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Abstract: Investigations of the frequency combs in χ(3) microresonators have passed a critical
point when the soliton based regimes are well established and realized on different platforms.
For χ(2) microresonators, where the first harmonic (FH) and second harmonic (SH) envelopes
are coupled via the SH generation and optical parametric oscillation, the comb-soliton studies
are just starting. Here we report on a vast accessible dual χ(2) soliton-comb family in high-Q
microresonators with the SH and FH combs centered at the pump frequency ωp and its half
ωp/2. Vicinity of the point of equal FH and SH group velocities λc, available via proper radial
poling, is found to be the most advantageous for the generation of spectrally broad dual FH-SH
combs. Our predictions as applied to lithium niobate resonators include the dependence of comb
and dissipative soliton parameters on the pump power, the deviation λp − λc, the modal quality
factors and frequency detunings, and the necessary parameters of radial poling of the resonator.
These predictions form a solid basis for the realization of χ(2) frequency combs.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Generation of frequency combs – long sequences of equidistant coherent optical lines – represents
nowadays a prosperous scientific area, especially with regard to high-Q optical microresonators
[1–8]. Its common feature is search for nonlinear regimes providing and optimizing the necessary
comb properties. Compactness, robustness, and strong enhancement of light fields owing to
recirculation inside the resonator are highly beneficial for the achievement of the goals. Until
recently, the main efforts, both experimental and theoretical, were focused on χ(3) microresonators
and, correspondingly, on Kerr-nonlinearity-controlled comb regimes. The main achievements
here are (i) realization of identity between high-quality combs and temporal solitons and (ii)
implementation of this soliton concept into prototypes of real devices. The dissipative solitons in
question are fundamentally different from the so-called conservative Kerr solitons. They balance
not only the dispersion broadening and nonlinear compression of light envelopes, but also the
external pumping and internal losses [4,8,9].

Transfer of the soliton-comb concept to the case of dominating lower-order χ(2) nonlinearity,
employing the processes of second harmonic generation and optical parametric oscillation,
represents a big scientific challenge. On the one hand, it promises substantial lowering of pump
powers and realization of dual combs centered simultaneously at the first and second harmonics
(FH and SH), see also Fig. 1. On the other hand, it forces researches to enter a new area of
nonlinear science where many new problems need to be solved. Among these problems is the
necessity to fulfill the phase-matching (PM) conditions in microresonators, to deal with both FH
and SH dispersions, to account for the temporal walk-off between FH and SH and two frequency
detunings, and, finally, to discover new dissipative FH-SH solitons. Phase-matching techniques
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applied in microresonators are birefringent phase-matching [10] and quasi phase-matching
[11,12]. The number of material and experimental parameters controlling the nonlinear regimes
becomes large compared to the χ(3) case.

Fig. 1. Principle scheme of soliton-comb generation in χ(2) microresonators. Monochro-
matic pump at the frequency ωp generates dual FH-SH comb owing to quadratic nonlinear
processes. It corresponds to FH and SH solitons moving along the resonator rim with a
common velocity v0. Red spots show localization of the resonator modes at the rim, φ is the
azimuth angle. A periodic alternation of the sign of χ(2) coefficients, shown for the number
of periods N = 8, allows for quasi-PM at an arbitrary frequency ωp.

A few reviews on the χ(2) phenomena [13–16] and a number of recent original papers
[17–33] serve here as the basis. As χ(2) microresonators possess also the Kerr response, certain
requirements have to be fulfilled to ensure the dominance of quadratic nonlinearity. Sufficienlly
large values of the quality factors, Q ≳ 107, were found necessary to neglect the Kerr nonlinearity
[16,23,27,32]. This requirement is usually fulfilled for mm-sized χ(2) resonators. For lower
Q-factors typical of on-chip resonators an interplay between χ(2) and χ(3) nonlinear processes
occurs. Impressive soliton-based combs discovered recently in AlN on-chip resonators [33]
are due to this interplay. While experiments [29–31] with high-Q resonators, relevant to large
temporal walk-off, show the presence of several comb lines, no evidences of true soliton-based
χ(2) combs are reported so far.

On the theoretical side, coupled equations for the FH and SH light field envelopes F(φ, t) and
S(φ, t) [φ is the azimuth angle] involving the necessary linear and nonlinear terms are known
[13,21,22,26–28]. While the SH amplitude S is always 2π-periodic in φ, the FH amplitude
F is either periodic or antiperiodic [26–28]. This seemingly surprizing circumstance is fully
compatible with periodicity of true light fields inside the resonator [34]. Topologically different
periodic and antiperiodic nonlinear solutions correspond to the SH pumping into modes of the
resonator with even or odd azimuth numbers, see also Fig. 1. This additional degree of freedom,
inherent in χ(2) resonators, opens new prospects for the frequency combs. In particular, it has been
found numerically for the zero detuning case and equal FH-SH decay constants that the excitation
of the antiperiodic states leads to the formation of strongly localized stable solitons relevant to
spectrally broad dual FH-SH combs [27]. This excitation tends to be especially efficient when
approaching the spectral point of zero walk-off where the FH and SH group velocities are equal
to each other. It was also predicted that locally stable periodic soliton states can exist at nonzero
detunings exactly at the zero walk-off point [21–23]. A few analytical soliton-comb solutions at
nonzero FH and SH detunings were found in the limit of small modal decay constants [26,28];
stability of these solutions is questionable. Anyhow, the known theoretical results cover only a
tiny part of the perspective regions of experimental and material parameters.

