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Abstract: Investigations of frequency combs in χ(3) optical microresonators are burgeoning
nowadays. Changeover to χ(2) resonators promises further advances and brings new challenges.
Here, the comb generation entails not only coupled first and second harmonics (FHs and SHs) and
two dispersion coefficients but also a substantial difference in the group velocities – the temporal
walk-off. We predict walk-off controlled highly stable comb generation, which is drastically
different from that known in the χ(3) case. This includes the general notion of antiperiodic
states; formation of localized coherent antiperiodic steady states (solitons), where the FH and SH
envelopes move with a common velocity without shape changes; characterization of a new vast
family of antiperiodic solitons; and the dependence of comb spectra on the pump power and the
group velocity difference.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Frequency combs [1,2] representing consecutive equidistant optical lines are of great value for
metrology, spectroscopy, and other applications [3–5]. During the last decade, microresonator
comb concept becomes increasingly important. Generation of high-quality frequency combs
in χ(3) microresonators, see [6–13] and references therein, is one of the most spectacular
achievements in nonlinear optics in the last decade. These combs correspond to continuous-wave
single-frequency pumped coherent structures circulating along the resonator rim with a constant
speed. Typically, these structures are dissipative solitons balancing not only dispersion broadening
and nonlinearity, but also external pumping and internal losses [10,13]. They can be substantially
different from solitons in the conservative systems. The outstanding comb properties stem from
high Q-factors and small volumes of the resonator modes.
Transfer of the comb concept to χ(2) resonators represents a big challenge and offers new

opportunities. Here, there are two light envelopes – the first and second harmonics (FH and SH)
– instead of one and, therefore, two dispersion coefficients. Also there is a substantial group
velocity difference leading to the temporal walk-off between FH and SH. Furthermore, phase
matching has to be ensured for the second-order nonlinear processes. Realization of χ(2) combs
promises lowering pump powers, entering new spectral ranges, and new operation regimes. The
presence of subcombs in the FH and SH spectral ranges, see Fig. 1, is a new positive feature.
First attempts were undertaken to explore soliton comb regimes in χ(2) resonators [14–16].

They concern with nonlinear processes running at the spectral point of equal FH and SH group
velocities. The found dissipative solitons are similar to the conservative solitons reviewed in
[17]. Walk-off controlled soliton solutions at nonzero pump and zero losses were found [18];
their stability is an open issue. Also, numerical results on analysis of comb regimes regardless
of solitons are known [19–22]. There are a few experimental demonstrations of combs in χ(2)
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Fig. 1. Schematic of χ(2) comb generation. Continuous-wave pump at the frequency ωp
generates coupled SH and FH combs in a microresonator owing to cascaded second-order
nonlinear processes. These combs correspond to SH and FH solitons moving along the
resonator rim with a common velocity v0. Red spots show localization of the resonator
modes; ϕ is the azimuth angle. Radial poling, i.e. spatial modulation of the sign of χ(2), and
rim shaping via control of the ratio of major (R) and minor (r) radii allow for quasi-phase
matching and mode management, respectively.

based resonators, e.g. in bow-tie cavities [20,23,24], in waveguide cavities [25], in whispering
gallery resonators [26,27], and in chip-integrated ring resonators [28]. Only in the latter, solitons
have been presented.
Still, the overall physical pattern of χ(2) combs remains obscure.
In this paper, we report on walk-off controlled comb solutions for χ(2) resonators incorporating

pump and losses and applicable to broad ranges of the pump frequency (wavelength). The found
solutions belong to a vast general class of antiperiodic states [18], including solitons, which are
topologically different from conventional periodic states. Also, they are totally different from
periodic solutions of [14–16] and from lossless antiperiodic solutions of [18]. In particular, our
comb generation is highly stable, it can start from random noise.

2. Theoretical background

2.1. Basic relations for optical microresonators

High-Q optical microresonators possess a discrete mode spectrum [29–31]. For a resonator with
the major radius R, modes can be viewed as quasi-plane waves propagating along the rim and
characterized by the azimuth angle ϕ [29–31], see Fig. 1. The modal functions are 2π-periodic.
Following previous comb studies, we restrict ourselves to a single transverse mode type. Each
mode is characterized by the azimuth number m or by the wavenumber km = m/R. For typical
χ(2) resonators, m ∼ 104, and km form a quasi-continuous set. The modal frequencies are
ωm = 2πc/λm = kmc/n(λm), where c is the vacuum speed of light, λm is the vacuum wavelength,
and n(λ) is the effective refractive index. The latter is close to the bulk index nb(λ), but includes
corrections for the geometric dispersion and vectorial coupling [32–35].

