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By combining machine learning methods and the dispersive
Fourier transform we demonstrate, to the best of our
knowledge, for the first time the possibility to determine
the temporal duration of picosecond-scale laser pulses using
a nanosecond photodetector. A fiber figure of eight lasers
with two amplifiers in a resonator was used to generate
pulses with durations varying from 28 to 160 ps and spec-
tral widths varied in the range of 0.75–12 nm. The average
power of the pulses was in the range from 40 to 300 mW.
The trained artificial neural network makes it possible to
predict the pulse duration with the mean agreement of
95%. The proposed technique paves the way to creating
compact and low-cost feedback for complex laser
systems. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.003410

One of the modern trends in the development of mode-locked
fiber lasers is a focus on precise adjustment of temporal and
spectral properties of optical pulses [1–4] at the expense of
the increasing complexity of the system design. The resulting
large number of cavity parameters defining the laser perfor-
mance requires new approaches to controlling them. From this
view point, the machine learning-based techniques are attrac-
tive for control and management of complex laser systems.
Machine learning algorithms have already been used for opti-
mization of the laser performance [5], self-starting [6], and ad-
justment of system parameters to environmental changes [7].

A key part of any self-adjusting laser system is a feedback
loop which links the laser performance and variable laser cavity
parameters. In general, experimental realization of such feed-
back system requires a set of measurement devices and
(desirably) electronically controlled feedback to laser cavity
parameters. To optimize the performance of an electronically
controlled mode-locked fiber laser based on nonlinear polari-
zation evolution, four devices were used: an autocorrelator, op-
tical and radio-frequency (RF) analyzers, and an oscilloscope
[5,6]. In a fiber laser with a spatial light modulator, the auto-
correlator and optical analyzer formed a feedback system to

generate 40 fs pulses [1]. The laser performance also could
be optimized outside its cavity, for example, by a pulse
compressor that requires a frequency-resolved optical gating
measurement as a feedback response [8]. To sum up, the
common way to create a feedback for adaptive fiber lasers is
to use an optical spectrum analyzer, oscilloscope, and autocor-
relator (or other device measuring the duration of ultra-short
pulses) as measurement setups. These devices provide informa-
tion about basic pulse parameters: optical spectrum, time
duration, repetition rate, average power, and peak power. In
principle, the pulse has to be measured in both time and fre-
quency domains because of the nontrivial relation between the
optical spectrum and time envelope of the pulse [9].

A large set of tools leads to the complexity and correspond-
ing cost of the controlled devices that greatly limit the appli-
cation of the emerging feedback-based approaches to laboratory
experiments. A reduction in the number of measurement tools
and devices required for the realization of a feedback loop is a
critical challenge in the development of “smart” laser systems.
In a broader perspective, the first attempt to reduce the number
of measurement setups was made in Ref. [10], where neural
network predicts pulse parameters of an x-ray-free elec-
tron laser.

The novelty of this Letter is an experimental demonstration
of a feedback system that requires a nanosecond detector to
measure all listed basic parameters of a picosecond pulse.
We implement this novel technique using the following steps
using acquisition of an oscilloscope trace. First, the registration
of a time-domain comb of pulses indicates the mode-locking
regime. Secondly, the Fourier transform of an oscilloscope trace
provides information about the RF spectrum of the mode-
locked regime and, consequently, about a quality of mode
locking. Finally, dispersive Fourier transform (DFT) analysis
available from the oscilloscope trace of dispersively stretched
pulses, allows one to measure optical spectrum of the pulses
[11]. We would like to stress that an oscilloscope trace of short
optical pulses does not give directly any information about their
duration. The sensitivity of the photodetector is limited by its
relaxation time, which makes it impossible to measure the
duration of optical pulses less than hundreds of picoseconds.
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The goal of this Letter is to demonstrate a feasibility of mea-
surement of the temporal characteristics of the output pulses of
a figure of eight (F-8) fiber laser employing a DFT trace of the
pulse comb and machine learning technique. To determine the
temporal width of the pulses, we used machine learning tech-
niques focusing on an artificial neural network (ANN). We
demonstrate the general approach using as an example the
F-8 fiber lasers with two amplifiers, where a large number
of pulse regimes with different spectral and temporal character-
istics can be observed. We believe that our findings pave the
way to implement a compact and relatively low-cost feedback
loop for laser systems.

