Переводной экзамен по дисциплине Высшая математика (направления подготовки 38.03.01 Менеджмент и 39.03.01 Социология) проводится в письменной форме и предполагает проверку владения теоретическим материалом (см. экзаменационные вопросы 1-го и 2-го семестров), знание алгоритмов решения типовых задач и умение применять эти алгоритмы.

Во время экзамена разрешается пользоваться бумажной литературой (учебники, конспекты). Пользование любыми электронными средствами доступа к текстовой информации запрещается. Формулировки экзаменационных задач будут аналогичны формулировкам задач из контрольных заданий (см. контрольные работы №№ 1, 2, 3) и из типовых заданий 1-го и 2-го семестров.

На экзамене будет предложено 7 задач. Требуется решить любые 5 из них. За правильное решение каждой задачи начисляется 10 баллов; максимальное количество баллов, полученное на экзамене – 50 баллов. Продолжительность экзамена 1 ч. 30 мин

Экзаменационные вопросы І семестра.

Введение в анализ.

- 1. Множества. Операции над множествами.
- 2. Формула бинома Ньютона. Доказательство неравенства Бернулли.
- 3. Лействительные числа и их основные свойства.
- 4. Точные верхняя и нижняя грани числового множества. Теорема о существовании точной верхней и точной нижней граней для ограниченного множества.
- 5. Понятие числовой функции. Композиция функций. Обратная функция. Элементарные функции и их графики.

Предел последовательности.

- 6. Числовые последовательности. Сходящиеся и расходящиеся числовые последовательности.
- 7. Теорема об ограниченности сходящейся последовательности.
- 8. Теорема о зажимающих последовательностях.
- 9. Теорема о предельном переходе в неравенстве.
- 10. Бесконечно малые и бесконечно большие последовательности. Леммы о бесконечно малых последовательностях.
- 11. Арифметика пределов последовательностей.
- 12. Подпоследовательности. Частичные пределы последовательности. Верхний и нижний пределы последовательности.
- 13. Теорема Больцано-Вейерштрасса о выборе сходящейся подпоследовательности из ограниченной последовательности.
- 14. Теорема о сходимости монотонной ограниченной последовательности. Определение числа e.
- 15. Фундаментальные последовательности. Критерий Коши сходимости последовательности.

Предел функции. Непрерывность.

- 16. Два определения предела функции в точке. Теорема об эквивалентности определений пределов по Коши и по Гейне.
- 17. Арифметика пределов функций.
- 18. Односторонние пределы. Пределы функций при $x \rightarrow \infty$, $x \rightarrow +\infty$, $x \rightarrow -\infty$.
- 19. 1-й замечательный предел $\lim \frac{\sin x}{x}$ при $x \rightarrow 0$. Примеры.
- 20. 2-й замечательный предел. Примеры.
- 21. Непрерывность функции. Классификация точек разрыва.
- 22. Простейшие свойства непрерывных функций. Непрерывность многочленов, дробнорациональных функций, тригонометрических функций.
- 23. Теорема о промежуточном значении непрерывной функции.
- 24. Теоремы об ограниченности непрерывной на отрезке функции, о достижении непрерывной на отрезке функцией наименьшего и наибольшего значений (1-я и 2-я теоремы Вейерштрасса).

Дифференциальное исчисление функций одной переменной.

- 25. Определение производной функции. Геометрический и физический смысл производной.
- 26. Таблица производных основных элементарных функций. Вывод формул для производных функций $y=x^n$, $n \in \mathbb{N}$, $y = \ln x$, $y = e^x$, $y = \sin x$, $y = \cos x$.
- 27. Арифметика производных: производные суммы, произведения, частного. Вычисление производных функций $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$.
- 28. Производная сложной функции (цепное правило). Доказательство формулы для дифференцирования сложной функции. Примеры.

- 29. Теорема о производной обратной функции. Вычисление производных обратных тригонометрических функций.
- 30. Определение дифференциала функции и его основные свойства.
- 31. Связь между дифференцируемостью и существованием производной.
- 32. Непрерывность дифференцируемой функции. Пример функции, непрерывной в точке, но не дифференцируемой в ней.
- 33. Производные и дифференциалы высших порядков.
- 34. Теоремы Ролля и Лагранжа.
- 35. Теорема Коши. Правило Лопиталя. Примеры вычислений пределов с помощью правила Лопиталя.
- 36. Теорема о достаточном условии строгой монотонности дифференцируемой функции.
- 37. Определение экстремума функции. Наименьшее и наибольшее значения функции на отрезке.
- 38. Необходимые условия существования экстремума. Теорема Ферма.
- 39. 1-е достаточное условие существования экстремума.
- 40. 2-е достаточное условие существования экстремума.
- 41. Выпуклость функции вверх и вниз. Достаточное условие выпуклости.
- 42. Точки перегиба. Теорема о необходимом условии существования точки перегиба. Достаточное условие точки перегиба.
- 43. Асимптоты функции. Способы нахождения асимптот функции. Примеры.
- 44. Общая схема исследования функции и построения её графика. Примеры.
- 45. Формула Тейлора. Разложение по степеням x функций $y=e^x$, $y=\sin x$, $y=\cos x$, $y=(1+x)^{\alpha}$, $y=\ln(1+x)$. Примеры вычислений пределов с помощью формулы Тейлора.

Неопределённый интеграл.

- 46. Первообразная. Неопределённый интеграл и его свойства.
- 47. Таблица основных неопределённых интегралов.
- 48. Формула замены переменной в неопределённом интеграле. Примеры.
- 49. Формула интегрирования по частям в неопределённом интеграле. Примеры использования формулы интегрирования по частям.
- 50. Основные методы интегрирования тригонометрических функций. Примеры.
- 51. Интегрирование дробно-рациональных функций с помощью разложения на простые дроби. Примеры.
- 52. Интегрирование функций, содержащих квадратный трёхчлен $ax^2 + bx + c$. Примеры.

Экзаменационные вопросы ІІ семестра.

Определённый интеграл.