The purpose of this study is to provide a basis of theoretical predictions for realization of net
dual frequency-broad soliton-based χ(2) combs in the vicinity of zero walk-off point. Specifically,
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we consider the case of lithium niobate (LN) based microresonators. This allows us to quantify
the wavelength dependences of the dispersion and walk-off parameters and, correspondingly,
to narrow the degree of experimental uncertainty. The main variable parameters are the pump
power, the spectral distance to the zero walk-off point, the modal FH and SH decay constants
(Q-factors) within the actual range, and also small FH and SH frequency detunings relevant
to slightly imperfect PM and slightly non-resonant SH pumping. The main predictions are
relevant to the number of comb lines, to the soliton localization and velocity, and also to possible
bifurcations between different nonlinear regimes. While our specific predictions are relevant to
the excitation of the self-starting antiperiodic states, considerable efforts were spent to detect
similar periodic states. No such states were found.

The novelty of our study is in a strong development and practical implementation of [27]. We
have proceeded from a special single-soliton case to the vast accessible soliton-comb family
depending on the pump power parameter, pump wavelength, FH-SH frequency detunings, and
quality factors. This family and the scale of predictions have no analogs in the literature.

2. Theoretical background

A χ(2) microresonator can be conventionally viewed as a ring waveguide of radius R, where the
light wavevectors acquire discrete values km = m/R with m being the modal azimuth number.
The modal frequency is expressed by m as ωm = mc/Rn, where c is speed of light and n is the
refractive index. Slow dependence of n on the vacuum wavelength λ includes generally the bulk
part and geometrical corrections [35–37]. Usually, R ∼ 1 mm for LN based resonators and,
correspondingly, m ∼ 104 for the optical range. The geometric corrections to n are negligible
here, and the dependence n(λ) is well known for LN crystals [38–40]. Radial poling corresponds
to a φ-periodic alternation of the direction of the spontaneous polarization, see also Fig. 1. It does
not influence the linear optical properties, but changes the sign of the major χ(2) coefficients. By
choosing properly the number of poling periods N and using the fine-tuning means [41–43], one
can adjust PM practically to any desirable pump wavelength λp without substantial weakening of
the efficient nonlinear coefficient [11,37]. The birefringent PM does not require structuring of
the resonator, but it attaches one to a very narrow range of λp (λp ≃ 0.532 µm for LN [10]). The
experimental comb studies [29–33] employed the natural PM.

Importantly, the quasi-PM conditions mp − N = 2m1, ωmp = 2ωm1 , where m1 is a FH
azimuth mumber, can be fulfilled only for even mp − N . For odd mp − N , we must use instead
mp − N = 2m1 + 1, ωmp = ωm1 + ωm1+1 leading to the parametric excitation of two FH modes.
These two cases correspond to the topologically different periodic (P) and antiperiodic (A) light
states [26,27].

Coupled nonlinear equations describing the temporal evolution of the FH and SH complex
light envelopes F(φ, t) and S(φ, t) owing to the χ(2) nonlinearity have the following generic form
[26,27]: [︃
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(1)

The subscripts 1 and 2 refer to the FH and SH parameters, respectively, v1,2 and v′1,2 are the
group velocities and the dispersions (discrete equivalents of dω/dk and d2ω/dk2), γ1,2 are the
modal decay constants linked to the quality factors as Q1,2 = ω1,2/2γ1,2, ∆1 = (2ωm1 −ωp)/2 and
∆2 = ωmp − ωp are the frequency detunings accounting for slightly imperfect PM and resonance
with mode mp, µ is the efficient coupling coefficient, and h is the efficient pump strength. All
introduced parameters are real and experimentally controlled; the ratios v1,2/2πR (≳ 10 GHz)
are known as FH and SH free spectral ranges. The amplitudes F and S can refer to different
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or the same light polarizations. The largest coupling coefficient corresponds to the case of the
same extraordinary polarization [40], which is beneficial for the radial poling. Dependences
v1,2(λp) and v′1,2(λp) for lithium niobate (and the extraordinary polarization) are shown in Fig. 2.
The point λc ≃ 1.349 µm corresponds to zero walk-off, v12 ≡ v1 − v2 = 0. In the vicinity of this
point we have v12[cm/s] ≃ −5.9 × 105 δλ [nm], v′1 ≃ 0.8, and v′2 ≃ −0.4 of 104 cm2/s, where
δλ = λp − λc.

Fig. 2. Wavelength dependences of the group velocities v1,2 (a) and dispersions v′1,2 (b) for
LN resonators at the extraordinary polarization and room temperature. For the radius R ≳ 1
mm the geometric corrections are negligible with a high accuracy. The arrow in a) indicates
the point of equal velocities λc ≃ 1.349 µm.

Set (1) is relevant to the both P and A light states. These states are different in symmetry. For
the P- and A-cases, the FH amplitude obeys the circumvention conditions F(φ, t) = F(φ + 2π, t)
and F(φ, t) = −F(φ + 2π, t), respectively. The circumvention condition for the SH amplitude
S(φ, t) is always 2π-periodic. However, because of the nonlinear coupling with F, the amplitude S
is substantially different for the P- and A-cases. Temporal evolution can never break the symmetry
of solution.

Set (1) possesses spatially uniform steady-state solutions F̄, S̄, as quantified in Appendix A.
These solutions form backgrounds for localized FH-SH solitons. Remarkably, the background F̄
is determined up to the sign. For the P- and A-solitons the left and right FH backgrounds must
thus be the same and opposite, respectively. Spatio-temporal stability of the FH-SH background
is necessary for the existence of stable dual FH-SH solitons.