Figure 1(a) illustrates the F-8 mode-locked fiber laser under
study. The laser cavity consists of two fiber loops, unidirectional
(main) and bidirectional (nonlinear amplifying loop mirror)
ones, connected to each other by a 40/60 coupler. The main
loop includes 70% output coupler and a high-power Faraday
isolator that provides unidirectional propagation. Both loops
compose 2.5 m long amplifying sections of double-clad Yb-
doped fibers with the absorption of 3.9 dB/m at 978 nm.
The active fibers are pumped through fiber beam combiners
by independently controlled multimode laser diodes with an
optical power of up to 4.5 W at a wavelength of 978 nm.
The fibers inside the cavity, both passive and active, are polari-
zation-maintaining.

To measure the basic parameters of the mode-locked pulse
such as time duration, the optical spectrum, and the RF

spectrum, the following tools were used: the A.P.E.
pulseCheck autocorrelator with a scanning range from
120 fs up to 160 ps, Tektronix RSA 3308B RF spectrum ana-
lyzer with 2 Hz resolution for inter-mode beat signal measur-
ing, the Yokogawa AQ 6375 optical spectrum analyzer (OSA)
with resolution 0.1 nm, and the Tektronix DPO71604C
oscilloscope connected with a photodetector with a bandwidth
of 1 GHz.

A full width at half-maximum (FWHM) of the autocorre-
lation function (ACF) was used as a measure of pulse duration.
The ACF duration of generated pulses varied from 28 to
160 ps. To distinguish single-scale (coherent) and double-scale
(noise-like) pulses, we also measure a contrast of the ACF co-
herence spike [Fig. 1(b)]. The contrast of the coherence spike
was calculated as the difference between a height of coherence
spike and a height of the ACF envelope of a normalized ACF
trace. To derive the height of the ACF envelope, we applied to
the ACF trace the low-pass three-order Butterworth filter with
0.01 (π rad/sample) cutoff frequency. For example, the contrast
of the ACF coherence spike of a noise-like pulse shown in
Fig. 1(b) (green line) is 0.32. The contrast of the coherence
spike varied from 0.0036 to 0.5. We assume that noise-like
pulses have coherence spike contrast higher than 0.02.
Optical spectrum of mode-locked pulses generated by the fiber
laser includes two parts, corresponding to a signal pulse and
noisy Raman pulse [Fig. 1(c)]. Both pulses were characterized
by the average power and spectrum width. For the signal part,

Fig. 1. (a) Experimental setup. (b) ACF examples of coherent (blue line) and noise-like (green line) output pulses. (c) Example of the optical
spectrum of a pulse with a significant Raman part. (d) Example of an RF spectrum of a pulse comb near the fundamental mode of a laser cavity.
(e) Oscilloscope trace of a pulse comb detected after propagation through a long spool of a fiber. (f ) Fourier transformation of an oscilloscope trace
representing the RF spectrum of the DFT pulse comb. (g) DFT of a pulse comb presenting the optical spectrum of a pulse per roundtrip.
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these values ranged between 40 and 300 mW and 0.75 and
12 nm, respectively. The average power of the Raman ranged
between 0 and 35% of total power. The signal-to-noise ratio of
RF inter-mode beats (RF contrast in RF maps) was measured as
a contrast between the background level and the spike at fun-
damental frequency [Fig. 1(d)]. The RF contrast varied
between 0 and 73 dB.

In this Letter, we aim to replace these three measurement
tools by a single oscilloscope that measures the DFT trace
of optical pulses. To measure the DFT trace of optical pulses,
we used a 14.93 km long fiber span with dispersion
β2 � 15.1e-27 s2∕m. Stretched pulses were measured by the
oscilloscope with the sampling rate of 3 GS/s [Fig. 1(e)].
Some pulse parameters such as RF and optical spectrum can
be measured directly from the DFT trace. The Fourier trans-
formation of the DFT trace gives the RF spectrum of a pulse
comb [Fig. 1(f )]. Using the obtained RF spectrum, we calcu-
lated the number, average power, and standard deviation of the
RF peaks. Rescaling the DFT trace provides the optical
spectrum of pulses per roundtrip [Fig. 1(g)] and, therefore,
gives information similar to the OSA.

The most challenging part was to determine the temporal
duration of a pulse. In fact, there is no direct relation between
its optical or RF spectrum and time duration. However, a laser
system with specific chromatic dispersion, nonlinear coeffi-
cient, and Stokes shift generates a specific set of pulsed regimes
and, therefore, there is no need to make a universal measure-
ment tool to determine pulse parameters. In this Letter, we
demonstrate that it is possible to train an ANN to determine
with acceptable accuracy a temporal duration of the pulses by
following the features extracted from the DFT trace: (1) optical
spectral width of signal, (2) optical spectral width of Raman
pulse, (3) optical power of signal, (4) optical power of a
Raman pulse, (5) total optical power, (6) number of RF
spectrum peaks, (7) average power of RF spectrum peaks,
and (8) standard deviation (std) of the RF peak power.

