case q = 1, s0 = η, a small deviation δs0 = s0 − η of any
sign changes the potential U (s, s0) such that s0 stays on the
left of the potential maximum. In other words, there is a family
of periodic states s(ζ ) approaching the soliton state for δs0 →
0 regardless of the sign of δs0. Note that the point s0 = s̄ = 1,
relevant to the spatially uniform background, corresponds to a
minimum of U (s, s0); it is of no interest.

For q = −1, s0 = η, and η > 1, Eq. (12) also admits an
exact soliton solution:

s = η cosh(aζ ) − η2 + 2

cosh(aζ ) + η
,

f = ±
√

2a

√
η + 1 cosh(aζ/2) − i

√
η − 1 sinh(aζ/2)

cosh(aζ ) + η
,

(16)

where a =
√

η2 − 1. It corresponds to s(0) = 2 − η < 1,
s(±∞) = η, f (0) = ±√

2(η − 1), and f (±∞) = 0. This
soliton is thus SH dark and FH bright. Approaching the
limiting values at ±∞ occurs exponentially. The localization
scale substantially decreases with increasing η. Furthermore,
the argument of f is an odd function of ζ , whose asymptotic
values at ±∞ are below π/4 in the absolute value. Note also a
useful link | f |2 = (η2 − s2)/2. Further details on this soliton
are given below in co-junction with an analysis of closely
related solitonlike periodic states.

For |δs0| � 1, we have solitonlike periodic solutions for
s(ζ ) and the corresponding solutions for f (ζ ); they can be
found numerically from Eqs. (12) or (13). The cases δs0 ≶ 0
have not only similarities, but also important special features.

Figures 6(a) and 6(b) illustrate the case δs0 < 0 for η = 4.
Here the period of s(ζ ) is ζ0 = 6. Within the line width, the
curves s(ζ ) and | f (ζ )| coincide with ones given by Eq. (16).
The function | f (ζ )| has a characteristic two-hump structure.
The tails (|ζ | > 2), where the difference with the soliton
is relatively large, are weak. In contrast to the case q = 1,
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(a) (b)

(c) (d)

FIG. 6. Periodic solitonlike solutions for s, | f |, and arg ( f ) for
q = −1 within one period; (a) and b) correspond to η = 4, 1 − s0 	
0.0035, and to the period ζ0 = 6, while (c) and d) refer to η = 16,
1 − s0 	 0.005, and ζ0 = 2. Note the difference in the horizontal and
vertical scales between (a) and (b), and (c) and (d).

the function arg[ f (ζ )] is ζ0 periodic; it experiences modest
oscillations with ζ .

Figures 6(c) and 6(d) illustrate the case δs0 > 0 for η = 16.
Now, the period of s(ζ ) and | f (ζ )| is ζ0 = 2, the vertical scale
in Fig. 6(c) is enlarged compared to Fig. 6(a), and the tails
of s(ζ ) and | f (ζ )| are weakened. This effect of increasing η

is relevant also to the case δs0 < 0. The difference is in the
behavior of arg[ f (ζ )], as shown in Fig. 6(d). This function is
now steplike, so that the function f (ζ ) is ζ0 antiperiodic.

Regardless of the sign of δs0, increasing |δs0| results in
decreasing period ζ0, broadening of the dips and peaks of
s(ζ ) and | f (ζ )|, and in strengthening of the tails. The values
of δs0 are not necessarily small. The effect of increasing η

is different. It is decreasing period (ζ0 ∝ 1/η for η � 1),
narrowing of the dips and peaks, and suppression of the tails.
In other words, the steady state tends to a periodic train of
solitons with increasing η. The case of almost opposite �2

and 2�1 is unfavorable for solitons.
Requirements to the experimental parameters R, �1,2, and

η, necessary to realize periodic solitonlike solutions, are dif-
ferent for the cases q = 1 and −1. In the case q = 1, when
η < 1, the period ζ0 cannot be smaller than 1, but is often ∼10.
Therefore, the dimension resonator length ζR = 2πR|2�1 +
�2|/|v1 − v2| has to be much larger than 1. For 2πR ≈ 1 cm
and |�1| ≈ |�2|, this leads us to detunings |�1,2| � 109 s−1.
The restriction from above |�1,2| � δω = v1,2/R ≈ 1011 s−1

can be easily fulfilled. In the case q = −1, when η can be
much larger than 1, the period ζ0 can be substantially smaller
than 1. Here the detunings |�1,2| can stay below 108 s−1.
Keeping in mind that the decay constants γ1,2 must be much
smaller than |�1,2|, we see that substantially larger modal
quality factors can be used.

