МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Новосибирский национальный исследовательский государственный университет» (Новосибирский государственный университет, НГУ)

Физический факультет Кафедра физики неравновесных процессов

Рабочая программа дисциплины

КОНВЕКТИВНЫЙ ТЕПЛОМАССООБМЕН

направление подготовки: **03.03.02 Физика** направленность (профиль): **Общая и фундаментальная физика**

Форма обучения Очная

Семестр		Виды учебных занятий (в часах)			Промежуточная аттестация (в часах)					
	Общий объем	Контактная работа обучающихся с преподавателем		гра-	ая ме- ции	Контактная работа обучающихся с преподавателем				
		Лекции	Практические занятия	Лабораторные за- нятия	Самостоятельная ра- бота, не включая пе- риод сессии	Самостоятельная подготовка к промежуточной аттестации	Консультации	Зачет	Дифференциро- ванный зачет	
1	2	3	4	5	6	7	8	9	10	11
6	108	32	22		32	18	2			2

Всего 108 часов / 3 зачётные единицы, из них:

- контактная работа 58 часов

Компетенции: ПК1

Ответственный за образовательную программу, д.ф.-м.н., проф.

С. В. Цыбуля

Новосибирск, 2022

Содержание

	Перечень планируемых результатов обучения по дисциплине, соотнесённых с нируемыми результатами освоения образовательной программы
2.	Место дисциплины в структуре образовательной программы
	Трудоёмкость дисциплины в зачётных единицах с указанием количества академических ов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных ятий) и на самостоятельную работу
	Содержание дисциплины, структурированное по темам (разделам) с указанием отведённого них количества академических часов и видов учебных занятий
5.	Перечень учебной литературы
6.	Перечень учебно-методических материалов по самостоятельной работе обучающихся10
7. нео	Перечень ресурсов информационно-телекоммуникационной сети «Интернет», бходимых для освоения дисциплины
	Перечень информационных технологий, используемых при осуществлении азовательного процесса по дисциплине
	Материально-техническая база, необходимая для осуществления образовательного цесса по дисциплине
10. дис	Оценочные средства для проведения текущего контроля и промежуточной аттестации по циплине

1. Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы.

Курс «Конвективный тепломассообмен» имеет своей целью обучение студентов основным положениям, подходам, методам и классическим задачам теории тепломассообмена. Целью также является достижение понимания концептуального единства математических моделей при всем имеющемся их разнообразии в конкретных разделах теплофизики, изучение современного математического аппарата, используемого при решении задач теплофизики и, особенно, теории тепломассообмена.

Особенностью курса является то, что он построен по дедуктивной схеме. С единых феноменологических позиций выводятся уравнения переноса (сохранения) для произвольной скалярной или векторной экстенсивной величины, анализируются уравнения переноса импульса, энергии, вещества в сплошных средах. Большое внимание уделяется конкретным примерам и задачам процессов тепло- и массопереноса в различных системах при течении идеальной и вязкой жидкости, анализу подобия этих процессов, введению соответствующих безразмерных комплексов. В рамках курса рассмотрены уравнения теплового и диффузионного пограничных слоев, различные задачи переноса в многокомпонентных (бинарных) средах, особенности тепломассопереноса при фазовых превращениях, в частности, при кипении и конденсации.

Дисциплина нацелена на формирование у выпускника следующей профессиональной компетенции:

тенции:		
Результаты освоения		
образовательной про-	Индикаторы	Результаты обучения по дисциплине
граммы	индикаторы	т сзультаты обучения по дисциплине
(компетенции)		
ПК-1 Способность использовать специализированные знания в области физики при построении теоретических моделей физических явлений и процессов в соответствии с профилем подготовки в зависимости от специфики объекта исследования	ПК 1.1 Применяет специализированные знания в области физики при воспроизведении учебного материала с требуемой степенью научной точности и полноты. ПК 1.2 Использует специализированные знания при проведении научных изысканий в избранной области. ПК 1.3 Выбирает наиболее эффективные методы построения теоретических моделей физических явлений и процессов в соответствии с профилем подготовки в зависимости от специфики объекта исследования.	Знать основные понятия и физические принципы процессов тепломассообмена, базовые математические модели и типы дифференциальных уравнений, описывающих тепломассообменные процессы в сплошных средах; базовые разделы теории конвективного тепломассообмена: основные понятия, модели, законы и теории; теоретические и методологические основы и способы их использования при решении научно-инновационных задач. Уметь анализировать системы уравнений переноса вещества и энергии в сплошных средах в ламинарном и турбулентных режимах, использовать критерии подобия процессов переноса использовать полученные теоретические знания при решении практических задач, относящихся к процессам конвективного тепломассообмена; решать типовые учебные задачи по основным разделам теории конвективного тепломассообмена; применять полученную теоретическую базу для решения научно-инновационных задач, грамотно работать с научной литературой с использованием