- 1. Площадь криволинейной трапеции для функции y = f(x) на отрезке [a,b]. Свойство функции площади S(x), $a \le x \le b$, быть первообразной для непрерывной функции y = f(x).
- 2. Определённый интеграл как предел интегральных сумм (интеграл Римана). Простейшие свойства интеграла Римана.
- 3. Интеграл Римана с переменным верхним пределом и его свойства. Формула Ньютона— Лейбница для интеграла от непрерывной функции.
- 4. Теорема о среднем для определённого интеграла.
- 5. Формула замены переменной в определённом интеграле. Примеры.
- 6. Интегрирование по частям в определённом интеграле. Примеры.
- 7. Понятие несобственного интеграла 1-го и 2-го рода. Примеры вычисления несобственных интегралов.
- 8. Задачи на доказательство сходимости и расходимости несобственных интегралов.
- 9. Вычисление площадей плоских фигур. Примеры.
- 10. Вычисление длины дуги кривой. Примеры.
- 11. Объём простых тел с известным поперечным сечением (формула Кавальери). Объёмы тел вращения. Примеры.

Алгебра.

- 12. Определение линейного (векторного) пространства. Примеры векторных пространств.
- 13. Метод Гаусса для решения систем линейных уравнений. Исследование систем ступенчатого вида (совместность, определённость и неопределённость).
- 14. Линейная зависимость и независимость системы векторов. Леммы о линейной зависимости и независимости.
- 15. База системы векторов, ранг системы векторов. Задача нахождения всех баз системы векторов.
- 16. Базис линейного пространства. Размерность линейного пространства. Линейная оболочка системы векторов. Задача нахождения базиса линейной оболочки системы векторов.
- 17. Подпространство векторного пространства. Сумма и пересечение подпространств. Теорема о размерности суммы подпространств Прямая сумма подпространств.
- 18. Скалярное произведение в вещественном векторном пространстве. Неравенство Коши—Буняковского. Неравенство треугольника.
- 19. Скалярное произведение. Угол между векторами. Ортогональные и ортонормированные системы вкторов. Линейная независимость ортогональной системы векторов.
- 20. Процесс ортогонализации системы вкторов.

- 21. Однородные системы линейных уравнений. Размерность подпространства решений (обоснование). Фундаментальная система решений. Общее решение.
- 22. Связь общих решений однородной и неоднородной систем линейных уравнений.
- 23. Определитель n-го порядка. Простейшие свойства определителей. Разложение определителя по строке или столбцу.
- 24. Матрицы. Сложение и умножение матриц.
- 25. Формула Крамера для вычисления обратной матрицы.
- 26. Нахождение обратной матрицы с помощью элементарных преобразований.
- 27. Формула Крамера для решения системы линейных алгебраических уравнений.

Дифференциальное исчисление функций нескольких переменных.

- 28. Предел функции нескольких переменных. Арифметика пределов. Примеры вычисления двойных пределов.
- 29. Непрерывность функции нескольких переменных. Первая и вторая теоремы Вейерштрасса.
- 30. Частные производные функции нескольких переменных. Дифференцируемость функции нескольких переменных. Непрерывность дифференцируемой функции.
- 31. Дифференцируемость функции, обладающей непрерывными частными производными.
- 32. Производные от сложных функций нескольких переменных.
- 33. Дифференциал функции нескольких переменных. Инвариантность формы первого дифференциала.
- 34. Касательная плоскость для графика дифференцируемой функции двух переменных.
- 35. Производные и дифференциалы высших порядков для функций нескольких переменных. Теорема о равенстве смешанных производных.
- 36. Определение производной по направлению. Формула для вычисления производной по направлению.
- 37. Градиент функции. Основное свойство градиента.
- 38. Формула Тейлора для функции нескольких переменных.
- 39. Локальный экстремум функции нескольких переменных. Необходимые условия экстремума. Теорема Ферма.
- 40. Достаточные условия экстремума функции двух переменных.

1. Типовые задания І семестра

Замечание: Задания 1, 2, 3 носят вспомогательный характер и являются полезными для выполнения заданий 19 и 20.

Задание 1. Выделить полный квадрат для квадратного трехчлена $f(x) = Ax^2 + Bx + C$. Построить график.

Метод решения. Использование формулы $(x \pm a)^2 = x^2 \pm 2ax + a^2$.

Варианты заданий.

1.1.
$$f(x) = x^2 - 4x + 5$$
; 1.2. $f(x) = 3x^2 + 5x + 7$;

1.3.
$$f(x) = -x^2 + 6x + 1$$
; 1.4. $f(x) = x^2 + x - 2$.

Задание 2. Выделить целую часть дробно-рациональной функции $f(x) = \frac{P_n(x)}{Q_m(x)}$, $n \ge m$.

Метод решения. Деление полиномов в столбик.

Варианты заданий.

2.1.
$$f(x) = \frac{3x^3 - 2x^2 + 5x + 7}{x + 2}$$
; 2.2. $f(x) = \frac{2x^3 - 6x - 4}{2x + 1}$;

2.3.
$$f(x) = \frac{x^4 - 2x^3 + x + 5}{x^2 + 3}$$
; 2.4. $f(x) = \frac{2x^2 + 3x + 10}{x^2 - 9}$;

2.5.
$$f(x) = \frac{x^3 + x - 68}{x - 4}$$

Задание 3. Разложить функцию на простые дроби.

Метод решения. Определить вид простых дробей и использовать метод неопределенных коэффициентов.

Варианты заданий.

3.1.
$$f(x) = \frac{5x-3}{(x-2)(x+3)}$$
; 3.2. $f(x) = \frac{2x}{(x+1)^2}$;

3.3.
$$f(x) = \frac{3x+2}{(2x+1)(x+3)}$$
; 3.4. $f(x) = \frac{x^2+3x-5}{(x-1)^2(x+3)}$;

3.5.
$$f(x) = \frac{2 - x}{x^2 + x - 2}$$
; 3.6. $f(x) = \frac{2x^2 - 5}{(x^2 + 3)(x - 1)}$;

3.7.
$$f(x) = \frac{x^2 + 3x + 2}{(x - 4)(x - 1)};$$
 3.8. $f(x) = \frac{2x^3 + x^2 - x - 3}{x^2 - 5x + 4}.$

Задание 4. Найти предел отношения двух функций (двух многочленов) при $x \to \infty$ $(n \to \infty)$. **Метод решения.** Вынести «главную степень» (основную величину) за скобки и устранить неопределенность.