The above theoretical treatments are relevant to the case
γ1,2 = v′

1,2 = 0. It is possible to get small corrections δs(ϕ̃)

and δ f (ϕ̃) to the above steady-state solutions within the linear
approximation in small parameters γ2 and v′

1,2. Such a linear
perturbation approach [40] accounts for the degeneracy in
the choice of position of the soliton center and is consistent
with the known Fredholm alternative [41] for linear systems.
However, the linear perturbation theory in γ1 fails indicating
a substantial modification of the initial soliton state. This
means that more powerful perturbation techniques, like the
Newton method (see [42] and references therein), have to
be employed. Such a situation is not rare in the physics of
solitons. In particular, it is known for Kerr solitons [42]. In our
case, a strong effect of γ1 on solitons is closely related to the
strong effect on the spatially uniform background; see Fig. 6.
Consideration of the impact of γ1 on the soliton properties
requires a separate study.

V. NUMERICAL SIMULATIONS

We investigated numerically stability of the found steady-
state solutions within the modal approach relevant to or-
dinary differential equations (1) and, independently, within
the slowly varying amplitude approach relevant to partial
differential equations (4). The modal amplitudes Fj (t ) and
Sl (t ) are linked to the 2π -periodic amplitudes F (ϕ, t ) and
S(ϕ, t ) by the discrete Fourier transform. Both Eqs. (1) and (4)
were solved in the time domain. As an initial condition for
Fj, Sl , we used the inverse Fourier transform of a periodic
solitonlike solution F (ϕ̃), S(ϕ̃) superimposed by very small
random numbers δFj, δSl (modal noise). As initial conditions
for F (ϕ, t ) and S(ϕ, t ), we employed F (ϕ̃), S(ϕ̃) superim-
posed by the Fourier transform of the modal noise. Different
variants of periodic and antiperiodic initial conditions with
�1�2 ≷ 0 were used.

The number of points in the ϕ mesh and, correspondingly,
the number of modes within each of the FH and SH frequency
domains ranged from 512 to 2048. The nonlinear set of
ordinary differential equations (1) was integrated using the
fourth-order Runge-Kutta method with the time step ranging
from 5 × 10−4 to 2 × 10−3 of the round-trip time R/c with
R = 1.59 mm. The nonlinear partial differential equations for
F (ϕ, t ) and S(ϕ, t ) were solved using the step-split Fourier
method [43]; the step in time ranged from 5 × 10−6 to
2 × 10−5 of R/c. It was made sure that both methods gave
essentially the same results and no real effect of time and
ϕ steps was present. Also numerical solutions were checked
in a series of limiting cases of initial conditions where the
analytical solutions can be obtained easily.

Figure 7 exhibits representative results of our numerical
simulations for an antiperiodic solitonlike solution relevant
to q = sgn(�1�2) = 1 and η = 0.22. Initially (t < 10−8 s),
the noise of fδ j grows exponentially with an increment ≈�1,2

within a wide range of deviations |δ j|; see Figs. 7(b) and 7(d).
The normalized intensity dependencies | f |2(ϕ̃) and |s|2(ϕ̃)
experience only minor changes at this stage, and the FH and
SH intensity patterns move practically with the same velocity
v0; see Figs. 7(a) and 7(b). For larger times, distortions
of the steady-state solution become substantial, the notion
of a common velocity fails, and a strong fragmentation of
both patterns in ϕ̃ takes place [see Fig. 7(e)]. At the same
time, both FH and SH patterns remain spatially coherent and
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Numerical results on stability of the antiperiodic soliton-
like solution with q = 1 and η = 0.22 (2πR = 1 cm, �1 = �2 =
3 × 109 s−1, v1 − v2 = 10−2c, γ1,2 = 0, and v′

1,2 = 0). The time t is
normalized to t0 = R/c 	 5 × 10−12 s. The left column shows the
normalized intensities | f |2 and |s|2 versus ϕ and the right column
shows the normalized modal powers | fδ j |2 and |sδ j |2 versus the
deviations of the modal numbers δ j = j − j0 and δl = l − l0.

substantially exceeding the noise level. The spectral broaden-
ing is continuing [see Fig. 7(d)]. All this evidences that the
antiperiodic solution with F �= 0 is preferable for the system
as compared to the allowed and stable solution with F = 0
and S �= 0; see also Fig. 3.

Changes of the simulation and external parameters, switch-
ing from the antiperiodic to periodic solutions and to the
case q = −1, inclusion of nonzero γ1,2 and v′

1,2 result in
modification of details, but the fact of instability remains
unchanged. At the same time, solutions with a zero noise stay
unchanged indefinitely long; this confirms correctness of the
simulations.

Finally, we stress that the above numerical analysis refers
to the soliton solutions calculated at γ1,2 = 0 and v′

1,2 = 0. A
strong impact of γ1 on the soliton shape can bring the system
to stability by analogy with Kerr solitons [42].