Результаты освоения образовательной программы (компетенции)	Индикаторы	Результаты обучения по дисциплине
		новых информационных технологий; применять полученные теоретические знания для самостоятельного освоения специальных разделов теории конвективного тепломассообмена, необходимых в профессиональной деятельности; определять необходимость привлечения дополнительных знаний из специальных разделов теории конвективного тепломассообмена для решения научно-инновационных задач; применять знания теории конвективного тепломассообмена для анализа и обработки результатов физических экспериментов; проводить анализ научной и технической информации в области теории конвективного тепломассообмена и смежных дисциплин. Владеть навыками самостоятельной работы с учебной литературой по базовым разделам теории конвективного тепломассообмена; основной терминологией и понятийным аппаратом базовых разделов теории конвективного тепломассообмена, основными методами научных исследований; навыками использования теоретических основ базовых разделов теории конвективного тепломассообмена при решении научно-инновационных задач, знаниями на уровне, позволяющем проводить эффективный анализ научной и технической информации в области конвективного тепломассообмена и смежных дисциплин.

2. Место дисциплины в структуре образовательной программы.

Дисциплина «Конвективный тепломассообмен» реализуется в весеннем семестре 3-го курса бакалавриата, обучающихся по направлению подготовки 03.03.02 Физика. Курс является одной из профессиональных дисциплин по выбору, реализуемых кафедрой физики неравновесных процессов. В результате его изучения студенты 3 курса физического отделения физического факультета НГУ должны усвоить основы теории конвективного тепломассообмена в одно- и многокомпонентных средах, в частности, при наличии фазовых превращений, методы решения соответствующих задач, которые встречаются в различных технологических приложениях и при анализе промышленных и природных энергетических процессов. Необходимыми

предпосылками для успешного освоения курса являются нижеследующие дисциплины, входящие в базовую часть математического и естественнонаучного цикла:

- Математический анализ;
- Основы тензорного и векторного исчисления;
- Уравнения математической физики;
- Физическая термодинамика;
- Основы физической кинетики.
 - 3. Трудоёмкость дисциплины в зачётных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу.

Семестр		Видь	гучебных з	анятий (в ч	ıacax)	Промех	куточная аттестап	(ия (в часах	k)
		Контактная работа обучающихся с преподавателем		ра-	ая ме- ции	Контактная работа обучающихся с преподавателем				
	Общий объем	Лекции	Практические занятия	Лабораторные за- нятия	Самостоятельная бота, не включая риод сессии	Самостоятельная подготовка к промежуточной аттестации	Консультации	Зачет	Дифференциро- ванный зачет	Экзамен
1	2	3	4	5	6	7	8	9	10	11
6	108	32	22		32	18	2			2
Всего 108	Всего 108 часов / 3 зачётные единицы, из них:									

- контактная работа 58 часов

Компетенции: ПК1

Реализация дисциплины предусматривает практическую подготовку при проведении следующих видов занятий, предусматривающих участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью: лекции, практические занятия, консультации, самостоятельная работа студента и её контроль преподавателями с помощью заданий, экзамен.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости: задания для самостоятельного решения;
- промежуточная аттестация: экзамен.

Общая трудоемкость рабочей программы дисциплины составляет 3 зачетные единицы.

- занятия лекционного типа 32 часа;
- практические занятия 22 часа;
- самостоятельная работа обучающегося в течение семестра, не включая период сессии 32 часа;
- промежуточная аттестация (подготовка к сдаче экзамена, консультации и экзамен) 22 часа. Объём контактной работы обучающегося с преподавателем (занятия лекционного типа, практические занятия, групповые консультации, экзамен) составляет 58 часов.
 - 4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведённого на них количества академических часов и видов учебных занятий.