4.1
$$\lim_{n\to\infty} \frac{2n-5}{n+3}$$
; 4.2 $\lim_{n\to\infty} \frac{n^2+2n-3}{n+2n^2}$; 4.3 $\lim_{n\to\infty} \frac{\sqrt{4n+\sqrt{n}}}{\sqrt{n+3}}$; 4.4 $\lim_{n\to\infty} \frac{2n\cdot\cos(n^2+1)}{n^2+1}$;

4.5
$$\lim_{x \to \infty} \frac{x^2 - 4x + 3}{5x + 7}$$
; 4.6 $\lim_{x \to \infty} \frac{x^2 + \sqrt{x}}{x\sqrt{x} - 3x^2}$; 4.7 $\lim_{x \to \infty} \frac{2x^2 + x - 3}{\sqrt{x^2 + 4}}$; 4.8 $\lim_{x \to \infty} \frac{\sqrt{2x}}{\sqrt{x + \sqrt{x}}}$;

4.9
$$\lim_{n\to\infty} \frac{2^{n+1}+3^{n+1}}{2^n+3^n}$$
; 4.10 $\lim_{n\to\infty} \frac{1+2+...+n}{(n+2)^2}$.

Задание 5. Найти предел отношения двух многочленов, стремящихся к нулю при $x \to x_0$ $(x_0 - \text{корень})$.

Метод решения. Выделить у многочленов корневой множитель $(x-x_0)$ и устранить неопределенность $\left\lceil \frac{0}{0} \right\rceil$.

Варианты заданий.

5.1.
$$\lim_{x\to 2} \frac{x^2 - 2x}{x^2 + 4x + 4}$$
; 5.2. $\lim_{x\to 1} \frac{x^3 - 2x^2 + 3x - 2}{x^2 + 4x - 5}$; 5..3. $\lim_{x\to -2} \frac{x + 2}{x^3 + x^2 + 4}$.

Задание 6. Найти пределы, содержащие иррациональность.

Метод решения. Умножить соответствующее выражение на сопряженное. В примере 6.7. использовать тождество: $(a^{1/3} - b^{1/3})(a^{2/3} + a^{1/3}b^{1/3} + b^{2/3}) = a - b$, которое является следствием из формулы $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.

Варианты заданий.

6.1.
$$\lim_{x \to 5} \frac{\sqrt{2x+6}-4}{x-5}$$
; 6.2. $\lim_{x \to 2} \frac{3-\sqrt{4x+1}}{1-\sqrt{x-1}}$; 6.3. $\lim_{n \to \infty} (\sqrt{n+2}-\sqrt{n})$; 6.4. $\lim_{h \to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$;

6.5.
$$\lim_{x \to \infty} (\sqrt{x^2 + 2} - x)$$
; 6.6. $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x}$; 6.7. $\lim_{x \to 4} \frac{x - 4}{\sqrt[3]{2x} - 2}$.

Задание 7. Найти пределы, содержащие тригонометрические функ-ции.

Метод решения. Использовать первый замечательный предел $\lim_{x\to 0} \frac{\sin x}{x} = 1$ или его общий вид $\lim_{x\to x_0} \frac{\sin(a(x))}{a(x)} = 1$, где $a(x)\to 0$ при $x\to x_0$.

Варианты заданий.

7.1.
$$\lim_{x\to 0} \frac{\sin 3x}{2x}$$
; 7.2. $\lim_{x\to 0} \frac{\sin 5x}{\sin 3x}$; 7.3. $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$; 7.4. $\lim_{x\to 0} \frac{\arcsin 2x}{x}$;

7.5.
$$\lim_{x \to 1} \frac{\sin \pi x}{x - 1}$$
; 7.6. $\lim_{x \to -2} \frac{tg\pi x}{x + 2}$; 7.7. $\lim_{x \to 0} \frac{arctg3x}{\sin 2x}$; 7.8. $\lim_{x \to \pi} \frac{1 - \sin \frac{x}{2}}{\pi - x}$.

Задание 8. Вычислить предел последовательности или предел функции, используя второй замечательный предел.

Метод решения. Применить одну из следующих формул: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e; \quad \lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e;$ $\lim_{t\to 0} (1+t)^{1/t} = e.$

Варианты заданий.

8.1
$$\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^n$$
; 8.2. $\lim_{n\to\infty} \left(\frac{n+2}{n-1}\right)^{3n+2}$; 8.3. $\lim_{x\to\infty} \left(\frac{2x+1}{2x+3}\right)^{x+1}$; 8.4 $\lim_{x\to 0} (1+\sin 2x)^{1/x}$;

8.5.
$$\lim_{x \to 0} (1 + tg\sqrt{x})^{2/\sqrt{x}}$$
; 8.6. $\lim_{x \to \infty} x (\ln(2+x) - \ln x)$; 8.7. $\lim_{x \to 1} \frac{a^x - a}{x - 1}$.

Задание 9. Найти односторонние пределы функций.

Метод решения. При $x \to a \pm 0$ рассмотреть два случая:

(1)
$$x = a + \varepsilon, \ \varepsilon \to 0, \ \varepsilon > 0$$

(2)
$$x = a - \varepsilon, \ \varepsilon \to 0, \ \varepsilon > 0$$
.

Варианты заданий.

9.1.
$$\lim_{x \to 3\pm 0} \frac{|x-3|}{|x-3|}$$
; 9.2. $\lim_{x \to 2\pm 0} \frac{2x+1}{|x-2|}$; 9.3. $\lim_{x \to \pm 0} (2+x)^{1/x}$;

9.4.
$$\lim_{x \to -2\pm 0} 7^{1/(2+x)}$$
; 9.5. $\lim_{x \to 2\pi \pm 0} \frac{x - 2\pi}{\cos x - 1}$;

9.6.
$$\lim_{x \to \frac{\pi}{4} \pm 0} \frac{|tg(4x - \pi)|}{2x - \frac{\pi}{2}}; \quad 9.7. \lim_{x \to \pm \infty} \frac{\ln(1 + e^x)}{x}.$$

Задание 10. Для данной функции y = f(x) записать приращение $\Delta y = f(x + \Delta x) - f(x)$ и найти $y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$.

Варианты заданий.

10.1.
$$f(x) = ax + b$$
; 10.2. $f(x) = \sqrt{x}$; 10.3. $f(x) = 2^x$;

10.4.
$$f(x) = \ln x$$
; 10.5. $f(x) = \cos x$; 10.6. $f(x) = tgx$.

Задание 11. Освоить табличное дифференцирование и дифференцирование сложной функции по номерам задачника.

А. В. Ефимов, Б. П. Демидович. Сборник задач по математике, часть 1, №№ 5.21–5.76.