VI. DISCUSSION

While the differences between our χ (2) case and the case
of χ (3) combs are quite evident, distinctions from the known
analyses of χ (2) solitons have to be considered. The for-
mer results were relevant mostly to the conservative case
(zero pumping and dissipation) and infinite media [17].
A considerable part of theoretical considerations was rele-
vant to the spatial solitons, which are essentially different
from the temporal solitons. Applications to microresonators,

including discreteness of the modal structure, practicability of
the chosen parameters, and the possibilities of pumping were
not considered. Three recent papers on dissipative solitons in
microresonators [18–20] are relevant to FH pumping at the
point of equal group velocities, v1(λp) = v2(λp).

Each of the general assumptions—single-mode approxi-
mation and perfect radial poling—is rather obligatory. Of-
ten, there are plenty of competing modes characterized not
only by the azimuth number, but also the radial and polar
numbers [1,44,45]. It is unlikely that accounting for these
modes can be compatible with analysis of coherent soli-
tonlike states. Suppression of undesirable modes in high-Q
resonators is a serious technological task that requires special
efforts [46–48]. Radial poling is generally imperfect because
of off-centering of the domain structure [27]. This leads to the
presence of a few (or several) Fourier peaks of the quadratic
susceptibility coefficient, separated by the intermodal dis-
tance, instead of a single N peak in Fig. 1(d). Unless only
one of these peaks is dominating, equations for slowly varying
amplitudes F (ϕ, t ) and S(ϕ, t ) can fail. The use of the linear
poling [49], leading to broad Fourier spectra of the quadratic
susceptibility, is, most probably, very harmful for coherent
solutions.

A substantial difference of the group velocities for the first
and second harmonics is a generic feature of χ (2) microres-
onators. For many resonators, the difference |v1 − v2| can be
estimated as ∼10−2c = 3 × 108 cm/s within broad spectral
ranges of the pump wavelength λp. Any steady-state comb
solution F (ϕ − ν0t ), S(ϕ − ν0t ) implies that the difference
between v1 and v2 is compensated by the quadratic nonlin-
earity. This compensation is fundamentally different from the
known compensation between dispersion and nonlinearity for
cubic solitons. Determination of coherent steady-state solu-
tions with nonlinearly compensated velocity difference is by
itself a big challenge. Above we have found two big families
of such localized soliton solutions. The effects of dispersion
can be estimated here as secondary for not extremely narrow
FH and SH solitons. Specifically, they are weak until the comb
spectrum consists of ∼103 (or less) frequency peaks.

Indeed, the velocity difference can be suppressed when
working at the point v1(λp) = v2(λp). In this case, the situ-
ation becomes similar to that typical of χ (3) combs. However,
the question about the effect of inevitably present relatively
small velocity differences remains open.

A surprising feature of the found nonlinear regimes is the
presence of two entirely different types of spatial symmetry
in the case of SH pumping, 2π -periodic and -antiperiodic
solutions. While the total electromagnetic fields are ultimately
2π periodic, these solutions are topologically different. In
particular, the antiperiodic solutions have no spatially uniform
backgrounds. Both periodic and antiperiodic solitons admit
simple analytical representations which are new to the best of
our knowledge. Furthermore, each soliton is associated with
a family of solitonlike periodic states with adjustable spatial
periods.

Finding of big families of periodic and antiperiodic soliton
solutions caused by a large group-velocity difference can
be regarded as a significant step in realization of χ (2) fre-
quency combs. These solutions are relevant to the situations
which are the most typical for χ (2) microresonators. Similar
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findings are followed usually by more special studies relevant
to the effects of secondary parameters. While the “naked”
solitons with γ1,2 = v′

1,2 = 0 show an instability against small
perturbations, it is quite possible that “γ1 dressing” of these
localized states will provide the necessary stabilization by
analogy with the Kerr solitons. This issue requires further
studies. By analogy with finding of new solutions of the
lossless LL equation [39], one can expect emergence of new
walk-off controlled χ (2) comb solutions.

VII. CONCLUSIONS

We have derived and analyzed coupled nonlinear equations
for FH and SH envelopes relevant to the frequency comb
generation in χ (2) microresonators. They incorporate selec-
tive SH pumping, quasi-phase-matching via radial poling,
different group velocities and frequency dispersions, and the
modal decay. Within a broad range of parameters, the effect
of the group velocity difference is found to be crucial for

comb-related solutions. It is shown that, depending on the
pump frequency, solutions for the modal envelopes can be
topologically different and relevant to periodic and antiperi-
odic boundary conditions. Within a basic model disregarding
the effects of weak dispersion and modal decay, we have
found analytically and numerically two families of steady-
state soliton and solitonlike solutions. These solutions cor-
respond to the FH and SH envelopes moving with the same
velocity without shape changes and possessing equidistant
frequency spectra; they can be both periodic and antiperiodic.
Analytical and numerical calculations show, nevertheless, that
stability of the analytical comb solutions cannot be ensured
without account for an impact of the small FH dissipative
constant on the soliton shape.
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