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We propose and analyze a new mechanism for conversion of noise-like pulses into coherent ones with the help of a
Raman process. The conditions that ensure conversion efficiency exceeding 45% were identified. Parameter ranges
were established, within which the proposed mechanism can be implemented. We also define the condition of gen-
eration of stable Raman soliton molecules. The possibility of efficient conversion of noise-like pulses into coherent

ones opens up new broad application fields for high-energy double-scale pulses.
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1. INTRODUCTION

Double-scale pulses are a class apart of optical pulses featuring
a unique spectral-temporal structure of their electro-magnetic
field [1,2]. These localized wave objects are composed of numer-
ous subpicosecond pulses with randomly changing peak powers.
Such wave packets are able to deliver record-high energy [3]
directly from a master oscillator without any additional amplifi-
cation. Double-scale pulses are also amenable to comparatively
highly efficient nonlinear spectral conversion [4,5], their param-
eters span a great range of variability [6], and they can be fairly
easily generated in many mode-locked fiber lasers with relatively
long [7] and short [8,9] cavities. In spite of their incoherence
or only partial coherence, these pulses (also termed noise-like
pulses [1,10]) have found a number of applications [9,11,12].
However, these applications may be considerably broadened
if an efficient mechanism of conversion from these stochastic
pulses into “conventional” fully coherent laser pulses [13] is
found.

Such mechanisms may be provided by processes where
double-scale pulses play the role of efficient transfer agent for
electromagnetic energy with its final conversion into conven-
tional coherent single-scale pulses carrying high energy. One
such process is stimulated Raman scattering in optical fiber. It
was recently shown that a Raman laser with an artificial satu-
rable absorber (NOLM [14]) can be used for conversion of
incoherent radiation from an ASE source into picosecond pulses
withoutstochastic subpulses [15].

It should be pointed out that Raman lasers allow independ-
ence of the converted radiation structure from that of the
pumping pulses. Without mode-locking elements in the Raman
cavity, the converted pulses copy the pumping ones [16-18].
Consequently, when noisy double-scale pulses are used for
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pumping, the generated Raman output contains the same type
of noisy double-scale pulses.

The present work, for the first time to the best of our knowl-
edge, discusses mechanisms of conversion of incoherent
double-scale pulses into conventional coherent single-scale
optical pulses. In the following, we numerically studied a Raman
converter with spectral filtration and saturable absorption as
crucial effects leading to mode-locking. The paper also aims to
find conditions under which fluctuations of double-scale pulses
may be mitigated within converted pulses inside a fiber cavity.

2. CONCEPT

Since stimulated Raman scattering is insensitive to pump phase,
i.e., a new (Stokes) wave arises without being phase-locked to
the pump wave, the generated wave and pumping may thus have
different types of coherence and different pulse structure. To
date, several examples of such conversion have been reported:
CW amplified spontaneous emission used as the pump radi-
ation was converted into Raman dissipative solitons [19],
whereas coherent picosecond pumping pulses were converted
into double-scale pulses [20]. The present work studies the
possibility of an opposite transformation as compared with
[20], namely, the prospect of conversion from double-scale
(incoherent) pumping pulses into coherent Raman solitons.
It is pertinent to recall that the problem of coherence improve-
ment is a general one, and one of its well-known and often used
solutions works through pumping of an active medium with
radiation that generates output with better coherence. This
is the case of lasers and amplifiers pumped with multimode
radiation, as a result of which single-mode radiation may be
generated/amplified. It is also well known that an active medium
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pumped with multifrequency radiation may generate/amplify
single-frequency radiation.

This work reports the results of modelling of the possibilities
of efficient conversion of noisy double-scale pulses into coher-
ent ones in a synchronously pumped Raman fiber laser with
saturable absorption.

3. PROPOSED CONFIGURATION

Shown in Fig. 1 is a schematic diagram of the proposed configu-
ration for conversion from noisy double-scale pulses to coherent
output. Launched double-scale pulses induce formation of
Raman pulses propagating in the same direction.