Задание 12. Найти производную функции y = f(x), используя формулу логарифмического дифференцирования: $(\ln y)' = \frac{y'}{v}$, т. е. $y' = y \cdot (\ln y)'$.

Варианты заданий.

12.1.
$$y = x(x+2)^3 \cdot (3x+1)^3$$
; 12.2 $y = \frac{(x+2)^2}{(x-1)(x+3)}$; 12.3 $y = \sqrt{\frac{2x+1}{x-3}}$; 12.4. $y = \sqrt[3]{\frac{2x^2}{x^3+5}}$;

12.5.
$$y = x^{2x}$$
; 12.6. $y = x^{\cos x}$; 12.7. $y = (arctgx)^x$.

Задание 13. Найти уравнение касательной для функции y = f(x) в указанной точке $x = x_0$. Сделать чертеж.

13.1.
$$y = \sqrt{2x}$$
; $x = 2$; 13.2. $y = 1 - x^2$; $x = -1$; 13.3. $y = \sqrt[3]{x - 1}$; $x = 1$; 13.4. $y = \ln x$; $x = 1$; 13.5. $y = e^{1 - x^2}$; $x = \pm 2$.

Задание 14. Найти наибольшее и наименьшее значения функции y = f(x) на указанном промежутке. Выполнить схематичный чертеж.

Варианты заданий.

14.1.
$$y = \frac{x}{1+x^2}$$
, $x \in (-\infty, +\infty)$; 14.2. $y = -(x-1)^2$, $x \in [0,3]$;

14.3.
$$y = 2x^3 + 3x^2 - 12x - 1$$
, $x \in [-1,5]$; 14.4. $y = \sqrt{x(5-x)}$, $x \in OД3$;

14.5.
$$y = \frac{x^2 - 1}{x^2 + 1}, x \in (-\infty, +\infty).$$

Задание 15. Построить график функции y = f(x), стараясь придерживаться следующей схемы исследования:

(1) область определения; (2) поведение на границах области определения (односторонние пределы, асимптоты); (3) экстремумы (max, min), точки перегиба (по необходимости); (4) числовые уточнения (пересечения с осями и прочие точки).

Варианты заданий.

15.1.
$$y = \frac{x-1}{x+2}$$
; 15.2. $y = (x+2)^3$; 15.3. $y = \frac{4x}{4+x^2}$;

15.4.
$$y = \frac{x}{\sqrt{x^3 + 3}}$$
; 15.5. $y = \frac{x}{3} - \sqrt[3]{x}$; 15.6. $y = \frac{1}{1 - e^x}$;

15.7.
$$y = \frac{x^2 - 2x + 2}{x - 1}$$
; 15.8. $y = \sqrt[3]{1 - x^2}$; 15.9. $y = \frac{\ln x}{\sqrt{x}}$;

15.10.
$$y = \ln(e + \frac{1}{x});$$
 15.11. $y = \frac{3x^4 + 1}{x^3}.$

Задание 16. Найти производную F'(x) = f(x) и записать соответствующий интеграл $\int f(x)dx = F(x) + C$.

Варианты заданий.

16.1.
$$F(x) = \frac{\cos 5x}{5}$$
; 16.2. $F(x) = e^{x^2}$; 16.3. $F(x) = \ln |x + \sqrt{x^2 - 7}|$;

16.4.
$$F(x) = \sqrt{\arcsin 3x}$$
; 16.5. $F(x) = \frac{1}{x^3}$.

Задание 17. Табличное интегрирование и замена переменной при интегрировании:

А. В. Ефимов, Б. П. Демидович. Сборник задач по математике, часть 1, N_2N_2 6.15–6.123 (выборочно).

Задание 18. Найти интегралы, применяя формулу интегрирования «по частям» $\int u dv = uv - \int v du$.

18.1.
$$\int arctgx dx$$
; 18.2. $\int x \sin 2x dx$; 18.3. $\int \frac{\ln x}{x^2} dx$; 18.4. $\int x \cdot arctgx dx$;

18.5.
$$\int (x+1)e^{2x}dx$$
; 18.6. $\int xe^{-3x}dx$; 18.7. $\int x^2 \ln x dx$; 18.8. $\int 3^x \cos x \cdot dx$;

18.9.
$$\int (x^2 + x - 3)e^{-2x} dx$$
; 18.10. $\int \frac{x \cos x}{\sin^2 x} dx$.

Задание 19. Вычислить интегралы, содержащие квадратный трехчлен.

Варианты заданий.

19.1.
$$\int \frac{dx}{x^2 + 2x + 5}$$
; 19.2. $\int \frac{xdx}{x^2 - 7x + 13}$; 19.3. $\int \frac{dx}{\sqrt{x^2 - 4x + 5}}$;

19.4.
$$\int \frac{(2x-8)dx}{\sqrt{1-x-x^2}}$$
; 19.5. $\int \frac{dx}{x\sqrt{1-x^2}}$; 19.6. $\int \sqrt{x^2+2x+5}dx$.

Задание 20. Вычислить интегралы при помощи разложения на простые дроби.

Варианты заданий.

20.1.
$$\int \frac{dx}{(x+1)(x-2)}$$
; 20.2. $\int \frac{(x+1)dx}{(x+2)(x-3)}$; 20.3. $\int \frac{dx}{x(x+1)}$;

20.4.
$$\int \frac{x^2 - 5x + 9}{x^2 - 5x + 6} dx$$
; 20.5. $\int \frac{(x+1)dx}{x \cdot (x^2 + 1)}$; 20.6. $\int \frac{dx}{(x+1)(x-2)(x+3)}$.

Задание 21. Вычислить интегралы для некоторых тригонометрических функций.

Варианты заданий.

21.1.
$$\int \cos^3 x dx$$
; 21.2. $\int \sin^2 x \cdot \cos^3 x \cdot dx$; 21.3. $\int tg^2 x \cdot dx$;

21.4.
$$\int \frac{dx}{\sin^4 x};$$
 21.5.
$$\int \cos 2x \cdot \sin 6x \cdot dx;$$
 21.6.
$$\int \sin \frac{x}{3} \cdot \cos \frac{2x}{3} \cdot dx;$$

21.7.
$$\int \cos x \cdot \cos^2 3x \cdot dx$$
; 21.8 $\int \cos \frac{x}{2} \cdot \cos \frac{x}{3} \cdot dx$;

Задание 22. Вычислить интегралы для тригонометрических функций с помощью

универсальной подстановки $t = tg\frac{x}{2}$, используя соотношения: $\sin x = \frac{2t}{1+t^2}$; $\cos x = \frac{1-t^2}{1+t^2}$;

$$dx = \frac{2dt}{1+t^2} \, .$$

Варианты заданий.

