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The paper proposes a novel efficient numerical model for simulation of spectral and temporal transformation of
laser pulses due to interplay of Kerr and Raman nonlinearity and chromatic dispersion in the process of propa-
gation through single-mode optical fibers. The model reproduces qualitatively the spectral shape of Raman gain
within the approximation of slowly varying amplitudes using a pair of meshes (for pump and Stokes waves) with
a reduced number of points. Nonlinear propagation of 100-ps-long laser pulses along an optical fiber is used as
a test bed for the new model. It is shown that the proposed model provides accuracy better than 10% in Stokes
wave energy growth speed, while being up to eight times more efficient in memory usage and computation speed
compared to the generalized nonlinear Schrödinger equation. ©2020Optical Society of America

https://doi.org/10.1364/JOSAB.387812

1. INTRODUCTION

Various approaches are used for simulation of the Raman effect
in optical fibers and lasers. The simplest and most cost-effective
model is based on numerical solution of the equations for
pump and Stokes intensity distributions along a fiber, Ip(z)
and IS(z): I ′S = g R Ip IS − αS IS ; I ′p =−

ωp
ωS

g R Ip IS − αp Ip ,
where g R is the Raman-gain coefficient,ωS,p stand for the wave
frequencies, and αS,p introduce fiber losses [1,2]. However,
this approach provides information onlyabout the power of the
pump and Stokes waves. In order to explore the spectral and
temporal properties of optical waves, one can use the generalized
nonlinear Schrödinger equation (GNLSE) [1,3]:

∂z A=−(α0 + iα1∂t)
A
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)(
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∫
∞

0
R(t ′)|A(z, t − t ′)|2dt ′

)
, (1)

where A(z, t) stands for the complex field envelope; z and t are
the longitudinal coordinate and time in the retarded frame of
reference, respectively; ω0 stands for the carrier frequency; β2

and γ are the dispersion and nonlinear coefficients, respectively;
α0 and α1 are the first two coefficients in Taylor series expansion
of the optical losses α(ω) atω=ω0; c denotes the light speed in
vacuum; and i2

=−1. The kernel R(t) of the integral operator
includes both electronic (instantaneous) and nuclear contri-
butions: R(t)= (1− f R)δ(t)+ f R h R(t). Delayed (Raman)
response of silica in the first approximation can be taken in the
form of a damped oscillator:

h R(t)=
τ 2

1 + τ
2
2

τ1τ
2
2

· e−t/τ2 sin
t
τ1
, (2)

with time scales τ1 = 12.2 fs, τ2 = 32 fs, and delayed response
fraction f R = 0.18 [1,3].

Although Eq. (1) and its modifications are used widely for
modeling ultra-short pulse propagation and supercontinuum
generation [4–6], it may require a large amount of computa-
tional resources [6] in the case of long high-energy pulses with
relatively narrow optical spectra that are common in long fiber
lasers [7–13] and other pump sources used in Raman convert-
ers [14,15]. Intra-cavity dynamics and generation regimes of
such lasers may be substantially affected by the Raman effect
[16–20], therefore requiring development of more efficient
numerical models. Thus, in order to simulate spectral Raman
transformation of laser pulses that fit into T = 5 ns-wide mesh
using Eq. (1), one must choose the number of mesh points as
large as N > T1νR & 105, where1νR ≈ 13 THz is the Raman
frequency shift for silica. In such a case, only a small fraction of
the spectral mesh points is actually used, whereas spectral power
at other points is vanishing, which makes the model based on
Eq. (1) inefficient.

Much higher efficiency may be attained using a different
approach that relies on a coupled set of GNLSEs [1,21] for
two slowly varying complex amplitudes, one for the pump and
another for the Stokes wave instead of a single amplitude for
both waves. However, Raman gain of such a model is spectrally
uniform, thus effectively constraining it to multipass Raman
converters and Raman lasers with strong intra-cavity spectral
shaping of the Stokes wave [14,22–25]. Such intra-cavity spec-
tral shaping may also be implicit, e.g., in the case of chirped
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Raman dissipative solitons (DSs) that experience amplification
only when they overlap in time with the pumping DSs [26].