Fourier expansions for the envelopes,

S =
∑︂

l
Sl exp(ilφ), F =

∑︂
j

Fj exp(ijφ) , (2)

where Sl = Sl(t) and Fj = Fj(t), are useful. For both P- and A-cases the number l takes values
0,±1,±2, . . .. The number j takes the same integer values in the P-case, but semi-integers
±1/2,±3/2, . . . in the A-case. The Fourier harmonics F0, S0 should not be mixed up with
the backgrounds F̄, S̄. In particular, F0 = 0 for A-solitons can coexist with opposite left-right
backgrounds ±F̄ far from the soliton center. Using Eq. (2), set (1) can be transformed to an
equivalent set of ordinary differential equations for Fj and Sl, see Appendix B for details.

The comb generation is due to the parametric instability of the spatially uniform trivial solution
S0 = h/(γ2 + i∆2), F0 = 0 against small perturbations. Only harmonics Fj and F∗

−j are coupled
with each other within the linear approximation. This yields an expression for the instability
threshold

4µ2h2
th = [γ2

1 + (∆1 + j2v′1/2R2)2](γ2
2 + ∆

2
2) (3)
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that depends on j2 and FH dispersion v′1, but does not depend on v′2 and v1,2. Also, it
is not symmetric in ∆1 and ∆2. The threshold value of |S0 |

2 corresponding to Eq. (3) is
|S0 |

2
th = |h|2th/(γ

2
2 +∆

2
2), it also depends on j2. The minimum in ∆1,2 value of h2

th is (γ1γ2/2µ)2; it
does not depend on j2 and corresponds to ∆1 = −j2v′1/2R2 and ∆2 = 0, when the dispersion shift
of the modal frequency is compensated and the mode mp is pumped resonantly. At this minimum
we have |S0 |th = γ1/2µ. For h>hth, the quantities Fj and F∗

−j grow exponentially in time within
the linear approximation and oscillate as exp(−ijv1t/R). This means that the FH light pattern
moves along the rim with velocity v1. This analysis is applicable both to the P- and A-cases.

We can consider steady-state light patterns F(φ, t) and S(φ, t) above the threshold as a result of
nonlinear saturation of the initial exponential growth of small perturbations. We are especially
interested in strongly localized steady-state FH and SH light patterns propagating with the same
velocity v0: F = F(φ − v0t/R), S = S(φ − v0t/R), i.e. in dual FH-SH solitons. Establishment of
such states is not granted but highly desirable for χ(2) combs. Fourier expansions (1) of such
states lead automatically to equidistant lines with the same spacing v0/R within the FH and
SH frequency domains, i.e. to the dual frequency comb. The spectral width of this comb is
inversely proportional to the soliton localization scale. As the emerging FH modes propagate with
velocity v1 at the threshold, one can suggest that v0 ≃ v1 for sufficiently small super-criticalities.
The velocity difference v01 = v0 − v1 is a crucial soliton parameter. It has to be determined
simultaneously with shape of the FH and SH envelopes and be dependend on the pump strength
h and other variable parameters. What can be alternatives to such steady-state patterns? It can be
light states corresponding to a few or several localized solitons. It can also be chaotic saturated
states. It seems all alternatives are not beneficial for the combs.

The basic set (1) refers to a static coordinate frame. As we expect that steady-state light
patterns propagate with velocity v0 ≃ v1, it is practical to rewrite it for a coordinate frame moving
with velocity v1. To do this, it is sufficient to drop the term v1∂ϕ in the first equation and replace
v2 by −v12 = v2 − v1 in the second equation. Harmonics Fj(t) and Sl(t) calculated in this moving
frame oscillate as exp(−ijv01t/R) and exp(−ilv01t/R) for steady-state light patterns propagating
with velocity v0. When applied to numerical data, this general oscillation law enables one (i) to
make sure that we deal with a desirable steady state and (ii) to evaluate v01 = v0 − v1 with a high
accuracy. Details of the calculation procedure can be found in [27], see also Sect. 3. In essence,
the velocity difference v01 is a measure of the FH-SH coupling strength. Furthermore, the ratio
v01/R gives correction to the frequency spacing v1/R between the comb lines. Dependence of
v01 on the variable parameters, see below, means comb tunability.

Lastly, we discuss shortly the most important variable parameters of our nonlinear system: h,
λp, γ1,2, and ∆1,2; totally six real parameters.

– The squared pump strength h2 is proportional to the pump power P, so the super-criticality
parameter η = h/hmin

th = 2µh/γ1γ2 = (P/Pmin
th )1/2. It can be regarded as a useful

experimental parameter.

– The choice of the pump wavelength λp (implying the radial poling) is crucial for χ(2) combs.
On the one hand, it predetermines the number of radial poling periods that cannot be
changed afterwards. On the other hand, it affects the nonlinear regimes and comb properties.
The point is that the velocity difference v12 = v1 − v2 varies from zero at λc ≃ 1.349 µm
to very large values (∼ ±109 cm/s) for |λp − λc | ≳ 0.5 µm. For so high values of |v12 |,
the term v12l/R in the left-hand side of equations for Sl with l ≠ 0 is dominating for any
reasonable choice of R and γ2. This suppresses harmonics Sl and the related nonlinear
processes. Thus, vicinity of the point λc is the most beneficial for χ(2) combs.

– Large quality factors Q1,2 = ω1,2/2γ1,2 typical of LN based resonators are also beneficial for
the combs. Usually, Q1,2 ≲ 108 [15,16]. To cover the actual ranges of Q1,2, we varied γ1,2
independently from 107 to 108 s−1.
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– The frequency detunings ∆1,2 were varied independently within intervals sufficient to resolve
the major features of the comb behavior.