22.1.
$$\int \frac{dx}{3+5\cos x}$$
; 22.2. $\int \frac{dx}{\sin x + \cos x}$; 22.3. $\int \frac{\cos x dx}{1+\cos x}$;

22.4.
$$\int \frac{dx}{\cos x + 2\sin x + 3}$$
; 22.5. $\int \frac{1 + tgx}{1 - tgx} \cdot dx$.

Дополнение. Для следующих вариантов используется подстановка t = tgx, для которой выполняются соотношения:

$$\sin x = \frac{t}{\sqrt{1+t^2}}; \cos x = \frac{1}{\sqrt{1+t^2}}; dx = \frac{dt}{1+t^2}.$$

22.6.
$$\int \frac{dx}{1+3\cos^2 x}$$
; 22.7. $\int \frac{dx}{3\sin^2 x + 5\cos^2 x}$;

22.8.
$$\int \frac{\sin 2x \cdot dx}{1 + \sin^2 x}$$
; 22.9. $\int \frac{\cos 2x dx}{\cos^4 x + \sin^4 x}$.

2. Типовые задания II семестра

Задание 1. Вычислить простейшие определенные интегралы. Изобразить соответствующую криволинейную трапецию. Визуально оценить ее площадь и сравнить с ответом.

Метод решения. Таблица интегралов. Формула Ньютона-Лейбница.

Варианты заданий.

1.1.
$$\int_{0}^{1} (1+x^{2}) dx$$
; 1.2. $\int_{0}^{1} \frac{dx}{1+x}$; 1.3. $\int_{0}^{\pi} \sin x dx$; 1.4. $\int_{1}^{2} \frac{dx}{1+x^{2}}$; 1.5. $\int_{0}^{\ln 3} e^{-x} dx$; 1.6. $\int_{0}^{1/\sqrt{2}} \frac{dx}{\sqrt{1-x^{2}}}$.

Задание 2. Вычислить определенный интеграл с помощью замены переменных. **Метод решения.** Приведение интеграла к табличному виду с помощью замены переменных. **Варианты заданий.**

2.1.
$$\int_{1}^{e} \frac{\sin(\ln x)dx}{x}, t = \ln x;$$
2.2.
$$\int_{0}^{-3} \frac{dx}{\sqrt{25 + 3x}}, t = 25 + 3x;$$
2.3.
$$\int_{0}^{1} \sqrt{1 - x^{2}} \cdot dx, x = \sin t;$$
2.4.
$$\int_{0}^{4} \frac{dx}{1 + \sqrt{x}}, x = t^{2};$$
2.5.
$$\int_{0}^{\ln 2} \sqrt{e^{x} - 1} dx; e^{x} - 1 = z^{2};$$

Задание 3. Несобственные интегралы от неограниченных функций: вычислить или установить расходимость.

Варианты заданий.

3.1.
$$\int_{0}^{1} \frac{dx}{2\sqrt{x}}$$
; 3.2. $\int_{0}^{3} \frac{dx}{(x-1)^{2}}$; 3.3. $\int_{1}^{e} \frac{dx}{x \ln^{2} x}$; 3.4. $\int_{0}^{\pi^{2}} ctgx \, dx$; 3.5. $\int_{-1}^{2} \frac{dx}{x}$; 3.6. $\int_{0}^{4} \frac{dx}{\sqrt{4-x}}$.

Задание 4. Даны несобственные интегралы с бесконечными пределами интегрирования. Вычислить или установить расходимость.

Варианты заданий.

4.1.
$$\int_{1}^{+\infty} \frac{dx}{x^{2}}$$
; 4.2. $\int_{2}^{+\infty} \frac{dx}{\sqrt[3]{x}}$; 4.3. $\int_{-\infty}^{0} \frac{dx}{1+x^{2}}$; 4.4. $\int_{-1}^{+\infty} e^{-2x} dx$ 4.5. $\int_{0}^{+\infty} \frac{dx}{(x+1)(x+3)}$

Задание 5. Вычисление площадей для областей двух видов:

$$D_1: \begin{cases} a \le x \le b \\ f_1(x) \le y \le f_2(x) \end{cases}; \quad D_2: \begin{cases} \alpha \le y \le \beta \\ g_1(y) \le x \le g_2(y) \end{cases}$$

Метод решения. Определить параметры области и применить одну из формул:

$$S = \int_{a}^{b} (f_2(x) - f_1(x)) dx ; \qquad S = \int_{a}^{\beta} (g_2(y) - g_1(y)) dy .$$

В отдельных случаях рекомендуется разбивать область на две и более части.

Варианты заданий.

5.1.
$$\begin{cases} 1 \le x \le 3 \\ -1 \le y \le \frac{1}{x^2} \end{cases}$$
 5.2
$$\begin{cases} 0 \le y \le 2 \\ \frac{y}{2} \le x \le y^2 + 1 \end{cases}$$

- 5.3. D ограничена кривой $y = \ln x$, прямой x = e и осью OX.
- 5.4. Область D ограничена параболой $y = 4x x^2$ и прямой y = x 2.
- 5.5. Область D ограничена гиперболой $\frac{x^2}{4} \frac{y^2}{9} = 1$ и прямой x = 4.
- 5.6. Область D ограничена окружностью $x^2 + y^2 = 16$ и параболой $x^2 = 12(y 1)$.

Задание 6. Вычислить длину дуги кривой. Выполнить чертеж.

Метод решения. Применить одну из формул:

(1)
$$L = \int_{a}^{b} \sqrt{1 + (y')^2} dx$$
, где $y = f(x)$, $a \le x \le b$.

(2)
$$L = \int_{t_2}^{t_1} \sqrt{(x')^2 + (y')^2} dt$$
, где $\begin{cases} x = x(t) \\ y = y(t), \end{cases}$ $t_1 \le t \le t_2$, это линия, заданная в

параметрическом виде.

(3)
$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + (r')^2} d\varphi$$
, где $r = f(\varphi)$, $\alpha \le \varphi \le \beta$, это линия, заданная в полярной системе координат.

Варианты заданий.