For quadratic nonlinearity, the phase-matching (PM) conditions ωk2 = ωk1 + ωk′1 , k2 = k1 + k′1
with discrete wavenumbers have to be fulfilled. At k1 = k′1 they give the SH generation conditions.
The latter can be fulfilled for some particular wavelength combinations via employing the
birefringence of the material (if there is any) [36]. However, equivalent quasi-PM conditions can
by ensured via radial poling, see also Fig. 1 and the Appendix section, practically for any spectral
range [37,38]. This admits the presence of small frequency differences, |ω2k1 − 2ωk1 | � c/nR.
Fine PM tuning is also available, e.g. via changing the resonator temperature on the mK
level, applying the electro-optic effect or changing the geometric size of the resonator using an
integrated piezo translator [31,39,40].
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2.2. Envelope equations for periodic and antiperiodic states

Let the (quasi-) PM conditions ωk02
= 2ωk01

, k02 = 2k01 be fulfilled and the pump frequency ωp

be very close to ωk02
(SH pumping). Here, the azimuth number m0

2 is even and m0
1 = m0

2/2 is an
integer, see also Fig. 2(a). The light electric field can be represented as

S exp[i(m0
2ϕ − ωpt)] + F exp[i(m0

2ϕ − ωpt)/2] + c.c., (1)

where F(ϕ, t) and S(ϕ, t) are complex FH and SH envelopes, both 2π-periodic in ϕ. These
envelopes obey a generic set of nonlinear equations [15,17,18]:[
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where v1,2 and v′1,2 are the group velocities and the dispersions (discrete equivalents of dω/dk and
d2ω/dk2) at k01,2, γ1,2 are the modal decay constants, ∆1,2 are the frequency detunings accounting
for a slightly imperfect PM and a small difference ωp − ωk02

, µ is the coupling constant which is
proportional to χ(2), and h is the pump strength. These parameters are real and experimentally
controlled; the ratios v1,2/2πR (& 10 GHz) are known as the FH and SH free spectral ranges.
The polarization types of FH and SH can be the same or different.

Fig. 2. Excitation of periodic (a) and antiperiodic (b) states for SH-pumping of even and
odd modes. The FH carrier frequency m0

2/2 is integer in a) and semi-integer in b). Side
harmonics arise automatically in b) above the threshold.

Now let us pump a SH mode with an odd azimuth number m0
2, see also Fig. 2(b). The PM

conditions link this mode to two FHmodes possessing even and odd numbers: ωm0
2
= ωm0

1
+ωm0

1+1
,

m0
2 = 2m0

1 + 1. The question is whether set (2) is still valid. The answer is yes, but the FH
envelope becomes antiperiodic, F(ϕ) = −F(ϕ + 2π) [18]. This follows from 2π-periodicity
of the true light field and the presence of the antiperiodic factor exp(im0

2ϕ/2) in Eq. (1). The
2π-periodic quantity |F |2 represents the FH field intensity, while the Fourier expansion of F(ϕ)
consists of semi-integer harmonics Fj1 with j1 = m1 − m0

1 − 1/2 = ±1/2,±3/2, . . .. The SH
amplitude S(ϕ) remains 2π-periodic; it includes harmonics Sj2 with j2 = m2 − m0

2 = 0,±1, . . ..
Attempts to employ 2π-periodic FH envelopes break the generic structure of Eqs. (2).

The antiperiodic solutions of Eqs. (2) are topologically different from the periodic ones. They
form a separate class of nonlinear states, which is specific for SH pumping and favorable for
comb generation. The differences between the periodic and antiperiodic states are crucial:
– In the periodic case, there are spatially uniform solutions F̄(ϕ), S̄(ϕ) = const. In the

antiperiodic case, such solutions are impossible.
– Harmonics F1/2 and F−1/2 not only influence S0, but force harmonics S±1 enriching the SH

spectrum. The latter cause new nonlinear processes, so that a broad FH spectrum appears above
a single oscillation threshold.
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Nonlinear set (2), including many variable parameters, is much more complicated than the
well-known Lugiato-Lefever equation [41,42] relevant to χ(3) comb modeling [10,13]. Here,
we restrict ourselves to zero detunings ∆1,2 = 0 (exactly fulfilled PM conditions). Also, we
set for simplicity γ1,2 = γ. Four dimensionless parameters control then the nonlinear behavior.
These are the normalized pump strength η = 2µh/γ2, the walk-off parameter α = v12/γR with
v12 = v1 − v2, and two dispersion parameters β1,2 = v′1,2/2γR2. The threshold value of η for
generation of the antiperiodic states is ηth = (1+ β21/16)