In the proposed configuration, noisy double-scale pulses
are used for synchronous pumping of a ring cavity containing
a Raman fiber (for instance, P,Os-doped fiber) as well as a
saturable absorber and a spectral filter. There is one fundamen-
tal property that the saturable absorber must possess: it has to
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Fig. 1. Schematic diagram of the synchronously pumped Raman
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be relatively fast, i.e., its recovery time must be shorter than
the round-trip time of the Raman laser cavity. Such saturable
absorbers are not unusual because the required short recovery
time normally accompanies fast nonradiative relaxation in the
absorbing medium [21].

The length of the Raman convertor cavity was chosen equal to
20 m, which is close to the experimental setup of the work [17].
In comparison with this work, we have added a spectral filter and
a saturable absorber to achieve mode locking. The used spectral
filter has a flat-top sixth-order super Gaussian profile. The spec-
tral filter bandwidth can be adjusted in our simulations for opti-
mization purposes. Transmittance of the fast saturable absorber
is given by Eq. (1):

Lunsat
- (1
1 + P/Psat

where L s = unsaturated losses and Py, = saturation power
of the saturable absorber.

Double-scale pulses were modelled as a superposition of
uncoherent longitudinal modes of the laser cavity:

AW =VP @)Y Ajexp (—iwjr) (2)

J

where A denotes the complex amplitude of the double-scale
pulse, i and A ; are frequency and complex amplitude of the
jth longitudinal mode of the laser cavity, # stands for time, and
temporal envelope P(#) of the simulated wave-packets was
chosen in the following form:

convertor with a saturable absorber and a spectral filter. Py
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Fig.2. Upper row: temporal and spectral distribution; autocorrelation function of a seed double-scale pulse. Bottom row: temporal and spectral

distribution; autocorrelation function of the corresponding Raman pulse.
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where 7 stands for pulse duration and Py denotes peak power of
the pulse. For simplicity, we used constant amplitudes | 4 ;| = 1
and uniformly distributed in the range (0, 27r) random phases
arg A of spectral modes within the optical spectrum of double-
scale pulses, although more sophisticated models could consider
fluctuations of mode amplitudes that result in bell-shaped
spectra typical for double-scale pulses [2,3,22-24].

As pumping radiation in modelling, we used double-scale
pulses with 30 ps envelope duration and 330 fs duration of
subpulses and 12.6 nm spectral bandwidth [Figs. 2(a)-2(c)].
Similar pulses may be generated, for instance, in a figure-8
laser [25].

Adequate modelling of synchronized pumping requires new
initialization of double-scale pulses at each cavity round-trip.
This procedure leads to energy fluctuation of pumping pulses
due to intrinsic stochasticity of incoherent modes composing
the pulse. Averaging of double-scale pulses over a millisecond
scale, which is typical for common radiation power meters,
resultsin 1.6% relative fluctuation of pumping pulse energy.

In order to simulate nonlinear propagation of laser pulses
along optical fibers, while considering Raman scattering, the
generalized nonlinear Schrédinger equation is widely used [26]:
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Fig. 3.  Conversion efficiency of Raman converter against

bandwidth of a spectral filter.
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where A(z, ) stands for the complex field envelope; z and ¢
are the longitudinal coordinate and time in the retarded frame
of reference; wy stands for the carrier frequency; B, and y
are the dispersion and nonlinear coefficients; ¢ denotes the
light speed in vacuum; i? = —1. We used the following values
of nonlinear and dispersion coefficients in our simulations:
y =4.7 (Wkm)~! and B, = 1.4 x 1072 sec’/m. The kernel
R(z) of the integral operator includes both electronic (instan-
taneous) and nuclear contributions: R(z) = (1 — fz)8(¢) +
frPr(2). Delayed (Raman) response of silica 4 ¢(¢) in the first
approximation can be taken in the form of a damped oscillator
[20]. Due to a short length of the Raman oscillator, we neglected
the linear losses of the optical fiber. In order to speed up numeri-
cal simulations, we also used approximation of slowly varied
amplitudes for Eq. (4), as described in [27].

