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Abstract
This work analyses the current state of affairs related to built-in monitoring of laser radia-
tion parameters. Attention is drawn to dearth of sensors that could measure spectral and 
temporal parameters of radiation at the sufficient level. A conclusion is drawn about impor-
tance of research and development and about the general progress in this field. New materi-
als, novel technologies, and new ideas are able to facilitate development of new approaches 
to transformation of optical radiation parameters into electric signals and to extraction 
from those signals of higher-level information, to advance wireless operation and imple-
mentation of new integrated smart sensors, which are in great need.

Keywords  Optoelectronic and photonic sensors · Optical devices · Lasers · Radiation 
monitoring

1  Introduction

Sensors are increasingly entering our life not only as fault detectors, but also as key ele-
ments for monitoring of various systems, including photonic systems. The basic principle 
of a conventional sensor is generation of an electric signal in response to some physical 
action (either mechanic or by electric field, light, ambient conditions, and so forth). Among 
sensors, growing popularity is enjoyed by those whose operation is not sensitive to external 
electric fields (electric disturbances, etc.) and that are based on interaction of reference 
light with the environment through optical fibre. Insensitivity of the ‘sensitive’ part of such 
sensors to external electromagnetic noise classifies them among the next-generation sen-
sors. However, the advantages of such sensors come along with drawbacks, some signifi-
cant and arising not only as the industry’s growing pains, but as inherent in the detection 
technology itself. Therefore, classification of these sensors as advanced or belonging to 
the next generation may be premature. For the moment, they may be considered simply 
as new sensors using laser radiation within optical fibre for registration of changes in the 
external environment surrounding the fibre. The field of sensor research and development 
is becoming more and more important in relation to advances in computer technologies 
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[automation, machine learning (ML) methods etc.]. The ‘eyes’ and other ‘sense organs’ of 
computer technologies are predominantly sensors, and here we will discuss their problems 
and development vectors in photonics.

Machine learning (ML) methods (Burkov 2020; Alpaydin 2020) increasingly often 
intrude into our life with an attempt to make it more convenient, more automated, more 
controlled by artificial intelligence (AI) (Russell and Norvig 2020). Many problems await 
solution along this path, an important one among them being the need to determine the 
state of the system (the required action on it depends on this state), to have objective and 
high-quality information about it. For this, sensors (detectors, pickup units/devices, meters) 
are needed that produce a signal (ideally, electric) in response to the measured physical 
variables. It is equally important to emphasis that as opposed to external sensors (such 
as gas sensors (Mandelis and Christofides 1993; Richter et  al. 2000; Moser et  al. 2017; 
Constantinoiu and Viespe 2020) used in environmental monitoring or strain sensors (Chow 
et al. 2005; Chen et al. 2020; Zhao et al. 2021) for structural monitoring), these should be 
internal ones for measurement of the system’s internal or output parameters. For a photonic 
system, such as free-space laser, one needs inexpensive compact sensors able to measure at 
the minimum the laser radiation parameters and ideally, the generation regime properties. 
More wide-spread introduction of ML methods is hampered, among other problems, by the 
lack of sensors for integral monitoring of technological systems. A laser equipped with a 
dozen or more of cheap and small sensors appears to-day more like an improbable ‘smart’ 
laser of remote future rather than as an accessible reality.

What kind of sensors are needed to turn far prospects into imminent reality? Which sen-
sors for photonic devices should become a priority for researchers and engineers? It must 
be noted that research and development efforts are first of all aimed at introduction of sen-
sor types that happen to be in high demand, for example, for food quality monitoring or for 
detection of harmful substances in various media. Sensors for technological devices (for 
measurement and selection of their state, etc.) will always remain a secondary niche mar-
ket. Therefore, this field of research possibly needs special support. This work is focused 
on analysis of both existing sensors and those that should be yet developed for measure-
ment of laser parameters. Physical effects that could become the foundation of such com-
pact sensors are considered, as well.