1/2 ' 1. Thus, parameter η is expressible
by the pump power ratio: η2 = P/Pth, with the oscillation threshold Pth. An estimation of a
typical threshold value and its comparison with the one of a χ(3) based parametric oscillation is
found in Appendix B.
Above the threshold, we are eager for antiperiodic steady states F(ϕ − v0t/R), S(ϕ − v0t/R)

moving with a common velocity v0 without shape changes. Such states provide FH and SH
frequency combs; the Fourier components Fj1 and Sj2 represent the FH and SH frequency comb
spectra with the common spacing δω = v0/R. Periodic steady states with such spacing are not
expected for ∆1,2 = 0: The background solution F̄, S̄ with |F̄ |2 ∝ η − ηth is stable here against
spatially uniform and quasi-uniform perturbations. The presence of the antiperiodic states and
their stability are not granted. Also, velocity v0 is unknown, it must be determined simultaneously
with the shape of the steady state. Since the parametrically generated satellites F±1/2 propagate
at the threshold with velocity v1, one can expect that v0 ' v1 near the threshold. The velocity
difference v01 = v0 − v1 is also an important parameter; the ratio v01/2πR characterizes fine
nonlinear tuning of the frequency comb spacing.
The physical pattern can be clarified taking into account representative dependences v1,2(λ)

and v′1,2(λ) for lithium niobate (LN) crystals, Fig. 3. For mm-sized resonators, the effects of
geometric dispersion are weak. The group velocity difference v12 = v1 − v2 ranges from huge
values (∼ 108 cm/s) to zero at λ02 ' 1.36 µm. Setting R = 1.5 mm, γ = 107 s−1 (Q ≈ 108), we
get for the pump wavelength λ2 ' 1 µm: α ≈ 2 × 102, β1 ≈ 3 × 10−3, and β2 ≈ −3 × 10−2. The
walk-off effects dominate here over the dispersion ones. When moving to the point of equal
group velocities λ02, the coefficient α tends to zero, while β1 and β2 remain opposite in sign with
|β1,2 | ≈ 10−2. Thus, the walk-off effects are controlled by the pump wavelength λ2; they are
relatively small in the close vicinity of λ02.

Fig. 3. Wavelength dependences of the group velocities v1,2 (a) and the dispersions v′1,2 (b)
for LN based resonator with R = 1.5 mm and R/r = 3. The solid and dotted lines refer to
the bulk refractive index nb and the effective index n incorporating the effects of geometric
dispersion. The vertical lines λ = λ02 = λ

0
1/2 ' 1.36 µm correspond to v1 = v2.

3. Numerical methods and quasi-adiabatic calculation procedure

We simulated numerically the Fourier transform of Eqs. (2) at ∆1,2 = 0 in the coordinate frame
moving with velocity v1 using the fourth-order Runge-Kutta method. The total number of Fourier
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harmonics taken into account ranged from 64 to 512. The harmonics Fj1 (t) and Sj2 (t) were found
within a large range of j1,2 and within a sufficiently broad range of parameters η, α: 1 ≤ η ≤ 100,
10−2 ≤ α ≤ 102. Accuracy of the calculations was controlled by changing the time step and the
total number of harmonics. With the harmonics calculated, one can ensure establishment of the
antiperiodic steady states and determine the velocity difference v01, the comb spectra |Fj1 |

2 and
|Sj2 |

2, and the spatiotemporal profiles F(ϕ, t), S(ϕ, t).
To quantify establishment of the steady state during the temporal evolution, we used the

dimensionless discrepancy parameter

ε(t, τ) =
∑

j
��Aj(t) − Aj(t − τ)