In this work, we report benchmark tests of our novel
numerical model for simulation of spectral and temporal
transformation of laser pulses propagating through single-mode
optical fibers with Kerr and Raman nonlinearities and chro-
matic dispersion. The model is suitable for single-pass Raman
converters and fiber lasers [14,15,27] and demonstrates high
computational efficiency in the case of narrow optical spectra
that occur in long fiber lasers generating high-energy pulses.
Since the model is based on the approximation of slowly vary-
ing amplitudes, the spectral width of the pump wave must be
much narrower than the Stokes frequency shift. In particular,
the model is unlikely to provide much gain in computational
efficiency in the case when the pump spectral width is compa-
rable to the Stokes shift [28], and furthermore, it is obviously
inapplicable in cases when the pump spectrum merges with
the Raman peak [29], thus forming a continuous spectrum. In
the following sections, we start with derivation of the under-
lying equations and then perform numerical tests of the new
model in order to gain insight into its accuracy and efficiency.
Finally, we summarize our findings and draw conclusions about
applicability of the new model.

2. MODEL

Since the split-step Fourier method (SSFM) is a common
choice for integration of GNLSE, it is convenient to re-
write Eq. (1) in the form ∂z A= D̂A+ N̂ A, where D̂ and
N̂ denote the dispersive and nonlinear terms of Eq. (1),
respectively. In the case of slowly varying amplitudes (nar-
row optical spectrum), correction term (i/ω0)∂t is much
smaller than unity and thus can be omitted, so that N̂ A=
iγ (1− f R)|A|2 A+ iγ f R A

∫
∞

0 h R(t ′)|A(t − t ′)|2dt ′. Let us
make a substitution A(z, t)= A0(z, t)+ A1(z, t)e−iωs t ,
where A0 and A1 are the slow amplitudes of the pump and
Stokes waves, and ωS/2π =−13 THz is the Stokes shift for
silica; then let us separately write down the terms that oscillate at
zero frequency and atωS :
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Slow amplitudes A0,1 vary only slightly on the time scale τ2,
where h R(t ′) is essentially non-zero, and so can be treated
as constants. However, this leads to a model with spec-
trally uniform gain [21]. Thus, we ought to consider small

variation of slow amplitudes over time scale τ2 by replacing
A0,1 by their Taylor series expansions inside the integrals:
A0,1(t − t ′)≈ A0,1(t)− t ′∂t A0,1(t). This leads us to

N̂ A0 = iγ {(|A0|
2
+ (2− f R + f R c 1)|A1|

2)A0

− f R c 2(A0∂t A∗1 + A∗1∂t A0)A1}, (3)

N̂ A1 = iγ {(|A1|
2
+ (2− f R + f R c ∗1)|A0|

2)A1

− f R c ∗2(A
∗

0∂t A1 + A1∂t A∗0)A0}, (4)

where c 1,2 are complex coefficients defined as

c 1 =

∫
∞

0
h R(t ′)e i |ωS |t

′

dt ′, c 2 =

∫
∞

0
h R(t ′)t ′e i |ωS |t

′

dt ′.

(5)
For response function (2), c 1 = 0.2282+ 1.4486i , and
c 2 = (−2.3712+ 49.479i) fs. It must be noted that in deriving
Eqs. (3) and (4), we omitted the term f R c 0∂t(|A0|

2
+ |A1|

2)

with c 0 =
∫
∞

0 h R(t ′)t ′dt ′ ≈ 8.1 fs, since it is much smaller than
|A0,1|

2 for pulses longer than 1 ps.
Let us also point out that since the time derivatives in

Eqs. (3) and (4) appear as a result of Taylor series expansion
of A0,1(t − t ′) at t ′ > 0, one should apply non-symmetric
finite-difference formulas in order to evaluate time derivatives
∂t A0,1(t) to the left of point t . Thus, in the first-order approxi-
mation, one can use ∂t A(t)≈ (A(t)− A(t − τ))/τ , where τ
stands for the temporal mesh step. In this work, we use second-
order approximation ∂t A(t)≈ (3A(t)− 4A(t − τ)+ A(t −
2τ))/2τ .