When representing the FH and SH soliton intensities |F(φ)|2 and |S(φ)|2 and also the FH and
SH comb spectra |Fj |

2 and |Sl |
2, we normalize them to γ1γ2/2µ2 and γ2

1/4µ
2, respectively. This

normalization does not include ∆1,2; for γ1 = γ2 it corresponds to [27].

3. Numerical methods

We simulated numerically set (6) for the Fourier harmonics Fj(t) and Sl(t) as applied to the P-
and A-cases using the fourth-order Runge-Kutta method in vicinity of zero walk-off point λc and
within sufficiently broad ranges of η = h/hmin

th , γ1,2, and ∆1,2. Our λp-mesh explicitly included
the zero walk-off point λc. The number of harmonics within each of the FH and SH frequency
domains ranged from 32 to 1024. The calculation accuracy was controlled via changing the time
step and the total number of harmonics.

With the Fourier harmonics Fj(t), Sl(t) calculated, we were able to make sure that steady-state
light patterns are established and to calculate the velocity difference v01 = v0 − v1, the comb
spectra |Fj |

2 and |Sl |
2, and the spatial (soliton) profiles F(φ) and S(φ) in the coordinate frame

moving with velocity v0. The relevant numerical correlation procedure for F (and analogously
for S) was as follows: Using the relations of Sect. 2 for the Fourier harmonics, we calculated
the quantity ε =

∑︁
j |Fj(t) − Fj(t + τ)|2/

∑︁
j(|Fj(t)|2 + |Fj(t + τ)|2) in a coordinate frame moving

with a probe velocity ṽ0. For sufficiently large time t and the time shift τ, ε tends rapidly to zero
if and only if a steady state is achieved and ṽ0 = v0. This has enabled us to calculate v0 with a
relative accuracy better than 10−5. Further details can be found in [27].

An adiabatic calculation procedure was widely used: At the first step, we set h slightly above
hth and employed very small random amplitudes as initial conditions. After that, the pump
strength h increased stepwise, and the values of Fj(ts) and Sl(ts) achieved at time ts and relevant to
steady-state values of |Fj(ts)| and |Sl(ts)| were used as new initial data for the next calculation run
with larger or smaller values of h. Establishment of the intermediate steady states was controlled
with a high accuracy. A similar adiabatic procedure was used to investigate the effects of the
frequency detunings ∆1,2.

4. Results: Zero-detuning case

We start from a demonstration of the properties of the steady-state solutions relevant to the case
of zero detunings ∆1,2 = 0, the super-criticality parameter η = h/hth = 30, and decay constants
γ1 = 107, γ2 = 108 s−1 corresponding to Q1 ≃ 3.5×107, Q2 ≃ 0.7×107. Also two representative
values of the spectral parameter δλ = λp − λc are considered. Both periodic and antiperiodic
solutions were tried within our adiabatic procedure. While in the A-case, similarly to [27], we
robustly arrived to single-soliton solutions different only in position in the cavity, in the P-case
we got no single-soliton solution. Instead, we observed typically dual steady-state background
solution F̄, S̄. This correlates with the results of [23] on realization of periodic soliton solutions
under special conditions and ∆1,2 ≠ 0. Thus, the periodic solitons seem to be rather special as
compared to the antiperiodic ones. This is why we focus on the A-case.

Figures 3(a) and 3(b) show in some detail the normalized steady-state FH and SH intensity
profiles |F(φ)|2 and |S(φ)|2 for the zero walk-off point δλ = λp −λc = 0. We have a well localized
dark-bright FH-SH soliton moving with velocity v0 = v1 = v2. Both profiles are symmetric with
regard the replacement φ↔ −φ and possess backgrounds. In accordance with Appendix A, the
FH and SH background values are η − 1 = 29 and 1, respectively. Remarkably, the minimum
value of |F(φ)|2 is zero and the maximum normalized value of |S(φ)|2 is very large ≃ 613. The
function arg [F(φ)], not shown in Fig. 3, varies by π across the the resonator; this is the general
property of the antiperiodic states [26,27].
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Fig. 3. Zero walk-off point, δλ = 0: Representative dual FH and SH soliton profiles (a,b)
and comb spectra (c,d) for η = 30, γ1 = 107 and γ2 = 108 s−1. The azimuth angle variation
δφ is counted from the soliton center. The insets give the values of the velocity difference
v01 = v0 − v1 and the comb line numbers N1 and N2 relevant to the FH and SH comb spectra.
The total comb line number is N = N1 + N2.

Figures 3(c) and 3(d) exhibit the corresponding FH and SH comb spectra 2µ2 |Fj |
2/γ1γ2 and

4µ2 |Sl |
2/γ2

1 consisting of equidistant lines with the frequency spacing v0/R. They both are
symmetric in j and l, respectively. The shapes of the FH and SH spectra are substantially different.
It is remarkable also that the maximum values 2µ2 |F±1/2 |

2/γ1γ2 are pretty large (≃ 12). The
maximum value 4µ2 |S0 |

2/γ2
1 is close to 1, and it substantially exceeds the side values. This

means that the harmonic S0 stays close to the threshold while all other harmonics are deeply
below the threshold.