��2∑
j
(
|Aj(t)|2 + |Aj(t − τ)|2

) , (3)

where Aj is one of the harmonics Fj1 and Sj2 in the coordinate frame moving with an arbitrary
velocity v, t is the calculation time, and τ is a variable time shift. As soon as harmonics Aj(t)
are known in the frame moving with velocity v1, they can be recalculated in the frame moving
with velocity v through multiplication by exp[−ij1,2(v − v1)t/R]. Obviously, ε(t, τ) turns to zero
only when we deal with the steady state and, simultaneously, v = v0. The discrepancy parameter
calculated for modestly large evolution times, γt & 103, and minimized over v shows extremely
small values (ε = 10−14 − 10−15) caused by the numerical noise, see also below. For smaller
t, i.e., during the transient stage, it is larger by many orders of magnitude. Thus, we have a
numerical tool to control proximity of the steady states and to determine precisely velocity v0.

The following quasi-adiabatic procedure was used: The pump strength parameter η increased
and then decreased stepwise at certain α; the previous values of Fj1 and Sj2 were used as new
initial conditions. At the first step, a weak random noise served as initial condition. Achievement
of steady states was controlled with a digital accuracy. The result of temporal evolution was
always arrival at a unique coherent FH-SH pattern moving with a common velocity v0(α, η). The
sufficient restriction on the pump rise time tp is tp & 1 µs; it is very soft. The found features
indicate that the comb generation is self-starting.

Figure 4 shows representative examples of temporal evolution of the FH discrepancy parameter
ε(t, τ) for the time shift τ = 1/γ. The first and second rows correspond to the walk-off parameter
α = 1 and 0.1. The chosen 17 values ηs are 1.01, 1.1, 1.3, 2., 2.5, 3, 3.5, 4, 5, 7, 10, 12, 15, 18, 20, 25,

Fig. 4. Six representative evolution runs for the discrepancy parameter ε(t, τ) at γτ = 1; the
time step is 0.02γ−1. The first and second rows correspond to α = 1 and 0.1, respectively.
The evolutions relevant to a) and d) start at t0 from noise and end up at t1. 512 Fourier
harmonics are taken into account, and the model parameters used in the simulations are:
γ = 107 s−1, β1 = 0.02, and β2 = −0.01.
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and 30. Subfigures (a), (b), (c) and also (d), (e), (f) exhibit evolution of ε for η1, η2, and η17. The
most general feature of this evolution is always the same: It is an almost exponential decrease
of ε from initial values of the order of 1 to extremely low values 10−14 − 10−15 caused by the
numerical noise. Quantitative details of the evolution are also important. The longest evolution,
subfigures (a) and (d), starts from modal noise. It takes ∼ (5 − 7)γ−1 for the harmonics to grow
exponentially and reach the saturation. The corresponding evolution time can be identified with
the rise time of near-threshold optical parametric oscillation in microresonators. The further
evolution runs, which start from regular distributions of the FH and SH harmonics achieved
during the previous runs, occur substantially faster. Our choice of 17 steps of evolution to reach
the soliton states with η = 30 is largely arbitrary. In many cases, especially for α & 1, the same
final state can be achieved even in one step. Variation of the time shift τ shows no significant
effect on the data of Fig. 4. The temporal evolution of the SH discrepancy parameter behaves in
a similar manner.

4. Antiperiodic solitons and comb spectra

Turning to the results, we start with dependences of the comb spectra on α and η. For the
FH and SH amplitudes, it is convenient to use the normalized quantities f = (µ/γ)(2i)1/2F
and s = (2µ/γ)S. With this normalization, the spatially uniform steady states are given by
f̄ = ±(η − 1)1/2 and s̄ = 1. While all harmonics are nonzero in steady state with antiperiodic
boundary conditions, we restrict ourselves to the range |fj1 |2, |sj2 |

2 ≥ 10−4 when presenting the
comb spectra. The corresponding numbers of significant FH and SH comb lines we denote N1
and N2. While this definition is conditional, it is consistent with the litature comb presentations
and enables us to quantify the comb strength.

Fig. 5. Steady-state comb spectra |fj1 |
2 and |sj2 |

2 for two combinations of η and α and the
dispersion parameters β1 = 0.02 and β2 = −0.01. a),b): η = 100 and α = 50; c),d): η = 25
and α = 1/12. Only the comb lines above 10−4 are shown. The total number of Fourier
harmonics taken into account is 128 for a),b) and 512 for c),d). The frequency spacing
between the lines is δω = v0/R.