2 � Discussion

What is necessary to measure in a laser device? The most important parameter is the out-
put radiation power, both in continuous-wave (CW) lasers and in pulsed ones (in the lat-
ter case, this may be either the average output power or the peak power in a pulse). This 
parameter is easily measured by splitting a small fraction of the output radiation into a 
photodetector (Mihailovic et al. 2004; Pinot and Silvestri 2017; Khramov et al. 2019) (this 
role may be played by a photodiode, for instance). A second simple sensor may be used to 
monitor the temperature of the laser system elements [e. g. a thermistor (Gonzalez-Reyna 
et al. 2015; Hao et al. 2015; Silipigni et al. 2020)]. One may also mention humidity sensors 
(Zhang et al. 2017, 2020a; Kim et al. 2020; Owji et al. 2021). In practice, the list of avail-
able inexpensive compact sensors for monitoring the internal state of a laser is limited by 
these three. Beyond it, there are complicated and much bulkier laboratory devices, which 
are definitely necessary, but can be classified as neither compact nor inexpensive. They 
will have to be transformed into such in the future.
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It should be pointed out that the problem of sensors for measurement of internal param-
eters of photonic devices appears poorly addressed and largely neglected. The currently 
researched and developed sensors are aimed, quite naturally, at more popular external 
measurements. Characterisation of radiation sources is beyond the domain of high-priority 
problems, this is why many required sensors are absent or only exist as laboratory equip-
ment. It is also necessary to note that by no means all the available sensors are small (e. g. 
comparable in volume to a match-head) and easily integrable into any device. Certain ‘sen-
sors’ are larger and more complicated than the device itself, in which they could be used. 
Moreover, some sensors are, essentially, single-use (both chemical and other types). Such 
exotic ‘sensors’ will not be discussed in this work. It is here assumed that a sensor should 
be a miniature multiple-use device (Fig. 1) fit for integration into another, more compli-
cated and larger system. We should also mention popularity of fibre-optical technologies 
in sensor fabrication (Giallorenzi et al. 1982; Kersey 1996; Kersey et al. 1997; Grattan and 
Sun 2000; Lee 2003; Chen et al. 2011; Fang et al. 2012; Grattan and Meggitt 2013; Rajan 
2020). At a minimum, this is due to the following two primary reasons: (1) optical fibre 
is convenient from the viewpoint of optical technologies, since the radiation is contained 
within the fibre and not affected by external electromagnetic perturbations; (2) such sen-
sors are easily integrated into fibre-optical systems that enjoy growing popularity owing to 
advantages in operation.

An important parameter that should be monitored in many lasers is their output 
wavelength. This is particularly vital for tuneable lasers, in which the output radiation 

Fig. 1   Characterization of laser radiation with help weak contact or contactless sensors
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wavelength may be adjusted. This parameter must be controlled as being one of the prin-
cipal and variable radiation properties. In CW lasers, the required accuracy of radiation 
wavelength measurement may vary from several angstrom (when the output line is rela-
tively broad and the laser operates in a multi-frequency regime) down to a few hundredths 
or even thousandths of angstrom (when the output line is narrow in a single-frequency 
regime). In pulsed lasers, the necessary accuracy may range from several nanometres 
(relatively long pulses with narrow radiation spectrum) to tens of nanometres (relatively 
short pulses with broad radiation spectrum). The principle of operation of most devices 
measuring radiation wavelength (wavelength meters, spectrometers, spectrographs, etc.) is 
based either on wavelength dependence of the angle of reflection from a diffraction grating 
illuminated by optical radiation (Kong et al. 2001; Solomakha and Toropov 1977) or on 
spectral selectivity of Fizeau wedge interferometers (Solomakha and Toropov 1977; Sny-
der 1978; Morris et al. 1984). Spatial dispersion may also be introduced with a prism. In 
the end, mechanically static measurement devices dominated their counterparts relying on 
mechanical movement (Ishikawa et al. 1986). The operation principle and spectral resolu-
tion directly affect the spectral measurement device dimensions. At present, there are no 
sensors with spectral resolution of 10–5 to 10–8, even though research is going on in the 
direction of smaller and simpler devices with high resolving power (García-Márquez et al. 
2003; Ouedraogo et  al. 2011; White and Scholten 2012; Jones et  al. 2015; Xiang et  al. 
2016; Duchemin et al. 2017; Dobosz and Kożuchowski 2017; Hanson et al. 2018; Hornig 
et al. 2019; Wang et al. 2019, 2020; Han et al. 2019; Cai et al. 2019; Bruce et al. 2019, 
1929; Gupta et al. 2020; Wan et al. 2020).

Of course, in a discussion of next-generation sensors, one cannot help asking general 
questions. Will such next-generation sensors find their market niche? Is it even possible 
to create the needed sensors? The present work is premised upon positive answers to such 
questions. What remains is ‘only’ to invent and implement the required sensors.