- 6.1. Вычислить длину дуги параболы $y = 2\sqrt{x}, \ 0 \le x \le 1.$
- 6.2. Найти длину дуги кривой $y = \ln x$, $\sqrt{3} \le x \le \sqrt{8}$.
- 6.3. Найти длину дуги $y = \arcsin(e^{-x}), \ 0 \le x \le 1.$
- 6.4. Найти длину дуги кривой, заданной в параметрическом виде:

$$\begin{cases} x = a(2\cos t - \cos 2t) \\ y = a(2\sin t - \sin 2t) \end{cases}, 0 \le t \le 2\pi.$$

- 6.5. Найти длину кардиоиды $r = a(1 + \cos \varphi)$.
- 6.6. Найти длину первого витка спирали Архимеда $r=a\varphi$.

Замечание. Задания по теме «Объемы тел вращения» рекомендуется брать из задачников [8], [9]. По темам заданий 1-5 также рекомендуется решать дополнительные задания из этих задачников.

Задание 7. Найти область определения функций двух переменных. Построить найденные области на чертеже.

Метод решения. Выписать все ограничения на операции, определяющие функцию, и найти допустимое множество точек плоскости.

7.1.
$$z = \sqrt{1 - x^2 - y^2}$$
; 7.2. $z = \sqrt{xy}$; 7.3. $z = \sqrt{x^2 - 4} + \sqrt{4 - y^2}$; 7.4. $z = \sqrt{x \cos y}$; 7.5. $z = \frac{1}{\sqrt{y - \sqrt{x}}}$.

Задание 8. Исследовать на непрерывность функцию двух переменных. Пояснить результат, используя определение непрерывности и разрывности.

Метод решения. Выяснить, где функция не определена. Исследовать поведение функции на границах области определения.

Варианты заданий.

8.1.
$$z = \ln \sqrt{x^2 + y^2}$$
; 8.2. $z = \frac{x}{(x+y)^2}$; 8.3. $z = \frac{1}{1-x^2-y^2}$;

8.4.
$$z = tg(y - x);$$
 8.5. $z = \frac{2}{1 - e^{x + y}}.$

Задание 9. Найти пределы функций или показать их расходимость.

Метод решения. Перейти к полярной системе координат или к другим переменным. Для расходимости достаточно показать, что по разным «путям» приближения к точке (x_0, y_0) получаются разные предельные значения.

Варианты заданий.

9.1.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x + y}{\cos(x^2 + y^2)}$$
; 9.2. $\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x + 2y}{x^2 + y^2}$; 9.3. $\lim_{\substack{x \to 5 \\ y \to \infty}} \left(1 + \frac{x}{y}\right)^y$;

9.4.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sin x^2 + \sin y^2}{x^2 + y^2}$$
; 9.5.
$$\lim_{\substack{x \to 2 \\ y \to 3}} \frac{x + y - 5}{x + y - 6}$$
.

Задание 10. Найти частные производные первого и второго порядка. Показать, что $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}, \text{ т. e. } z_{xy}^{"} = z_{yx}^{"}.$

Метод решения. Применить обычные правила и формулы дифференцирования, учитывая, что при дифференцировании по x переменная y считается константой, а при дифференцировании по y переменная x считается константой.

Варианты заданий.

10.1.
$$z = (x+2y)^3$$
; 10.2. $z = (x+3)^y$; 10.3. $z = \sqrt{x^2 - y^2}$;

10.4.
$$z = \sin \frac{x}{y}$$
; 10.5. $z = \frac{x+y}{x-y}$; 10.6. $z = \frac{x}{\sqrt{x^2+y^2}}$.

Задание 11. Используя расчеты задания 10, записать дифференциалы dz и d^2z в общем виде или в некоторых точках $A(x_0, y_0)$.

Указание.

$$dz = \frac{\partial z}{\partial x} \cdot dx + \frac{\partial z}{\partial y} \cdot dy = \frac{\partial z}{\partial x} \cdot \Delta x + \frac{\partial z}{\partial y} \cdot \Delta y,$$

$$dz\big|_{A} = \frac{\partial z}{\partial x}\bigg|_{\substack{x=x_o \ y=y_o}} \cdot dx + \frac{\partial z}{\partial y}\bigg|_{\substack{x=x_o \ y=y_o}} \cdot dy = \frac{\partial z}{\partial x}\bigg|_{\substack{x=x_o \ y=y_o}} \cdot \Delta x + \frac{\partial z}{\partial y}\bigg|_{\substack{x=x_o \ y=y_o}} \cdot \Delta y,$$

$$d^{2}z = \left(\frac{\partial}{\partial x} \cdot dx + \frac{\partial}{\partial y} \cdot dy\right)^{(2)}(z) = \left(\frac{\partial^{2}}{\partial x^{2}} \cdot dx^{2} + 2\frac{\partial^{2}}{\partial x \partial y} \cdot dxdy + \frac{\partial^{2}}{\partial y^{2}} \cdot dy^{2}\right)(z) =$$

$$= \frac{\partial^{2}z}{\partial x^{2}} \cdot dx^{2} + 2\frac{\partial^{2}z}{\partial x \partial y} \cdot dxdy + \frac{\partial^{2}z}{\partial y^{2}} \cdot dy^{2} = z_{xx}^{"} \cdot \Delta x^{2} + 2z_{xy}^{"} \cdot \Delta x \cdot \Delta y + z_{yy}^{"} \cdot \Delta y^{2}.$$

Дифференциал $d^2z\Big|_A$ вычисляется аналогично $dz\Big|_A$.

Задание 12. Производная функции z = f(x, y) по направлению вектора \vec{a} в точке $M(x_0, y_0)$ определяется формулой:

$$\frac{\partial z}{\partial \vec{a}}\big|_{M} = \frac{\partial z}{\partial x}\big|_{M} \cdot \cos \alpha + \frac{\partial z}{\partial y}\big|_{M} \cdot \cos \beta; \ \vec{e} = \frac{\vec{a}}{|\vec{a}|} = (\cos \alpha, \cos \beta).$$

- 12.1. Найти производную функции $z=x^2$ 2xy+3 в точке M(1,2) в направлении вектора $\vec{a}(2,-1)$.
- 12.2. Найти производную функции $z = x^2 xy + 3y^2$ в точке P(1,1) в направлении, идущем от этой точки к точке K(3,2).
- 12.3. Найти производную функции $z = \ln \sqrt{x^2 + y^2}$ в точке M(2,2) в направлении биссектрисы первого координатного угла.