4. RESULTS

During the first stage, we perform a search in a sparse grid of
parameters. The first mode-locked regime was obtained at
the following parameters of the fiber laser cavity: cavity length
L =20 m, spectral filter bandwidth: 9 nm, saturable absorber
Pyt =30 W, Lynge = 0.1, coupler ratio o = 0.4. The average
energy of the pumping double-scale pulse was 1.2 n], while
the energy of the converted pulse was 0.37 nJ. Figure 2 depicts
a pump pulse at the beginning of the Raman convertor and a
Raman pulse at the output of the Raman convertor.

Phases of different uncoherent subpulses of pumping pulses
locking inside a Raman oscillator may be observed on tem-
poral and spectral distributions of converted Raman pulses.
Disappearance of the coherence spike in the autocorrelation
function of the Raman pulse shown in Fig. 2(f) indicates a
mode-locked state.

The first set of Raman convertor parameters supports a mode-
locking effect up to 1.5 nJ energy of pumping pulses. Raising the
pumping pulse energy above this threshold leads to destabiliza-
tion of the mode-locked state.

Our next step was to investigate the influence of different
elements of a Raman converter in order to improve its efficiency
and raise the supported energy of pumping pulses.

A. Spectral Filtering Effect

Spectral filter bandwidth introduces losses to the Raman pulses
during propagation through the filter. Therefore, the conversion
efficiency may be improved by applying a broadband spectral
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filter (Fig. 3). Broader spectral bandwidth also affects threshold
energy of pumping pulses supporting stable mode-locking
regimes. However, we observed appearance of a small coher-
ence peak in the autocorrelation function of the Raman pulse
after reaching the energy of 3.5 nJ in the pumping pulse with a
spectral filter wider than 10 nm (Fig. 4).

Insertion of a spectral filter into the Raman cavity may
significantly affect the properties of conversion from noisy
double-scale pulses into coherent ones and, therefore, pro-
duce considerable changes in the parameters of output pulses.
Specifically, the presence of a narrow spectral filter with a 1 nm
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bandwidth results in formation of Raman soliton molecules
composed of solitons with different intensities (Fig. 5). In order
to avoid this effect, which may be undesirable in most practical
cases, wider spectral filters should be used.

B. Saturable Absorption Effect

Unsaturated losses of the saturable absorber have a dramatic
impact on conversion efficiency of the Raman converter and
therefore should be minimized. Additionally, low values of
unsaturated losses also reduce the influence of the saturation
power. The saturation power that may be associated with non-
linear loses only slightly affects the efficiency and peak power of
the converted Raman pulses (Fig. 6).

C. Cavity Length Effect

Despite achieving a mode-locked state, we observe strong energy
fluctuations of the output Raman pulses per round-trip induced
by energy fluctuations of the input double-scale pulses (Fig. 7).
To mitigate this effect, we propose elongation of the Raman con-
vertor. Elongation increases interaction time between pumping
and Raman pulses and, therefore, increases the averaging effect
of stimulated Raman scattering.

To characterize energy fluctuations, we use normalized stand-

ard deviation (NSTD) of the energy calculated as follows:
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where E; = energy of the Raman pulse after the 7th roundtrip,
and £ = mean energy of the Raman pulse.

Extending the Raman convertor from 20 to 300 m led
to the NSTD of the output energy dropping from 0.068 to
0.053. It also increased the conversion efficiency due to a longer
interaction length.

5. CONCLUSION

We demonstrated, for the first time to the best of our knowledge,
the possibilities of the proposed mechanism of conversion from
incoherent noise-like pulses to coherent pulses through trans-
formation in Raman fiber laser. It was shown that the conversion
efficiency may exceed 45%. Also, the conversion properties were
studied depending on the spectral filtration of Raman pulses.
The conditions were established leading to formation of Raman
soliton molecules, which constitutes an undesirable effect in the
proposed concept. Efficient conversion of incoherent noise-like
pulses into coherent ones opens up greater opportunities of
practical application of noisy double-scale laser pulses.
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