Therefore, in order to study pulse propagation along optical
fibers, one should integrate numerically the following set of
GNLSEs:

∂z A0,1 = D̂A0,1 + N̂ A0,1 (6)

for complex amplitudes of pump A0(z, t) and Stokes A1(z, t)
waves, where D̂ stands for linear terms of GNLSE (1), and N̂
is defined by Eqs. (3) and (4). It is relevant to note that once
dispersion coefficients βk;0 (k = 1, 2, 3, . . .) are known at the
pump wavelength, they can be easily re-calculated for the Stokes
wave: βk;1 = βk;0 + βk+1;0ωS + βk+2;0ω

2
S/2+ . . .. Numerical

integration of simultaneous Eq. (6) can be done using SSFM
or any other finite-difference methods applicable to “conven-
tional” GNLSE (1). However, compared to the conventional
approach where the pump and Stokes waves are simulated on
a single mesh, the new model (6) allows one to achieve much
higher efficiency due to substantial reduction of the mesh point
count. Now let us compare the numerical results obtained using
these two models and their efficiency.

3. NUMERICAL RESULTS AND DISCUSSION

As a test bed for the new model, we chose to simulate propa-
gation of Fourier-limited Gaussian pulses with FWHM of
100 ps through a 100-m-long section of optical fiber with
group velocity dispersion (GVD) β2;0 = 14.44 ps2/km and
β3;0 = 0.045 ps3/km at pump wavelength λ0 = 1090 nm and
nonlinearity γ = 4.7 (W× km)−1. The dispersion coefficients
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Fig. 1. Evolution of simulated optical spectra along optical fiber: (a) z= 0, (b) z= 33.3 m, (c) z= 100 m.

Fig. 2. (a) Maximal spectral energy density at Raman peak as a function of propagation distance z; (b) Stokes wave energy as a function of propaga-
tion distance z; (c) independently normalized spectra of Stokes wave at z= 100 m.

at Stokes wavelengthλ1 = 1144.9 nm areβ1;1 =−1.043 ps/m,
β2;1 = 10.71 ps2/km, and β3;1 = 0.045 ps3/km. The initial
peak power of the pumping pulses is 158 W, which corresponds
to the Raman threshold, i.e., the point where the pump and
Stokes wave powers are equal at the exit of the fiber.

For numerical integration of Eq. (1), we used a uniform mesh
with the number of points ranging from 215 up to 217, whereas
for integration of Eq. (6), a couple of meshes were used with the
number of points varying from 211 up to 213. The width of all
meshes was 800 ps. Since the numerical solutions are obtained
on temporal meshes with different numbers of points and a
fixed width of 800 ps, the corresponding frequency meshes
have different widths, as is clearly seen in Fig. 1 showing the
optical spectrum evolution along the fiber. The initial con-
ditions [Fig. 1(a)] are a superposition of a narrowband pump
pulse and one photon with random phase in each frequency
mesh point. This allows us to take into account spontaneously
emitted quantum noise that seeds Raman amplification [30].
The numerical solutions shown in Fig. 1 are averaged over 50
random realizations of quantum noise. As the pumping pulse
propagates along the optical fiber, its spectral peak (at δν = 0)
broadens due to self-phase modulation, while the Raman peak
appears and grows at δν ≈−13 THz according to numerical
solution of GNLSE (1) [see black curve in Figs. 1(b) and 1(c)].
Similar behavior can be seen for two-component numerical
solutions of the system (6) shown with red, blue, and green
curves corresponding to N = 211, 212, and 213 temporal mesh
points, respectively. However, there are several clearly visible
differences: the Stokes peak generated within the model (6)
is narrower and higher [especially at z= 33 m; see Fig. 1(b)]
than the one predicted by GNLSE (1). As well, emergence of

instability can be seen at z= 100 m in numerical solution of
(6) built with N = 211 temporal mesh points [see red curve in
Fig. 1(c) at δν ≈−14.4 THz]. This is a numerical artifact that
precludes using a very small number of mesh points.