Figure 5 shows the normalized comb spectra for two combinations of η and α. For α = 50
and η = 100, representing large α and η, we have N1 = 33, N2 = 19, see Figs. 5(a) and (b), a
very small positive velocity ratio v01/v12 ≈ 10−3, and v01/2πR ≈ 0.1 MHz. In the SH spectrum
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there is one dominating line, |s0 |2 ' 1. For α = 1/12 and η = 25, representing small walk-off
parameters and modest pump strengths, we have well developed FH and SH spectra with N1 = 79
and N2 = 88, see Figs. 5(c) and (d), corresponding to v01/v12 ≈ 3.4 and v01/2πR ≈ 0.45 MHz.
Domination of |s0 |2 over the SH wings is less pronounced. The left-right asymmetry of the
spectra of Figs. 5(c) and (d) and their ripple structure are caused by an interplay between the
walk-off and dispersion effects.

Next, we consider the tuning parameter v01/2πR and the total number of comb lines N1 + N2
as functions of α−1, η within the range 0.1 ≤ α−1 ≤ 50, 1 ≤ η ≤ 30, see Fig. 6. A remarkable
feature is the presence of the vertical line of discontinuity α = αc ' 1/13, η>ηc ' 4.5. Both
mapped quantities grow with increasing η, but this growth is substantially weaker for α<αc.
Taken as functions of log(1/α), they grow first approximately linearly and then drop and stop
growing. The drops in a) and b) are relatively large and small. Furthermore, v01 tends to
zero for α → 0. In essence, the discontinuity marks a sharp transition from the walk-off to
dispersion controlled comb regimes for η>ηc. For η<ηc, this transition occurs continuously
with increasing log(1/α). When moving up along the left side of the discontinuity, the tuning
parameter approaches the MHz range for η ≈ 30, and the values of v01/v12 and N1 + N2 ' 2N1
approach 3.4 and 180, respectively. Further increase of η presents no difficulties, but can lead
to excessively large pump powers. Minor irregularities of map b) at 1/α = 3 − 4 should not be
mixed up with a new discontinuity; they are caused by the mentioned ripple structure of the comb
spectra and discreteness of N1,2. Remarkably, the discontinuity in Fig. 6(a) looks similar to the
discontinuity of SH generation [22] when changing the walk-off parameter.

Fig. 6. Maps of the tuning parameter v01/2πR (a) and of the total number of significant
comb lines N1 + N2 (b) on the α−1, η plane for β1 = 0.02 and β2 = −0.01. The vertical
line of discontinuity starts at 1/αc ' 13, ηc ' 4.5. Each map incorporates the data of
151 × 151 = 22801 calculation variants with 512 harmonics taken into account. White dots
1 and 2 correspond to the points of the plane (10, 20) and (20, 25) lying to the left and right
of the discontinuity and also to profiles 1 and 2 in Fig. 7.

Consider the spatial structure of antiperiodic steady states. Figure 7 shows the FH and SH
intensities and phases versus the azimuth angle ϕ for points 1 and 2 on the α−1, η-plane lying
slightly to the left and right of the discontinuity in Fig. 6. As evident from a), c), the intensity
changes are strong and well localized, we are dealing thus with FH-SH localized solutions
(solitons) propagating with the common velocity v0 without shape changes. Each intensity
distribution has a background; the FH and SH backgrounds are given by f̄ 2 = η − 1 and s̄ 2 = 1.
The intensity profiles 1 are much more oscillatory compared to profiles 2. The phase arg[f (ϕ)]
exhibits sharp π-steps in both cases ensuring the antiperiodic behavior. The behavior of arg[s(ϕ)]
is not always the same: the phase profiles 1 and 2 in Fig. 7(d) show 2π-drop and 0-change. While
the oscillatory behavior of FH and SH intensity may look unusual, it is has similarities among
the conservative temporal χ(2) solitons [17].
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Fig. 7. Antiperiodic solitons for points 1 and 2 lying to the left and right of the discontinuity
in Fig. 6. Sub-figures a) to d) show |f (ϕ)|2, arg[f (ϕ)], |s(ϕ)|2, and arg[s(ϕ)]. The background
values of |f |2 and |s|2 are η − 1, and 1, respectively. The π-steps of arg[f (ϕ)] in b) occur
at the points of minimum of |f (ϕ)|2 in a). Changes of arg[s(ϕ)] occur near the maxima of
|s(ϕ)|2, they are qualitatively different for 1 and 2. 512 FH and SH harmonics are taken into
account.