As a simple and useful measure of the FH and SH comb widths, here and later we employ
parameters N1 and N2 – the numbers of lines in the spectra |Fj |

2 and |Sl |
2 exceeding 10−4 of

|Fj |
2
max and |Sl |

2
max, respectively. Then the total number of comb lines is N = N1 + N2. Our

definition of N1,2 does not depend on the normalization procedure. For the Figs. 3(c) and 3(d) we
have N1 = 80, N2 = 162, and N = 242. Note that our estimate of N1 is somewhat undervalued:
Since |Fj |

2
max ≫ |Sl |

2
max, the number of FH comb lines exceeding some reasonable noise level

can be notably larger than N1.
Now we turn to the case δλ ≠ 0. Figures 4(a) and 4(b) show the normalized soliton profiles for
δλ ≃ −1.08 nm and the same other parameters. The relative soliton velocity v01 is non-zero here
and equal to ≃ 6 × 105 cm/s, which is slightly below v12(δλ) ≃ 6.4 × 105 cm/s. Velocity v0 lies
thus outside the interval [v1, v2]. The profiles |F(φ)|2 and |S(φ)|2 lose the φ↔ −φ symmetry, but
keep the same background values. The change of the FH profile is especially notable, compare
Figs. 3(a) to 4(a): The profile acquires an oscillatory structure and loses the zero point. The
relevant FH and SH comb spectra are shown in Figs. 4(c) and 4(d). They are notably asymmetric
in j and l, but otherwise carrying the same general features. The comb line numbers N1,2 and
N are slightly higher than they are in the case δλ = 0. Thus, the condition v12 = 0 is not
necessarily optimal for the comb generation, see also below. Inversion of δλ changes the sign of
v01 and transforms all dependences of subfigures a) to d) to the mirror-reflected about the vertical
zero-lines. Note that all subsequent soliton profiles and comb spectra are qualitatively similar to
those shown in Fig. 3.
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Fig. 4. Nonzero walk-off, δλ = −1.08 nm: FH and SH soliton profiles (a,b) and comb
spectra (c,d). The input parameters and explanations are the same as in Fig. 3.

What happens with the soliton-comb parameters when changing δλ, η, and γ1,2? Calculation
of color maps of velocity v01 and the comb line number N on the δλ, η-plane clarifies the situation.
To see the effect of γ1,2 on these properties, we consider such maps for three combinations of the
decay constants, see Fig. 5. Subfigures of the upper row represent the map v01(δλ, η) for γ1,2 = γ
(a1), γ1 = γ, γ2 = 10γ (b1), and γ1 = 10γ, γ2 = 10γ (c1), where γ = 107 s−1. Subfigures a2),
b2), and c2) give the corresponding maps of the total comb line number N. Subfigures d1) and
d2), supplementing the color maps, give representative cross-sections v01(δλ) and N(δλ) for
η = 20 relevant to our combinations of γ1,2.

The most general soliton-comb properties are:

• There are two different regimes – the walk-off regime for sufficiently large values of |δλ |
and the dispersion regime in the close vicinity of δλ = 0.

• The soliton velocity v01(δλ, η) turns to zero at the line λp = λc; the comb line number N
and |v01 | experience shallow and deep dips when crossing this line.

• With a good accuracy v01(δλ, η) and N(δλ, η) are odd and even in δλ, respectively.

• Both |v01 | (for δλ ≠ 0) and N grow monotonously with increasing η. For the walk-off
regime, they decrease with increasing spectral distance |δλ |. This decrease persists for
|δλ |>10 nm.

Further important and remarkable properties depend on γ1,2. One sees from Fig. 5 that the
maximum in δλ and η values of |v01 | and N grow with increasing both γ1 and γ2. It is necessary,
however, to take into account that keeping the same value of η with increasing γ1,2 means
increasing pump power in accordance with our definition η = 2µh/γ1γ2. Thus, larger values of
Nmax in a2), b2), c2) correspond to larger pump powers. On the other hand, this increase can
be explained by the balance between the dissipative and dispersion terms in the left-hand sides
(LHSs) of Eqs. (1): the larger γ1,2, the higher values of |j | and |l| are needed to reach this balance.

The spectral width of the dispersion area, which can be defined as the distance between
maxima of |v01 |(δλ), also grows with γ1,2, see, e.g., Fig. 5(d1). This feature can be explained by
balancing the walk-off and dissipative contributions in Eqs. (1). The effect of the ratio γ2/γ1 is
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Fig. 5. a1) to d2): Color maps of the velocity parameter |v01 |/2πR [MHz] (first row) and of
the total comb line number N = N1 +N2 (second row) on the δλ, η-plane in steady state. The
first, second, and third columns correspond to γ1,2 = γ, γ1 = γ, γ2 = 10γ, and γ1,2 = 10γ,
respectively, where γ = 107 s−1. Each map is obtained by stepwise increase of η starting
from the value of 2 and incorporates the data of 141 × 151 = 21291 calculation variants
with up to 1024 Fourier harmonics taken into account. The whole range of δλ covers about
200 FSRs. The insets in maps a1), b1), and c1) indicate the signs of v01. Subfigures d1) and
d2), supplementing the maps, show the crosssections v01(δλ) and N(δλ) for η = 20 relevant
to the maps a1) to c1) and a2) to c2), respectively. Note different scales of δλ in subfigures
d1) and d2).

also remarkable. While for γ2/γ1 = 1 we have a sharp quasi-discontinuity of v01(δλ) (see the
blue and magenta dotted lines), for γ2/γ1 = 10 this discontinuity is smoothed (see the green
dotted line in Fig. 5(d1). The points of maxima of N(δλ) are notably shifted outwards against the
points of maxima of |v01 |(δλ). For example, N(δλ) peaks at δλ ≃ ±2 nm for the blue dotted line
in Fig. 5(d2), while |v12 |(δλ) has maxima at δλ ≃ ±0.7 nm.