In order to compare the results obtained within models (1)
and (6) in more detail, it is instructive to consider Fig. 2(a)
showing the height of the Stokes spectral peak as a function of
propagation distance z of the pumping pulse. After a certain
short initial transient period, the Stokes peak grows exponen-
tially [linearly in log scale in Fig. 2(a)]; however, the growth rate
predicted by Eq. (6) is slightly higher (by∼7 . . . 8%) than that
given by GNLSE (1). It should be equally remembered that
numerical results obtained with GNLSE (1) may also differ
from each other if the number of mesh points N is not suffi-
ciently large. Thus, the results obtained for N = 218 (not shown
in order to avoid overcomplicating Fig. 2) and N = 217 virtually
coincide differing from each other by less than 1%, which allows
us to treat the latter solution as “exact” for the purposes of our
study. Using it as a reference, we can estimate accuracy of the
numerical solution obtained using N = 216 mesh points at
about 7%, and for N = 215, at∼30%. After z≈ 50 m, Raman
conversion slows down because of pump depletion and a grow-
ing walk-off between pump and Stokes pulses due to GVD.
Finally, by z≈ 80 m, the Raman peak virtually ceases to grow,
as can be seen in Fig. 2(a) in all simulations except the case of
GNLSE (1) with insufficient mesh point number N = 215.

Similar conclusions are valid for the energy of the Stokes
wave evaluated as the integral of the energy density within a
20-THz-wide spectral range centered at ωS/2π =−13 THz
[see Fig. 2(b)]. Unlike the Raman peak height dynamics shown
in Fig. 2(a), Fig. 2(b) indicates slightly wider discrepancy in
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Fig. 3. Evolution of intensity ACF of Stokes wave along optical fiber: (a) z= 33.3 m, (b) z= 66.7 m, (c) z= 100 m.

the rate of exponential growth evaluated with a large number
of points N = 213 due to overestimated spectral width shown
earlier in Fig. 1(b). However, the discrepancy of the Stokes
energy growth rate is 10% or less in all studied cases N = 211,
212, and 213 as compared to that obtained using GNLSE (1)
with N = 218 mesh points.

Besides the Raman peak height and energy, another impor-
tant aspect of simulations is the optical spectrum of the Stokes
wave. Spectra obtained in different simulations after propa-
gation distance z= 100 m along optical fiber are shown in
Fig. 2(c) after normalization to unity. It can be seen that all
spectra have a similar shape except one obtained with the use of
Eq. (6) with N = 211 mesh points, which shows an instability
at the low-frequency boundary of the Stokes mesh. It is obvious
in Fig. 2(c) that N = 211 mesh points is insufficient since the
frequency mesh width in this case is narrower than the Stokes
wave spectrum that is to be reproduced. The spectrum obtained
by using Eq. (6) with N = 212 is still by 40% narrower, whereas
the spectrum simulated with N = 213 mesh points is by 9%
wider than the “quasi-exact” numerical solution of GNLSE (1)
obtained with N = 217 mesh points.