	Раздел дисциплины		Виды чая са студен	гестация			
№ п/п				Аудиторные часы		время ючая пи)	очная атт (в часах)
			Всего	Лекции	Практические занятия	Сам. работа во время занятий (не включая период сессии)	Промежуточная аттестация (в часах)
1	2	3	4	5	6	7	8
1	Уравнения переноса (баланса) экстенсивных величин. Теорема Гаусса-Остроградского. Уравнения переноса произвольной скалярной и векторной величин. Перенос кинетической энергии системы. Баланс полной энергии. Перенос внутренней энергии (энтальпии, тепла).	1	5	1	1	3	
2	Гипотеза Фурье для молекулярного потока энергии. Коэффициенты теплопроводности для различных веществ: твердых тел, жидкостей, газов, пористых сред. Уравнение теплопроводности параболического и гиперболического типа. Пример: уравнения акустики, уравнение переноса для потока автотранспорта.	2	5	1	1	3	
3	Критерии подобия и анализ размерностей при переносе энергии. π-теорема Бэкингема. Критерии подобия: Рейнольдса, Прандтля, Пекле, Галилея, Архимеда. Грасгофа, Рэлея, Эккерта. Число Нуссельта. Число Био. Коэффициент теплопередачи.	3	5	1	1	3	·
4	Краевые условия задач теплопроводности. Теплообмен с проницаемыми границами. Аналитические методы решения уравнения теплопроводности. Нестационарное температурное поле в полубесконечном теле (параболическая и гиперболические задачи) и в плоской пластине.	4	5	1	1	3	
5	Контакт двух полуограниченных тел. Охлаждение (нагревание) шара при граничных условиях 1-го рода. Теорема Дюамеля. Регулярный режим охлаждения (нагревания) тел. Точные решения для распределения температуры в слоистых течениях: течение Куэтта чистого сдвига,	5	5	1	2	2	

	течения в плоском канале с градиентом						
	давления между изотермическими стенками.						
	Тепловые волны.						
6	Уравнения теплового (температурного)						
	пограничного слоя. Теплообмен при						
	вынужденном обтекании плоской пластины	6	5	1	2	2	
	для различных чисел Прандтля. Свободная	0	3	1	2	2	
	конвекция у вертикальной пластины для						
	малых и больших чисел Прандтля.						
7	Режимы свободной, вынужденной и						
	смешанной конвекции при ламинарном и	7	7	4	2	4	
	турбулентном течении. Интегральные	7	7	1	2	4	
	уравнения импульса и энергии.						
8	Приближенное решение методом						
	интегральных соотношений для случая						
	безградиентного обтекания пластины.	0	_	4			
	Пограничные слои на искривленной стенке	8	5	1	2	2	
	и на теле вращения. Уравнение и решение						
	Швеца.						
9	Теплообмен при течении жидкости в каналах.						
	Стабилизированный теплообмен при						
	ламинарном течении. Теплообмен при						
	ламинарном течении жидкости в начальный						
	термический канал. Стабилизированный						
	теплообмен при турбулентном течении	9	6	2	2	2	
	жидкостей с малыми и большими числами						
	Прандтля Интеграл Лайона. Влияние						
	переменности свойств жидкости на						
	теплообмен при течении жидкостей и газов в						
10	трубах.						
10	Конвективный теплообмен при высоких						
	скоростях течения. Адиабатическая						
	температура стенки, коэффициент	10	5	2	2	1	
	восстановления, методы расчета теплоотдачи. Теплообмен на проницаемой поверхности.	10	3	2	2	1	
	Теплообмен на проницаемой поверхности. Теплообмен при поперечном обтекании						
	одиночного цилиндра и пучков труб.						
11	Пленочная и капельная конденсация.						
**	Теплообмен при пленочной конденсации на						
	вертикальной поверхности: Решение						
	Нуссельта. Конденсация на поверхности						
	горизонтального цилиндра. Конденсация	11	3	1	1	1	
	движущегося пара. Турбулентная пленка.				_		
	Качественные закономерности капельной						
	конденсации. Автоколебательные процессы						
	при конденсации внутри каналов.						
12	Кипение жидкостей. Образования						
	зародышей при фазовых переходах первого						
	рода. Гомогенный и гетерогенный		_				
	механизмы зарождения паровых пузырьков.	12	6	4	1	1	
	Основные закономерности роста и отрыва						
	паровых пузырьков от поверхности.						
	1 / 1	ı	1	1	1	L	