In the whole shown range of δλ and η the soliton velocity v0 lies outside the interval [v1, v2].
As concerns the velocity ratio |v01 |/|v12 |, it can exceed 1 only for |δλ | ≲ 1 nm.

5. Results: effects of ∆1,2

The presence of nonzero frequency detunings ∆1,2 changes the situation quantitatively and, largely,
qualitatively. In order to gain insights into the impact of ∆1,2 on the soliton-comb properties,
we adiabatically scanned the ∆1,∆2 plane starting from an antiperiodic steady state relevant to
∆1,2 = 0. As a representative pump strength parameter we have chosen η = 30. In fact, two
similar scanning procedures were used. Within the first one, we determined initially the soliton
velocity v01 and the comb line number N = N1 + N2 by increasing and decreasing ∆1 at ∆2 = 0.
After that, starting from a point ∆1, 0, we increased and decreased detuning ∆2. The achieved
steady-state values of the amplitudes Fj and Sl were used as new initial conditions in each step of
changing ∆1 or ∆2. Within the second procedure, the scanning order was inverted: initially we
varied ∆2 at ∆1 = 0, and after that increased and decreased ∆1 starting from points 0,∆2. We have
verified whether the quantities v01(∆1,∆2) and N(∆1,∆2) depend of the scanning order. Also,
we have made sure that each steady state on the ∆1,∆2 plane is still relevant to a single-soliton
A-state.

Turning to particularities, we consider first what happens strictly at the zero walk-off point
λp = λc, where v1 = v2. In our coordinate frame moving with velocity v1, the positive and
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negative propagation directions are equivalent, so that the soliton velocity difference v01 = v0 − v1
is expected to be zero in steady state. This would also be in agreement with Sect. IV. Surprizingly,
we have found that this is not always the case.

Consider the map of |v01 |/2πR for the decay constants γ1 = 107, γ2 = 108 s−1, see Fig. 6(a).
The uniformly dark-blue colored lower and upper parts, which are separated from the rest by two
slanted borders (bifurcation lines), correspond to v01/2πR = 0 within an accuracy of about 10−9

MHz. Between these borders we have a well pronounced distribution |v01 |(∆1,∆2) whose scale
is comparable with that relevant to Fig. 5. This distribution practically does not depend on the
scanning order. But what about the sign of v01? It is found to be quasi-randomly dependent on
fine particularities of our numerical calculations, such as the presence of very weak remnant
velocity perturbations. In essence, we have a clear example of the spontaneous symmetry
breaking, when the state with a high symmetry (v01 = 0) becomes unstable against the excitation
of one of two equivalent states with lower symmetry (|v01 | ≠ 0). The ferroelectric second-order
transition below the Curie temperature is perhaps one of the most known examples of such a
symmetry breaking. Continuous (without jumps) character of the dependence |v01 |(∆1,∆2) near
the bifurcation lines, see Fig. 6(a), supports this analogy. Within a very narrow strip near the
slanted borders the results of our calculations depend on the scanning order. This is a hysteresis
region inherent in second-order phase transitions.

Fig. 6. Zero walk-off point, λp = λc: Color maps of the soliton velocity parameter |v01 |/2πR
(the upper row) and of the total comb line number N = N1 + N2 (lower row) on the ∆1,∆2
plane for η = 30. Each map incorporates the data of 90 × 90 = 8100 calculation variants
with a constant step in ∆1,2. Maps a) and b) correspond to γ1 = 107, γ2 = 108 s−1, while
maps c) and d) are calculated for γ1,2 = 108 s−1.

Despite the presence of the opposite signs of v01 in Fig. 6(a), the distribution N(∆1,∆2) in
Fig. 6(b) is smooth. The lower bifurcation line of Fig. 6(a) is barely seen here, while the upper
line is well pronounced. Remarkably, increase of ∆2 at ∆1 ≈ 0 is favorable for the comb in spite
of the increasing instability threshold, see Eq. (3). The value Nmax ≈ 270, which takes place at
∆1 = 0, ∆2 ≃ 15, is substantially larger than the zero detunings value N(0, 0) ≈ 230. Note also
that the distribution N(∆1,∆2) in Fig. 6(b) is almost symmetric in ∆1 despite the pronounced
∆1 asymmetry of the excitation threshold. The soliton profiles and comb spectra are symmetric
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within the dark-blue areas of Fig. 6(a) and similar to those presented in Fig. 3(a,b) and 3(c,d).
Within the central area they are notably asymmetric and similar to the profiles of Figs. 4(a,b) and
4(c,d).

Consider next the case of equal damping constants γ1,2 = 108 s−1, see Figs. 6(c,d). Here we
have v01(∆1,∆2) = 0 within almost the whole area. Bistable solutions with v01 = ±|v01 | ≠ 0
occur only within the narrow upper area separated from the rest by a corner-like bifurcation line.
Dependence N(∆1,∆2) is substantially different from that of Fig. 6(b). Remarkably high values
of N, above 400, occur near the apex at ∆2/γ2 ≃ 2.8; the soliton profiles and comb spectra are
symmetric here. Compared to Fig. 3(a), the side bumps of the FH profile |F(φ)|2 become as
pronounced as the dip. The background soliton values are in a full agreement with the relations
of Appendix A. The number of SH comb lines N2 around Nmax notably exceeds N1. Smaller
values of η correspond to smaller optimum values of ∆2. This is relevant to both Figs. 6(b) and
6(d).