Another important laser parameter is output pulse duration. For its measurement up to a 
certain limit, a photo-detector with an oscilloscope would be adequate. However, in order 
to measure ultra-short pulses (picosecond, femtosecond) the temporal resolution of rela-
tively simple devices is insufficient. In such cases, special equipment is used, autocorrela-
tors, streak cameras, FROG (IQFROG) techniques, etc. (Bradley and New 1974; Fork and 
Beisser 1978; Bradley et  al. 1971; Braun et  al. 1995; Hirayama and Sheik-Bahae 2002; 
Power et al. 2006; Walmsley and Dorrer 2009; Schubert et al. 2011; Trebino 2012; Trebino 
et al. 2018).

The problem of simple and compact means for pulse characterisation (duration, struc-
ture, chirp, waveform, etc.),—especially concerning relatively short pulses,—also presents 
a challenge to research and development community. In recent years, new approaches 
to this problem were proposed (Nguyen et  al. 2018; Zapata-Farfan et  al. 2019; Trebino 
et al. 2020), and it is obvious that measurement of ultra-short pulses with complicated and 
expensive laboratory equipment is gradually becoming a thing of the past. This is more 
and more addressed by considerably cheaper and compact sensors able to take the same 
measurements at least as fast and as accurately. Today, this field (characterisation of ultra-
short and longer optical pulses) appears a promising testing ground for exploration of new 
approaches, new ideas with application of new materials and new physical effects.

The sensor’s ability to measure several parameters naturally makes it more valuable and 
allows reduction of the sensor count for characterisation of complex technical systems. It 
is not easy to predict the optimal number of such sensors,—3, or 13, or any other number. 
But it is quite clear that research in the field of multi-parameter sensors is very promis-
ing. Another interesting domain is that of ultra-compact sensors: on-chip or chip-scale. 
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Remotely accessible sensors are also gaining popularity, so called ‘smart’ sensors or next-
generation sensors able to operate in networked swarms (Fu et  al. 2019; Valeske et  al. 
2020; Du and Nan 2021; Sinha and Makkar 2021; Blokdyk 2018).

It is important to emphasise that the necessary parameters should be directly measured 
and not calculated or modelled from other measured values (Tong et al. 1997; Liu and Cui 
2015; Imasaka et al. 2016). For instance, a typical mistake is indiscriminate calculation of 
pulse duration from its spectral width. This approach may be used sometimes (Kues et al. 
2017), but in general, the relation between the radiation spectrum and pulse duration is 
affected by the pulse chirp, its shape, and structure. Measurement of output pulse duration 
and shape (structure) is a required procedure since many lasers exhibit broad variability of 
pulse parameters (Smirnov et al. 2012, 2017; Wollin et al. 2017; Li et al. 2018; Zhang et al. 
2020b). Furthermore, this property may be introduced by the radiation delivery system 
rather than belong to the laser itself, i.e. it may come from external conditions.

The next type of sensors that we need is those that measure the radiation line width. It is 
a variable parameter in many lasers and is affected by a number of factors including the set 
of spectral selectors, their spectral transmittance, generation regime, etc. In pulsed lasers, 
the radiation line width depends upon the properties of the generated pulses, whereas in 
continuous-wave lasers it may depend on whether or not the laser operates in a single-
frequency regime. Measurement of the radiation spectrum with a sensor presents a for-
midable problem, no matter whether the laser is pulsed or CW. The difference consists 
predominantly in that for spectral measurements of pulsed (and especially, short-pulsed) 
radiation, lower spectral resolution is required, whereas for CW radiation, as a rule, must 
rely upon interference technologies and higher spectral resolution. Implementation or real-
scale radiation spectrum measurements with sensors is inherently close to that of radiation 
wavelength measurement. So far, both these problems are solved through use of special 
laboratory or commercial equipment, even though efforts are under way, which give hope 
that such measurement will eventually pass into the sensor domain (Xu et al. 2015; Wang 
et al. 2017, 2021a; Affendy et al. 2020; Lotfi et al. 2021).

Naturally, we only listed here the key radiation parameters that need measurement. 
Remaining outside our scope are such parameters as angular radiation pattern, its stability, 
etc. In any case, it is highly desirable to measure at least those key parameters with inex-
pensive built-in means.

What kind of general problems may be encountered in transition from the “laser in 
the lab” concept to the “lab in the laser” concept? Availability of necessary measurement 
equipment does not encourage purchase of laser systems with self-measurement of the key 
output parameters. Such measurement equipment available in the laboratory environment 
has a long life time and may be normally used with different laser systems. However, laser 
systems are used not only in the laboratory, and in those applications the built-in charac-
terisation of the laser system output parameters becomes quite important. The second ques-
tion is whether or not there are many such applications.