Decrease of α beyond ≈ 0.05 gives no effect, the profiles 2 in Fig. 7 correspond practically
to the limit α → 0. Increasing α compared 0.1 causes a weak bifurcation of soliton 1: the
2π-drop of arg(s) changes to 0. This bifurcation is not accompanied by discontinuities of v01 and
N1,2. Above we focused on the spectral range λ2<λ02 ' 1.36 µm, where v12(λ2)>0, see Fig. 3.
Generalization to the range λ2>λ02, where v12<0, presents no difficulties. It results in changing
sign of v01. Modest variations of β1,2 and of the ratio γ1/γ2 influence quantitative details, but
not the physical pattern.
Our numerical simulations evidence that the coherent antiperiodic soliton states represented

by Figs. 5–7 are very robust: Not too abrupt turning the pump power on, with the pump rise
time tp exceeding 10γ−1, ensures achievement of these comb states. This restriction, relevant
actually to tp & 1 µs, is very soft. For η � 1 and an abrupt (non-adiabatic) turning the pump on,
the above scenario of nonlinear evolution to unique steady states can be violated. In this case,
generation of single-soliton steady states from noise occurs probabilistically, and complicated
multi-soliton structures become visible and most probable. Note lastly that the terms spatial
and temporal properties of solitons, as described by functions of ϕ − v0t/R, are interrelated and
interchangeable.

5. Discussion

The results found for χ(2) resonators concern with new antiperiodic nonlinear comb states that
are topologically different from conventional periodic states. To excite the antiperiodic states,
it is sufficient to pump SH modes with odd azimuth numbers. Neither χ(3) nor FH pumped
χ(2) resonators possess such states. The antiperiodic states are the most favorable for χ(2) comb
generation.
The necessary condition for the generation of χ(2) frequency combs, formation of FH and

SH envelopes propagating with a common constant velocity without shape changes, is fulfilled
within broad ranges of experimental parameters, the wavelength and power. Moreover, the comb
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states are self-starting – the nonlinear evolution leads above the threshold to a unique comb state
under weak limitations on the pump rise time.
In contrast to the theoretical χ(2) comb studies [14–16], we are not attached to the spectral

point of equal FH and SH group velocities λ02. The temporal walk-off of the FH and SH envelopes,
caused by generic group velocity difference, controls the spectral features of the comb solutions
together with the pump power. In this narrow sense our study is similar to [20–22]. However, in
contrast to these studies, we are dealing with the antiperiodic steady states and zero frequency
detunings.
Broad comb spectra correspond to a vast family of spatially narrow antiperiodic dissipative

solitons. These solitons not only balance the dispersion broadening and nonlinear narrowing,
gain and losses, but also ensure a common velocity of FH and SH envelopes. To the best of our
knowledge, this multiparametric soliton family has no analogues in the literature.
The case of zero detunings considered, ∆1,2 = 0, corresponds to the lowest possible χ(2)

threshold pump powers Pth, so that we are typically far below the χ(3) threshold powers. For
nonzero detunings the influence of the χ(3) nonlinearity should sometimes be taken into account
[16].

6. Conclusions

We have predicted the presence of vast and highly robust family of antiperiodic soliton states
relevant to the SH excitation of χ(2) microresonators. This family corresponds to zero frequency
detunings for the first and second harmonics, i.e. to the lowest pump power threshold, and
gives broad frequency comb spectra in the FH and SH regions. Importantly, the found family
incorporates both the effects of temporal walk-off and frequency dispersion for the FH and
SH envelopes. It has a big potential for experimental realization and further extension by
incorporating the effects of FH and SH frequency detunings.