13	Теплообмен при пузырьковом и пленочном кипении в большом объеме. Кривая кипения. Кризисы кипения в большом объеме. Критерий устойчивости двухфазных систем. Различные модели кипения и основные критерии подобия при кипении в большом объеме. Особенности вскипания жидкости при ступенчатом «набросе» теплового потока и при сбросе давления.	13	5	3	1	1	
14	Уравнения переноса в двухкомпонентной среде. Закон Фика и обобщенный закон Фика. Коэффициенты термодиффузии и бародиффузии. Критерии подобия в процессах диффузии: Шервуда, Шмидта, Льюиса. Краевые условия для уравнения диффузии. Особенности задач диффузии в жидких и газовых смесях.	14	6	4	1	1	
15	Диффузионный погранслой. Аналогия процессов теплообмена и массообмена. Аналогия Рейнольдса. Тройная аналогия. Массообменные процессы между жидкостью и жидкостью, газом или паром. Абсорбция газа в стекающих пленках жидкости. Интенсификация массоотдачи волнами на свободной поверхности.	15	6	4	1	1	
16	Массообменные процессы между жидкостью, газом или паром и твердым телом. Механизмы диффузии в пористых телах: свободная, кнудсеновская, поверхностная диффузия. Адсорбция. Изотерма сорбции. Материальный баланс и кинетика адсорбции. Динамика адсорбции. Равновесная и неравновесная адсорбция.	15-16	7	4	1	2	
17	Консультации перед экзаменом		2				2
18	Самостоятельная подготовка обучающегося к экзамену		18				18
8.	Экзамен		2				2
	Всего		108	32	22	32	22

Программа и основное содержание лекций (32 часа)

• Программа курса лекций

Конвективный тепломассообмен. Основные положения.

Уравнения переноса (баланса) экстенсивных величин. Теорема Гаусса-Остроградского. Уравнения переноса произвольной скалярной и векторной величин. Перенос кинетической энергии системы. Баланс полной энергии. Перенос внутренней энергии (энтальпии, тепла). Гипотеза Фурье для молекулярного потока энергии. Уравнение теплопроводности параболического и ги-

перболического типа. Критерии подобия и анализ размерностей при переносе энергии. π -теорема Бэкингема. Критерии подобия: Рейнольдса, Прандтля, Пекле, Галилея, Архимеда. Грасгофа, Рэлея, Эккерта. Число Нуссельта. Число Био. Коэффициент теплопередачи. Краевые условия задач теплопроводности. Теплообмен с проницаемыми границами. Аналитические методы решения уравнения теплопроводности. Нестационарное температурное поле в полубесконечном теле (параболическая и гиперболические задачи) и в плоской пластине. Охлаждение (нагревание) шара при граничных условиях 1-го рода. Теорема Дюамеля. Регулярный режим охлаждения (нагревания) тел. Точные решения для распределения температуры в слоистых течениях: течение Куэтта, течения в плоском канале с градиентом давления. Тепловые волны. Уравнения теплового (температурного) пограничного слоя. Теплообмен при вынужденном обтекании плоской пластины для различных чисел Прандтля. Свободная конвекция у вертикальной пластины для малых и больших чисел Прандтля. Режимы свободной, вынужденной и смешанной конвекции при ламинарном и турбулентном течении. Интегральные уравнения импульса и энергии. Приближенное решение методом интегральных соотношений для случая безградиентного обтекания пластины. Пограничные слои на искривленной стенке и на теле вращения.

Теплообмен при фазовых превращениях.

Пленочная и капельная конденсация. Теплообмен при пленочной конденсации на вертикальной поверхности: Решение Нуссельта. Конденсация на поверхности горизонтального цилиндра. Конденсация движущегося пара. Турбулентная пленка. Кипение жидкостей. Образования зародышей при фазовых переходах первого рода. Гомогенный и гетерогенный механизмы зарождения паровых пузырьков. Основные закономерности роста и отрыва паровых пузырьков от поверхности.

Конвективный перенос в многокомпонентных средах.