Is the development of new sensors justified, taking these applications into considera-
tion? The answer to this last question is likely positive: this is, indeed, justified. Univer-
sal laser systems enjoy numerous applications not limited to terrestrial sphere (including 
lab conditions without the necessary external measurement equipment), but also in outer 
space. In this situation, new compact and inexpensive “internal” sensors for measurement 
of main radiation parameters could be of great value as part of universal laser systems. Fur-
thermore, they may become the basis of next-generation measurement systems featuring 
smaller dimensions and lower cost. More compact dimensions and lower cost usually come 
from development of more advanced systems and transition to such smaller and/or cheaper 
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solutions appears as one of promising vectors of development in the field of measurement 
systems.

Development of new sensors rests on physical effects and the contemporary level of 
technological capabilities, including those of artificial intelligence. Machine learning is 
already successfully used for solving many problems in photonics, and its domain may be 
extended into sensor systems, especially where large data streams are generated (for exam-
ple, image acquisition, etc.).

Speckle patterns (Stetson 1987; Mandrosov 2004; Kaufmann 2011; Goodman 2020) 
may become one of the highly promising solutions for characterisation of laser radiation. 
Such patterns may be formed both outside the laser and directly in it by using a small 
part of reflected or out-coupled radiation. Application of speckle patterns (Archbold et al. 
1978; McLaughlin 1979; Yamaguchi 1981; Kitagawa and Hayashi 1985; Rose et al. 1998; 
Janiczek et al. 2003; Stoller et al. 2014; Charrett et al. 2018) is appealing for several rea-
sons. First of all, such images are a source of big data, which may be fed to algorithms of 
machine learning (Genty et al. 2021; Pu et al. 2020; Amil et al. 2019) in order to simplify 
control over certain parameters of laser radiation by the aid of artificial intelligence. Sec-
ondly, the potential held by speckle patterns in relation to measurement of radiation param-
eters is clearly far from being fully explored, even though many publications are appearing 
that study characterisation of laser radiation parameters by their means (Wang et al. 2020; 
Schmid and Stephan 1984; Freude et al. 1986; Redding et al. 2014; Chakrabarti et al. 2015; 
Metzger et al. 2017; Hu et al. 2020; Zhang 2020; Xiong et al. 2020; Zhang et al. 2020c; 
Wan et al. 2021a, b; Facchin et al. 2021). It is important that this technology is relatively 
inexpensive, and the cost of imaging equipment for speckle pattern registration tends to 
decline. Moreover, in certain cases, imaging cameras may be replaced by linear photo-sen-
sors or even quadrant photo-detectors (Wang et al. 2021b). It is equally worth noting this 
method’s universality: diverse radiation parameters,—wavelength, spectral width, power, 
and so forth,—may be measured by application of a single contactless sensor technology.

It should be noted that speckle patterns are often used when it is necessary to measure 
the properties of the surface (roughness, displacement, speed of motion, etc.) upon which 
the laser beam is scattered. However, the focus of the problem may be shifted onto the laser 
beam itself for measurement of its radiation parameters (wavelength, line width, power sta-
bility, and so forth) and, correspondingly, instead of an arbitrary scattering surface, a spe-
cially fabricated one may be used that will facilitate extraction of all necessary information 
from the observed speckle patterns. Specially configured reflective (or transmissive) sur-
faces may augment the measurement technology with new, hitherto untapped, possibilities. 
Speckle-based sensor technology stands to give a new impetus to the development of the 
methods of control and measurement of laser radiation parameters.

3 � Conclusion

As a result of continuous advances in photonic devices, it becomes more and more often 
insufficient to have only one controllable radiation parameter. We are not concerned here 
with on/off devices, such as laser pointers and similar. We discuss more complex lasers, 
predominantly pulsed. Their broader introduction is limited by the fact that their output 
parameters must be monitored by expensive and bulky equipment. Purchase of such a laser 
often entails acquisition of an entire set of measurement apparatus, which is both larger and 
more expensive than the laser itself. The conventional “laser in a lab” technologies (when 



Sensors for photonic devices﻿	

1 3

Page 7 of 11    165 

measurement of the key radiation parameters is essentially possible only in the laboratory) 
or “laser with a lab” ones (when a necessary set of measurement equipment is acquired 
with the laser) must give way to the modern “lab in the laser” technologies (when the laser 
is originally designed to include compact and inexpensive means of control and measure-
ment of its output parameters). Highly precise, contactless, and cheap speckle-based sen-
sor technology stands to become one of highly promising approaches to laser radiation 
characterisation.
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