Appendix A: effect of radial poling

The nonlinear response of ferroelectric χ(2) materials, like LiNbO3 or LiTaO3, is determined by
the independent real d333 and d311 components of the third-rank quadratic susceptibility tensor
d̂ [43,44]. These components change sign under inversion of the direction of the spontaneous
polarization. In the case of perfect radial poling, shown schematically in Fig. 1, any of these
components (let it be d with the bulk value dbulk) alternates periodically in a stepwise manner
with the azimuth angle ϕ, as illustrated in Fig. 8(a). At the same time, the linear susceptibility
tensor and the linear optical properties stay unchanged. If N is the number of alternation periods,
the function d(ϕ) is 2π/N-periodic. It can be expanded in the Fourier series

d =
∑

j
dj exp(ijϕ) , (4)

with j = 0,±N,±2N, . . . In the case of ± symmetric radial domain structure, which is the most
suitable for quasi-phase matching, only the Fourier harmonics with odd ratios j/N = ±1,±3, . . .
are nonzero [37,45]. For these harmonics we have |dj | = 2dbulkN/π |j |. The reduction factor
|dj |/dbulk decreases with increasing |j |/N, but remains comparable with 1 for |j | = N, see also
Fig. 8(b).
Employment of the first Fourier harmonics of d(ϕ) for quasi-phase matching corresponds

to the SH phase-matching conditions 2ωm1 = ω2m1±N . The sign "plus" is relevant to the most
typical case of decreasing wavelength dependence of the refraction index n(λ) [44]. We see
that the SH azimuth number m2 = 2m1 ± N is even for even alternation number N and odd for
odd number N. In the first case, SH pumping leads to the excitation of periodic states. In the
case of odd combination m2 ∓ N, the SH quasi-phase matching condition cannot be fulfilled.
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Fig. 8. a) Schematic of the azimuth dependence of the susceptibility coefficient d(ϕ) for
a perfect symmetric radial domain pattern with N = 4. b) First three harmonics of the
corresponding Fourier spectrum with j = N, 3N, and 5N.

However, we can fulfil the quasi-phase matching condition ωm1 + ωm1+1 = ω2m1±N leading to the
excitation of the antiperiodic states. The values of N typical for the radial poling are of the order
of 102 [37,38]. Note that the so-called linear poling of LiNbO3 and LiTaO3 crystals [31,46]
produces many unnecessary competing Fourier harmonics of d(ϕ); it is not suitable for the comb
generation.

Thus, employment of perfect radial poling leads merely to the replacement of the SH azimuth
number m2 by m2 ∓ N and to the replacement of the bulk nonlinear coefficient dbulk by a slightly
reduced coefficient deff = 2dbulk/π. Generally speaking, one can employ the higher Fourier
harmonics for quasi-phase matching. At the same number N, they correspond to substantially
different wavelength ranges and also smaller nonlinear coupling coefficients. It is worthy of
mentioning that the quasi-phase matching can be combined with continuous fine frequency tuning,
such as the temperature tuning or geometric tuning [39,40]. This enables one to accomplish the
quasi-phase matching practically in any desirable spectral range.

Appendix B: oscillation thresholds for χ(2) and χ(3) based parametric oscillation

The threshold power of a χ(3) based optical parametric oscillator can be estimated via [47]

PKerr
th ≈ 1.54

π

4
n2

λn2
V

QC
QL

1
Q2

L
, (5)

with the refractive index n, the pump wavelength λ, the Kerr coefficient n2 ∝ χ(3), the effective
mode volumeV , the coupling and loaded quality factorsQC,L. Here, 1/QL = 1/QC+1/Q0 with the
intrinsic quality factorQ0. Putting n = 2, λ = 1550 nm, n2 = 10−19 m2/W,V = 10−5×10−5×10−2
m3, QC = 2× 107 and QL = 107, we get PKerr

th ≈ 650 mW. Now, let us compare this value with the
one for a χ(2) based optical parametric oscillator. Here, we have to take into account that pump
light and generated light are in different spectral regions. For the operation close to degeneracy,
we have a pump wave at wavelength λ2 and generated light waves around λ1 = 2λ2. Under this
assumption, we find for the oscillation threshold [45]

Pth ≈
πcε0
16

n6

λ2d2 V
QC2
QL2

1
Q2

L1QL2
, (6)

with the vacuum permittivity ε0, the second-order nonlinear coefficient d ∝ χ(2), the coupling
and loaded quality factors QC2,L2 for the pump wave as well as the loaded quality factors QL1 for
the generated waves. For simplicity, we have assumed that the refractive index of all interacting
waves is n. Taking all resonator related parameters (n,V ,QC2 = QC,QL1,2 = QL) from the
example above and setting d = 1 pm/V, the threshold is approximately 50 µW, i.e. four orders of
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magnitude lower than the one of the third-order based parametric process. That means up to
pump powers exceeding 104 times the oscillation threshold Pth, we can neglect the influence of
third order nonlinearity, i.e. up to η ≈ 100.
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