It is worth mentioning that direct measuring of an optical
spectrum of a pulse using a DFT setup requires careful adjusting
of the input power to reduce the influence of nonlinear effects
such as self-phase modulation and Raman scattering. We would
have to implement a variable attenuator to control the input
power and measure the optical spectrum width of the pulses
with average powers from 40 to 300 mW. Instead of using
an attenuator, we apply an ANN to predict a width of an optical
spectrum at the laser output, assuming nonlinear dependency
between the spectra width at the DFT line input and output.

At the first stage, we estimate and ACF width for the whole
variety of generated optical pulses, including partially coherent

double-scale pulses. An ANNmodel from TensorFlow software
library [12] was employed to determine the FWHM of the
ACF trace. The ANN is composed of three hidden layers with
32, 32, and 16 neurons. For the training of ANN, a dataset
containing 13600 examples was used. To obtain data, we con-
tinuously changed the powers of both pumping diodes in the
range from 4.5 to 0.5 W in the following order. At a fixed
power of the LD1, we gradually reduced the power of the
LD2 from 4.5 to 0.5 W with a step of 0.03 W and measured
the parameters of the output radiation at each power step. Than
the power of LD1 was reduced by 0.03 W, and the procedure
was repeated until LD1 power became equal to 0.5 W. Eight
parameters extracted from the DFT trace were used as features
for an estimate: signal and Raman powers, spectral width of
signal and Raman pulses, number and average power of the
RF spectrum peaks, standard deviation, and normalized stan-
dard deviation of the RF peak power. Note that we were keep-
ing only the variables showing a high correlation with the target
characteristics. Instead of normalization of the features, we used
a batch normalization layer before each nonlinear layer of the
network. We also removed outliers in the outputs, correspond-
ing to continuous-wave generation, unstable generation of fully
stochastic radiation, and broken measurements. For this pur-
pose, we filtered out examples with RF contrast less than
50 dB. This filtering process removed 30% of the initial data.
The distribution of the ACF durations after filtration is shown
in Fig. 2(a). The dataset was then divided randomly into train-
ing (80%) and testing (20%) sets. Part of the training set was
used for model validation. The testing set was kept isolated
from the rest during the training and optimization of the
model. For ANN training, we employed the Adam optimiza-
tion algorithm and mean squared error loss function commonly
used for regression problems. To avoid overfitting, regulariza-
tion and early stopping techniques were applied. After training
the model, it was applied to the test set to predict durations of
the ACF traces.

We found out that the model is able to predict the ACF
duration with a mean absolute error near 3 ps or 4.8% mean
absolute percentage error. Figure 2(b) shows the measured val-
ues compared to the predicted ones. Note that 69% and 89%
of the testing samples were predicted with more than 5% and
10% relative error correspondingly. Only 3% of the testing data
showed more than a 20% relative error.

The obtained results were also compared with the predic-
tions of basic linear regression and an “Extreme Gradient
Boosting” (XGBoost) machine learning technique [13], based
on gradient boosting of regression trees [14]. The algorithm
used the following parameters: the boosted tree number

Fig. 2. (a) Distribution of the ACF durations. (b)–(d) Measured width of ACF traces compared to the predicted ones for the test set using the
(b) neural network, (c) XGBRegressor, and (c) linear regression model.
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(150), the maximum tree depth (7), and the learning rate
(0.08). The linear model achieves only a 15% mean absolute
percentage error, which confirms the nonlinearity of the prob-
lem. The quality of the prediction drops if the duration of the
ACF trace exceeds 100 ps [Fig. 2(d)]. The XGBoost regression
demonstrated ∼5% average error, which is very close to the
prediction results obtained with the neural network
[Fig. 2(c)]. At the same time, XGBoost takes less time to be
trained relative to an ANN and does not require rigorous
parameter settings (number of hidden layers and neurons on
each layer, learning rate, etc.). In our case, the difference be-
tween the XGBoost and ANN is not significant, and both
methods performed well in solving the regression problem.

At the next stage, we tried to determine the other essential
characteristics of the realized pulses such as the optical spectral
width (Δλ) and RF beating spectra contrast before propagation
in the fiber pool of the DFT measurement setup. It is worth
noting that the same ANN architecture and parameters of
XGBoost as those for ACF trace duration were used for predic-
tion. The mean percentage and absolute errors of the different
prediction examples obtained from each of the three models are
summarized in Table 1. Therefore, the building models are able
to make accurate predictions for the basic characteristics of the
single-pulse generation regime of the F-8 laser.