Now we consider the effects of frequency detunings for nonzero values of δλ relevant to the
left maximum of N(δλ) in Figs. 5(b2) and 5(c2). The corresponding maps of v01/2πR and N for
η = 30 and same two combinations of γ1,2 are presented in Fig. 7. In contrast to Fig. 6, there
are no regions with v01 = 0 any more, and the soliton velocity difference v01 is positive in the
whole considered range of detunings. Another important feature is that the maximum value
of N is achieved at nonzero detunings is substantially dependend on the relationship between
γ1 and γ2. For Fig. 7(d) we have Nmax ≈ 430. Note also the absence of a visible correlation
between the distributions v01(∆1,∆2) and N(∆1,∆2). The comb spectra relevant to Figs. 7(b) and
7(d) are strongly asymmetric, and the number of SH comb lines N2 substantially exceeds N1.
Near the points of maximum of N the comb spectra |Sl |

2 acquire a pronounced substructure, and
the soliton profiles acquire more sharp features as compared to those shown in Figs. 4(a,b). In
the cases (c,d) decrease of ∆1 below −1.4 × 108 s−1 leads to new bifurcations and transition to
multi-soliton and quasi-random states.

Fig. 7. Color maps of v01/2πR (the upper row) and N (the lower row) on the ∆1,∆2 plane
for η = 30. The left column (subfigures a and b) corresponds to γ1 = 107, γ2 = 108 s−1 and
δλ ≃ −1 nm, and the right column (subfigures c and d) refers to γ1,2 = 108 s−1 and δλ ≃ −2
nm. The calculation procedure is the same as for Fig. 6.
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Lastly, we consider the issue of self-starting for the soliton-comb states with nonzero detunings.
In contrast to the case of zero detunings, the antiperiodic steady states considered cannot always
be generated from weak noise upon an adiabatic switching on the pump power. In paricular,
increasing η for ∆1<0 and ∆2 = 0, which corresponds to the low-threshold parametric excitation
according to Eq. (3), results typically in steady states that can be interpreted as multi-soliton
ones. Furthermore, adiabatic decrease of η starting from steady state with η = 30 ultimately ends
up here with bifurcations leading to multi-soliton steady states. At the same time, increasing η
for ∆1>0 and ∆2 = 0 still leads to the generation of single-soliton states. Thus, single-soliton
steady states with ∆1,2 ≠ 0 are accessible either by an adiabatic increase of pump power or by
adiabatic detuning changes at sufficiently large values of η. Detailed analysis of the self-starting
area of our variable parameters η, δλ, γ1,2, and ∆1,2 is beyond the scope of this paper.

6. Discussion

Above we have presented the results of our broad-scale study of soliton-comb generation in χ(2)
optical microresonators. A distinctive feature of this study is covering of a broad range of the
relevant experimental parameters – the pump wavelength λp, the pump-strength η, FH and SH
quality factors Q1,2, and the frequency detunings ∆1,2 – as applied to the most common LN based
resonators. It has no analogs with regard to the scale of coverage. The results obtained form
numerous predictions (and also some requirements) for experiment. They strongly extend and
supplement the results of [27], where the presence of accessible antiperiodic soliton-comb states
was indicated for the case of constant dispersion, zero detunings, and equal FH-SH decay rates.

Our study shows that the optimization of the comb properties requires radial poling of the
resonator to ensure the quasi-PM at the wavelength on demand [11,12]. The radial poling must
provide a rough adjustment of the phase-matching point; the known fine-tuning means [16,41,42]
have to be used for the final adjustment. A high-quality radial poling can be considered as the
major technological challenge on the way of realization of broad χ(2) frequency combs. Of
particular interest is an adjustment to the vicinity of zero walk-off point where the coupled
primary FH and SH modes possess almost the same group velocities. For LN based resonators
this is relevant to SH pumping in the vicinity of λc ≃ 1349 nm. To the best of our knowledge,
all known χ(2) comb experiments correspond to very large values of the walk-off parameter,
|α | ≫ 1.

Importantly, the case of SH pumping considered admits the excitation of two topologically
different nonlinear states – periodic (P) and antiperiodic (A) – that correspond to pumping into
the modes with even and odd azimuth numbers, respectively. These states were introduced
recently in [26,27]. It turns out that within the whole actual range of the variable experimental
parameters, the excitation of the A-states offers greater advantages as compared to the P-states:
Typically, the A-states are not only stable, but also self-starting; they arise from noise under not
very abrupt switching the pump power above the threshold value. The soliton-comb A-states
form a vast family – they exist in broad ranges of η, λp Q1,2, and ∆1,2. The known P-states
[22,23] do not possess this property. The underlying reason is the presence of nonzero amplitude
background F0 = F̄ in the case of pumping into even SH modes: As soon as this background is
stable, the system can arrive to it during the nonlinear evolution. The A-states generically have
no such amplitude background, F0 = 0.

As follows from the above mentioned, the case of pumping into FH modes, where the primary
nonlinear process is the SH generation, has to be considered separately. In this case only the
P-states possessing the dual FH-SH background are present and the physical pattern of steady
states (including single-soliton states) is expected to be entirely different.