Задание 13. Для всех задач задания 12 найти градиент функции (grad z) в соответствующей точке. Далее, найти производную функции в направлении grad z и сравнить ее со значением $\frac{\partial z}{\partial a}$.

Формулы для вычислений:

$$\operatorname{grad} z = \left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right); \operatorname{grad} z \Big|_{M} = \left(\frac{\partial z}{\partial x}\Big|_{M}, \frac{\partial z}{\partial y}\Big|_{M}\right) = \left(\frac{\partial z}{\partial x}\Big|_{\substack{x = x_{o} \\ y = y_{o}}}, \frac{\partial z}{\partial y}\Big|_{\substack{x = x_{o} \\ y = y_{o}}}\right).$$

Задание 14. Исследовать на экстремум (тах, тіп) функции двух переменных:

14.1.
$$z = (x+1)^2 + 3y^2$$
; 14.2. $z = x^2 + xy + y^2 - 2x - y$;
14.3. $z = (x^2 + y^2)e^{-(x^2 + y^2)}$; 14.4. $z = xy\sqrt{1 - x^2 - y^2}$.

Указание. Необходимое условие экстремума для z = f(x, y):

$$\begin{cases} \frac{\partial z}{\partial x} = f_x^{'}(x,y) = 0\\ -\text{система уравнений для определения стационарных точек.} \\ \frac{\partial z}{\partial y} = f_y^{'}(x,y) = 0 \end{cases}$$

Достаточные условия существования экстремума:

(1) имеется стационарная точка M(a,b);

(2)
$$\Delta = AC - B^2$$
, где $A = f_{xx}^{"}(a,b); B = f_{xy}^{"}(a,b); C = f_{yy}^{"}(a,b)$.

При $\Delta > 0$, A < 0 (C < 0) — max; при $\Delta > 0$, A > 0 (C > 0) — min;

при $\Delta < 0$ — экстремумов нет; при $\Delta = 0$ — требуются дополнительные исследования.

Задание 15. Решить систему линейных уравнений методом Гаусса. Сделать проверку.

Указание. Желательно провести расчеты табличным способом при помощи элементарных преобразований строк (метод Гаусса).

Варианты заданий.

15.1.
$$\begin{cases} x_1 - x_2 + x_3 = 6 \\ 2x_1 + x_2 - 3x_3 = -6 \\ 4x_1 - 3x_2 + x_3 = 14; \end{cases}$$
 15.2.
$$\begin{cases} 3x_1 + x_2 - 2x_3 = 7 \\ 2x_1 - x_2 - x_3 = -3 \\ 8x_1 + x_2 - 5x_3 = 11. \end{cases}$$

Задание 16. Проверить, что определитель основной матрицы системы $\Delta \neq 0$, и решить ее методом Крамера и методом обратной матрицы.

Метод Крамера:
$$x_1 = \frac{\Delta_1}{\Delta}$$
 ; $x_2 = \frac{\Delta_2}{\Delta}$; $x_3 = \frac{\Delta_3}{\Delta}$.

Метод обратной матрицы: $X = A^{-1}B$,

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 - решение системы, $B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ — правая часть системы.

Варианты заданий.

16.1.
$$\begin{cases} 2x_1 - 3x_2 = 5 \\ 3x_1 + 5x_2 = 9; \end{cases}$$
 16.2.
$$\begin{cases} 2x_1 + 3x_2 + 5x_3 = -3 \\ 3x_1 - 7x_2 + 4x_3 = 15 \\ x_1 + 2x_2 - 5x_3 = -10; \end{cases}$$
 16.3.
$$\begin{cases} 2x_1 + x_2 = 5 \\ x_1 + 3x_3 = 16 \\ 5x_2 - x_3 = 10. \end{cases}$$

Замечание. Обратную матрицу уметь находить двумя способами: (a) через алгебраические дополнения, (δ) при помощи элементарных преобразований.

Задание 17. Решить однородную систему линейных уравнений методом Гаусса и составить фундаментальную систему решений.

Варианты заданий.

17.1.
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \\ 3x_1 - 2x_2 + 2x_3 = 0; \end{cases}$$
 17.2.
$$\begin{cases} 2x_1 + x_2 - 4x_3 = 0 \\ 3x_1 + 5x_2 - 7x_3 = 0; \end{cases}$$

17.3.
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 - x_2 + 2x_3 = 0 \\ 3x_1 + x_2 + 4x_3 = 0 \\ 4x_1 - 2x_2 + 7x_3 = 0; \end{cases}$$
 17.4.
$$\begin{cases} x_1 + x_2 - 7x_3 - 2x_4 = 0 \\ 2x_1 - x_2 + x_3 + 5x_4 = 0. \end{cases}$$

Пояснения. Для системы 17.4 ответ может быть записан в разном виде:

$$(8) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = t \begin{pmatrix} 2 \\ 5 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ -3 \\ 0 \\ 1 \end{pmatrix} = te_1 + se_2; \ e_1 = \begin{pmatrix} 2 \\ 5 \\ 1 \\ 0 \end{pmatrix}, \ e_2 = \begin{pmatrix} -1 \\ -3 \\ 0 \\ 1 \end{pmatrix},$$

где $\{e_1,e_2\}$ – фундаментальная система решений .

Задание 18. Показать, что векторы $e_1, e_2, ..., e_n$ образуют базис в пространстве R^n , и найти координаты вектора x в этом базисе.

Метод решения. Представить x в виде линейной комбинации $x = \lambda_1 e_1 + \lambda_2 e_2 + ... + \lambda_n e_n$, составить соответствующую систему линейных уравнений с неизвестными $\lambda_1, \lambda_2, ..., \lambda_n$ и решить ее.

Варианты заданий.

18.1.
$$e_1 = (1,5,3); e_2 = (2,7,3), e_3 = (3,9,4), x = (2,1,1).$$

18.2.
$$e_1 = (2,1,-3); e_2 = (3,2,-5), e_3 = (1,-1,1), x = (6,2,-7).$$

18.3.
$$e_1 = (1, 2, -1, -2); e_2 = (2, 3, 0, -1), e_3 = (1, 2, 1, 4),$$

 $e_4 = (1, 3, -1, 0), x = (7, 14, -1, 2).$

Задание 19. Убедиться, что векторы a_1 и a_2 ортогональны, и дополнить их до ортогонального базиса пространства.

Варианты заданий.