It is pertinent to point out that qualitatively similar dynam-
ics, including exponential initial growth of a Stokes wave with
further saturation, was observed in early experiments with
single-pass Raman conversion [31]. Although a detailed quan-
titative comparison with such experiments is challenging due to
differences in pump and fiber parameters, one can surmise that
certain features in spectral shape and dynamics reported in Ref.
[31] cannot be reproduced here due to the Lorentzian approxi-
mation of the Raman response function (2). In cases when such
spectral peculiarities are important, a more sophisticated model
of Raman gain should be considered [32]. However, nowadays
synchronously pumped Raman converters and lasers are used
in most cases instead of single-pass configurations, resulting in
much higher efficiency and lower noise. The Stokes wave feed-
back generates narrower optical spectra, therefore making more
accurate the single-vibrational-mode approximation (2) as well
as the approximation of slowly varying amplitudes, which both
underpin the proposed model. Thus, one may expect further
improvement of the model precision once intra-cavity Raman
conversion is used instead of the single-pass configuration
chosen here as a test bed for the new model.

Finally, let us inspect temporal intensity distributions of
a simulated Raman pulse. Since the Stokes wave appears as a
result of quantum noise amplification, the Stokes-shifted pulse

at the beginning of Raman conversion can be considered as a
weak stochastic replica of the pump pulse shortened due to the
nonlinear nature of the Raman process, which is corroborated
by numerical results obtained using both GNLSE (1) and the
proposed model (6). However, the stochastic nature of Raman
pulses and their complex noise-like structure complicate direct
comparison of results generated by different models and with
different meshes. In order to perform such a comparison, we
plot intensity auto-correlation functions (ACFs) averaged over
100 random realizations of quantum noise that seeds the Raman
process [see Fig. 3]. As can be seen in Fig. 3(a), at z= 33.3 m, the
Stokes wave has a double-scale ACF shape indicating the noise-
like structure of the Raman pulse. ACFs of the Stokes wave
obtained in numerical simulations within Eqs. (1) and (6) virtu-
ally coincide for all used meshes. As the pump and Stokes waves
propagate further along the fiber, the Raman pulse grows wider
and gradually improves its degree of coherence, as indicated by a
decreasing ACF central peak height. At z= 66.7 m, the results
obtained within GNLSE (1) and Eq. (6) demonstrate a visible
difference in the ACF pedestal width (up to 15%) and coherence
peak height (up to 0.07). As seen in Fig. 3(b), Eq. (6) predicts
faster growth of the pulse width and coherence similar to the
above-mentioned faster energy transfer shown in Figs. 2(a)
and 2(b). Finally, at z= 100 m, the difference in pulse width
becomes less than 5%, and ACF coherence peak difference is
0.05 [see Fig. 3(c)]. The only exception is the numerical solu-
tion obtained using Eq. (6) with N = 211 mesh points, which
demonstrates substantial distortion of ACF shape, which may
be attributed to instability shown earlier in Figs. 1(c) and 2(c).

4. CONCLUSION

In conclusion, we proposed and tested a novel numerical model
for nonlinear propagation of long laser pulses through optical
fibers that takes into account chromatic dispersion, Kerr non-
linearity, and spectrally non-uniform Raman gain. In contrast
to the conventional GNLSE, the proposed model generates a
two-component numerical solution with two distinct slowly
varying complex amplitudes for pump and Stokes waves instead
of single complex amplitude in GNLSE. This allows reduction
in the number of mesh points and results in a factor of 4. . . 8
improvement in calculation speed and memory consumption at
the expense of about 10% inaccuracy in the Stokes wave energy
growth rate and less than 15% inaccuracy in the pulse duration,
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as compared to the GNLSE solution. It should be empha-
sized that this level of inaccuracy is comparable to precision
of the widely used GNLSE with a Lorentzian approximation
of Raman response function (2), which was treated as “exact”
for the purposes of this study [33]. Further reduction of the
number of mesh points and a corresponding improvement
in calculation speed and memory usage were impossible in
the reported numerical tests due to the fact that the frequency
mesh size became narrower than the Raman frequency peak.
Nevertheless, further improvement may still be expected in the
case of narrower generated spectra, e.g., due to spectral filtering,
cavity feedback, or in the case of P2O5-doped fibers. The latter
have a relatively narrow phosphorus Raman peak and a larger
Stokes frequency shift. This may extend the model applicability
into broader pump spectra and may further improve the model
precision. Such cases will be the subject of further study.
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