As we have found, the pump wavelength area |δλ | = |λp − λc | ≲ 5 nm, relevant to weak or
modest walk-off and most promising for the generation of χ(2) combs possesses a rich internal
structure. This structure is due to an interplay between the nonlinear χ(2) processes and the linear
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effects of dispersion, temporal walk-off, and modal decay. Far enough from the λc point the
walk-off controlled soliton-comb regimes take place, and the comb generation efficiency drops
with increasing |δλ |. For sufficiently small values of |δλ | dispersion-controlled regimes occur.
The optimum values of |δλ | are not attached exactly to the zero walk-off point. At zero frequency
detunings they lie at |δλ | = (1 − 3) nm depending on the values of Q1,2; the higher Q-factors, the
narrower is the near-optimum spectral distance |δλ |. Note also that the most promissing area of
λp includes ∼ 102 free spectral ranges; this leaves much room for the spectral adjustment via the
radial poling.

Remarkably, nonzero detunings, i.e. slightly imperfect phase matching and slightly nonresonant
pumping, can be favorable for the combs, as they notably increase the number of comb lines.
Another remarkable prediction is the impact of the Q2/Q1 ratio on the soliton-comb properties.
On the one hand, increase of this ratio leads to smoothing of all δλ dependences, including
the dependence v01(δλ). On the other hand, sufficiently large values of this ratio lead, in a
combination with nonzero detunins, to a new nonlinear phenomenon – spontaneous breaking of
spatial symmetry at λ = λc: Symmetric solitons with velocity v0 = v1 = v2 become unstable
against strong asymmetric deformations and propagation with nonzero ±|v01 | velocities. This
phenomenon is similar to the second-order ferroelectric transitions.

All considered comb-soliton states can be accessed in experiment either via not very abrupt
(slower than µs) switching on the pump power (the case of zero or small frequency detunings) or
via a combination of this switching procedure with the subsequent changes of ∆1,2.

Note finally that the problem of existence and accessibility of multi-soliton solutions (of P
and/or A type) remains open. It is beyond the scope of this study.

7. Conclusions

A number of specific predictions for the generation of soliton-related dual FH-SH frequency
combs is made for lithium niobate based high-Q microresonators. The SH pumping in the
close vicinity of the point of equal FH and SH group velocities, λp ≃ 1.349 µm, implying the
phase matching via proper radial poling of the resonator, is the most favorable. In doing so,
the emphasis must be made on the excitation of the modes with odd azimuth number leading
to the excitation of the antiperiodic soliton states. These states form a vast and experimentally
accessible family within broad ranges of the experimental parameters – the pump power, the
modal Q-factors, and the frequency detunings relevant to slightly imperfect phase matching and
slightly nonresonant pumping. This family of dissipative dual χ(2) solitons has no analogs in the
literature. Among new physical effects is prediction of spontaneous symmetry breaking for the
solitons similar to the second-order phase transitions.

Appendix

A. FH and SH backgrounds

According to Eqs. (1), the spatially uniform steady-state values F̄ and S̄ obey equations

−Ω1F̄ = 2µS̄F̄∗, −Ω2S̄ = µF̄2 + ih (4)

with Ω1,2 = ∆1,2 − iγ1,2. The second equation uniquely links S̄ to F̄2, while replacement F̄ by
−F̄ in the first one changes nothing. Solutions ±F̄ are thus equivalent.

Consider the absolute values |F̄ | and |S̄|. The second one is given by |S̄| = |Ω1 |/2µ. Next we
express |F̄ |2 by our super-criticality parameter η = 2µh/γ1γ2:

2µ2 |F̄ |2/γ1γ2 = ±

√︂
η2 − z′′2 − z′ , (5)
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where z = (1+ i∆1/γ1)(1+ i∆2/γ2). The LHS accounts for our normalization of the FH amplitude.
Only the sign + is physical in the RHS as it corresponds to a stable background. At ∆1,2 = 0 we
have 2µ2 |F̄ |2/γ1γ2 = η − 1 and 4µ2 |S̄|2/γ2

1 = 1.
Note that the background solution F̄ = 0, S̄ = −ih/Ω2 is stable against small perturbations

below the parametric instability threshold. Two stable branches can thus co-exist for sufficiently
small values of η and large |∆1,2 |.

B. Equations for Fourier harmonics

Transferring in (1) to a coordinate frame moving with velocity v1, substituting the expansions (1),
and using the standard relations of Fourier analysis, we obtain:

Ḟj + (γ1 + i∆1 + iβ1j2)Fj = −2iµ
∑︂

l
SlF∗

l−j

Ṡl + (γ2 + i∆2 − iαl + iβ2l2)Sl = hδl,0 − iµ
∑︂

j
FjFl−j,

(6)

where dot indicates differentiation in t, β1,2 = v′1,2/2R2, α = v12/R, and l takes values 0,±1,±2, . . ..
This infinite set of ordinary differential equations is valid for both periodic (P) and antiperiodic
(A) solutions. In the P- and A-cases, index j takes the values 0,±1,±2, . . . and ±1/2,±3/2, . . .,
respectively. Equation for S0 includes the pumping term h, but it does not include the walk-
off and dispersion terms. In equations for Sl with l ≠ 0, the term −iαlSl is dominating for
α ≫ γ2, |β2 |, |∆2 |, and Sl ≃ (µ/αl)

∑︁
j FjFl−j with a good accuracy. Being substituted in the

first equation, it gives a small cubic nonlinear term in the equation for Fj. The walk-off case
corresponds to inequality |Sl | ≪ |S0 |, it is not favorable for the χ(2) combs.

At the spectral point of equal group velocities λ = λc, where α = 0, Eqs. (6) include only
squared modal numbers j2 and l2. This leads to the symmetry property: If Fj(t) and Sl(t) is
solution of set (6), then F−j(t) and S−l(t) is its solution as well. This symmetry property becomes
nontrivial for v01 ≠ 0.
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