19.1.
$$a_1 = (2,1,2), a_2 = (1,2,-2);$$

19.2. $a_1 = (1,1,1,2), a_2 = (1,2,3,-3).$

Задание 20. Найти размерность и какой-либо базис (максимальную линейно независимую подсистему) линейной оболочки векторов.

20.1.
$$a_1 = (3,1,5)$$
, $a_2 = (-1,2,4)$, $a_3 = (-1,9,21)$.

20.2.
$$a_1 = (1,2,2,-1)$$
, $a_2 = (2,3,2,5)$, $a_3 = (-1,4,3,-1)$, $a_4 = (2,9,3,5)$.

$$20.3. \ a_1 = (1,0,0,-1) \,, \ a_2 = (2,1,1,0) \,, \ a_3 = (1,1,1,1) \,, \ a_4 = (1,2,3,4) \,, \ a_5 = (0,1,2,3) \,.$$

Примеры контрольных заданий

Контрольная работа № 1

Вариант 1

- 1. Вычислить предел последовательности $\lim_{n\to\infty} \left(\frac{n-2}{n-3}\right)^{2n+1}$.
- 2. Найти уравнение касательной к графику функции $y = \frac{2x-3}{x+2}$ в точке x = -1. Сделать схематичный чертеж.
- 3. Вычислить интегралы: (a) $\int \frac{dx}{x^2 + 2x 3}$, (b) $\int (x 2) \sin(3x) dx$.

Вариант 2

- 1. Вычислить предел последовательности $\lim_{n \to \infty} \left(\frac{n+2}{n-3} \right)^{n+1}$.
- 2. Найти уравнение касательной к графику функции $y = \frac{2x+1}{x-2}$ в точке x = 1. Сделать схематичный чертеж.
- 3. Вычислить интегралы: (a) $\int \frac{dx}{x^2 + 4x + 5}$; (b) $\int x \cdot \sin(3x + 2) dx$.

Контрольная работа № 2

Вариант 1

1. Вычислить определенные интегралы:

(a)
$$\int_{0}^{\pi/2} \sin 2x dx$$
; (6) $\int_{1}^{3} \frac{dx}{(5x+1)^{3}}$; (B) $\int_{0}^{\pi/2} \sin^{2} x \cdot \cos x dx$; (r) $\int_{0}^{1} x e^{2x} dx$.

2. Вычислить несобственные интегралы или установить их расходимость:

(a)
$$\int_{0}^{+\infty} e^{-2x} dx$$
; (6) $\int_{1}^{3} \frac{dx}{\sqrt{3-x}}$.

- 3. Найти площади фигур заданных областей. Выполнить чертеж.
- (a) Область ограничена линиями: y = 2 + x, $y = 2x^2 1$, x = 1.
- (б) Область ограничена линиями: y = 1 x, $y = \ln x$, x = e.

Вариант 2

1. Вычислить определенные интегралы:

(a)
$$\int_{-1}^{2} 2^{x} dx$$
; (6) $\int_{1}^{3} \frac{dx}{(3x+2)^{4}}$; (B) $\int_{0}^{\pi/4} \frac{tgx}{\cos^{2} x} dx$; (r) $\int_{0}^{\pi} x \sin \frac{x}{2} dx$.

2. Вычислить несобственные интегралы или установить их расходимость:

(a)
$$\int_{1}^{+\infty} e^{-x} dx$$
; (б) $\int_{1}^{2} \frac{dx}{\sqrt{4-2x}}$.

3. Найти площади фигур заданных областей. Выполнить чертеж.

- (a) Область ограничена линиями: y = 3 + x, $y = 2x^2$, x = 1.
- (б) Область ограничена линиями: x = 0, $y = \frac{1}{2}$, y = 1/x, y = 2.

Контрольная работа № 3

Вариант 1

1. Проверить, что определитель основной матрицы системы линейных уравнений не равен нулю, и решить ее тремя способами: (а) методом Гаусса; (б) методом Крамера; (в) методом обратной матрицы.

$$\begin{cases} 3x - 2y + z = 11 \\ 2x + y - 3z = -1 \\ 2x + 4y - 3z = -7. \end{cases}$$

- 2. Дана функция двух переменных $z=2xy-x^3-y^2$ и значения $x_0=-1,\,y_0=2.$ Найти
- (a) уравнение касательной плоскости в точке $M(x_0, y_0, z_0)$, где $z_0 = z(x_0, y_0)$;
- (б) производную функции z = z(x, y) по направлению n = (3, -1) в точке $M(x_0, y_0)$.

Вариант 2

1. Проверить, что определитель основной матрицы системы линейных уравнений не равен нулю, и решить ее тремя способами: (а) методом Гаусса; (б) методом Крамера; (в) методом обратной матрицы.

$$\begin{cases} 5x - y - 2z = -6 \\ 2x + y - 3z = 9 \\ 2x + 4y - 2z = 22. \end{cases}$$

- 2. Дана функция двух переменных $z=3xy-x^2-y^3$ и значения $x_0=2$, $y_0=-1$. Найти:
- (a) уравнение касательной плоскости в точке $M(x_0, y_0, z_0)$, где $z_0 = z(x_0, y_0)$;
- (б) производную функции z = z(x, y) по направлению n = (-2, -3) в точке $M(x_0, y_0)$.

Литература.

Учебники.

- 1. Фихтенгольц Г. М. Основы математического анализа (в 2-х томах), СПБ: "Лань", 2015.
- 2. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления (в 3-х томах), М.: "Наука", 1986.
- 3. Карташов А. П., Рождественский Б. Г. Математический анализ, М.: "Наука", 2007.
- 4. Демидович Б. П., Кудрявцев В. А. Краткий курс высшей математики, М.: Наука, 1975.
- 5. Головина Л. И. Линейная алгебра и некоторые ее приложения, М.: Наука, 1985.
- 6. Курош А. Г. Курс высшей алгебры, М.: Физматгиз, 1963.
- 7. Пухначёва Т. П. Элементы линейной алгебры и конечной математики, Новосибирск, НГУ, 2003.

Задачники.

- 8. Демидович Б. П. Задачи и упражнения по математическому анализу: Учеб. пособие для вузов, М.: "Издательство Астрель", 2003.
- 9. Сборник задач по математике для втузов. Ч. 1. Линейная алгебра и основы математического анализа : Учеб. пособие для втузов под ред. А. В. Ефимова и Б. П. Демидовича, М.: Физ.-мат. лит., 1986.
- 10. Проскуряков И. В. Сборник задач по линейной алгебре, М.: Наука, 1984.