Finally, the trained neural network was applied to operating
the F-8 fiber laser. We the measured ACF of a pulsed regime and
its DFT trace independently, and calculated the prediction ac-
curacy of a pulse duration. The time series of the measured and
predicted width of the ACFs, corresponding to the two mode-
locked regimes with ∼84 and∼108 ps output pulses, are shown
in Fig. 3. Time fluctuations of the predicted width exceed the
fluctuations of the measured width due to the difference in in-
tegration time of the autocorrelator and oscilloscope, and can be
attributed to fluctuations of the pulse train at the laser output.

The average error was maintained below 5% level during the
whole measurement time (Fig. 3, inset). We tested our model
on different pulsed regimes and made sure that predictions had
the same degree of accuracy. Thus, the DFT analysis, in combi-
nation with machine learning algorithms, can be used for the
control of the F-8 fiber laser operation, for example, for calcu-
lation of the objective functions of the pulsed regimes [15].

In conclusion, we demonstrated for the first time, to the best
of our knowledge, a novel method for determination of a tem-
poral duration of the mode-locked pulses using a DFT trace of
a pulse comb and the machine learning technique. This
method can be further improved, e.g., by more advanced filter-
ing of the noisy and unstable signal generation regimes. Of
course, different types of fiber lasers will generate pulses with
different properties and distributions of key parameters. Their
investigation will require new research efforts and adjusting of
machine learning algorithms. However, the obtained results
clearly show the feasibility of the accurate prediction of the ba-
sic pulse characteristics of the F-8 fiber laser, i.e., temporal
width, optical spectrum, and RF spectrum using data extracted
from the oscilloscope measurements. In other words, a single
device could be used for resolving all key laser pulse parameters.
Such a compact and robust measuring device can be a key com-
ponent for the realization of a feedback loop in systems that
require self-starting and self-optimization.

Funding. Russian Science Foundation (RSF) (17-
72-30006).

REFERENCES

1. R. Iegorov, T. Teamir, G. Makey, and F. Ilday, Optica 3, 1312 (2016).
2. J. Peng and S. Boscolo, Sci. Rep. 6, 25995 (2016).
3. B. Nyushkov, S. Kobtsev, A. Komarov, K. Komarov, and A. Dmitriev,

J. Opt. Soc. Am. B 35, 2582 (2018).
4. S. Kobtsev, A. Ivanenko, A. Kokhanovskiy, and S. Smirnov, Laser

Phys. Lett. 15, 045102 (2018).
5. R. Woodward and E. Kelleher, Sci. Rep. 6, 37616 (2016).
6. U. Andral, J. Buguet, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P.

Grelu, J. Opt. Soc. Am. B 33, 825 (2016).
7. T. Baumeister, S. L. Brunton, and J. N. Kutz, J. Opt. Soc. Am. B 35,

617 (2018).
8. C. A. Farfan, J. Epstein, and D. B. Turner, Opt. Lett. 43, 5166 (2018).
9. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of

Ultrashort Laser Pulses (Springer, 2012).
10. A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. Barillot, M. Ilchen, A.

Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C.
Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero,
B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H.
Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S.
Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke,
C. O’Grady, J.-E. Rubensson, E. R. Simpson, R. J. Squibb, C.
Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N.
Coffee, and J. P. Marangos, Nat. Commun. 8, 15461 (2017).

11. K. Goda and B. Jalali, Nat. Photonics 7, 102 (2013).
12. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P.
Warden, M. Wicke, Y. Yu, and X. Zheng, in Operating Systems
Design and Implementation (2016), Vol. 16, pp. 265–283.

13. T. Chen and C. Guestrin, in 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (ACM,
2016), pp. 785–794.

14. J. H. Friedman, Annals of Statistics (2001), pp. 1189–1232.
15. A. Kokhanovskiy, A. Ivanenko, S. Kobtsev, S. Smirnov, and S.

Turitsyn, Sci. Rep. 9, 2916 (2019).

Table 1. Mean Error of the Different Prediction Examples

Model ACF Width RF Contrast Signal Δλ
ANN 4.8% (3.1 ps) 3.1% (1.9 dB) 5.8% (0.13 nm)
XGBoost 5% (3.2 ps) 3% (1.8 dB) 4.8% (0.11 nm)
Linear 15% (10.2 ps) 4% (2.3 dB) 14% (0.29 nm)
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Fig. 3. Comparison of the measured and predicted ACF durations
of the operating laser. Inset: accuracy of prediction.
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