Уравнения переноса в двухкомпонентной среде. Закон Фика. Коэффициенты термодиффузии и бародиффузии. Критерии подобия в процессах диффузии: Шервуда, Шмидта, Льюиса. Краевые условия для уравнения диффузии. Особенности задач диффузии в жидких и газовых смесях Диффузионный погранслой. Аналогия процессов теплообмена и массообмена. Аналогия Рейнольдса. Тройная аналогия. Массообменные процессы между жидкостью и жидкостью, газом или паром.

Программа практических занятий (22 часа)

Уравнение и решение Швеца. Теплообмен при течении жидкости в каналах. Стабилизированный теплообмен при ламинарном течении. Теплообмен при ламинарном течении жидкости в начальном термическом канале. Стабилизированный теплообмен при турбулентном течении жидкостей с малыми и большими числами Прандтля Интеграл Лайона. Конвективный теплообмен при высоких скоростях течения. Адиабатическая температура стенки, коэффициент восстановления, методы расчета теплоотдачи. Теплообмен на проницаемой поверхности. Теплообмен при поперечном обтекании одиночного цилиндра и пучков труб.

Теплообмен при пузырьковом и пленочном кипении в большом объеме. Кривая кипения. Кризисы кипения в большом объеме. Критерий устойчивости двухфазных систем. Различные модели кипения и основные критерии подобия при кипении в большом объеме.

Абсорбция газа в стекающих пленках жидкости. Интенсификация массоотдачи волнами на свободной поверхности. Массообменные процессы между жидкостью, газом или паром и твердым телом. Механизмы диффузии в пористых телах: свободная, кнудсеновская,

поверхностная диффузия. Адсорбция. Изотерма сорбции. Материальный баланс, кинетика и динамика адсорбции. Равновесная и неравновесная адсорбция. Стационарные решения.

Самостоятельная работа студентов (50 часов)

Перечень занятий на СРС				
	час			
Подготовка к практическим занятиям.	10			
Подготовка к контрольным работам	12			
Изучение теоретического материала, не освещаемого на лекциях	10			
Подготовка к экзамену	18			

5. Перечень учебной литературы.

5.1. Основная литература

- 1. Алексеенко С.В., Лежнин С.И. Теория процессов переноса в сплошных средах: Учеб. пособие- Новосибирск: НГУ, ИТ СО РАН, 2006.
- 2. Ландау Л. Д., Лифшиц Е. М. Гидродинамика. Издание 6-е. М.: Физматлит, 2015. 728 с. (Теоретрическая физика, т. VI).

5.2. Дополнительная литература

- 1. Берд Р., Стьюарт В., Лайтфут Е. Явления переноса. М.: Химия, 1974.
- 2. Гебхарт Б., Джалурия Й., Махаджан Р., Саммакия Б. Свободно-конвективные течения, тепло-массообмен. Кн. 1. М: Мир, 1991.
- 3 Кутателадзе С.С., Накоряков В.Е. Тепломассообмен и волны в газожидкостных системах. H-ск.; Наука, Сиб. отд., 1984.
- 4. Юдаев Б.Н. Теплопередача. М: Высшая школа, 1981.
- 5. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. М: Энергоиздат, 1981.
- 6. Лыков А.В. Теория теплопроводности. М: Высшая школа, 1967.
- 7. Левич В.Г. Физико-химическая гидродинамика. М: Физматгиз, 1959.
- 8. Шлихтинг Г. Теория пограничного слоя. М: Наука, Глав. редакция физ.-мат. лит-ры, 1974

6. Перечень учебно-методических материалов по самостоятельной работе обучающихся.

Самостоятельная работа студентов поддерживается следующими учебными пособиями:

- 1. Алексеенко С.В., Лежнин С.И. Теория процессов переноса в сплошных средах: Учеб. пособие- Новосибирск: НГУ, ИТ СО РАН, 2006.
- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Для освоения дисциплины используются следующие ресурсы:

- электронная информационно-образовательная среда НГУ (ЭИОС);
- образовательные интернет-порталы;
- информационно-телекоммуникационная сеть Интернет.

7.1 Современные профессиональные базы данных

Не используются.

7.2. Информационные справочные системы

Не используются.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

Для обеспечения реализации дисциплины используется стандартный комплект программного обеспечения (Π O), включающий регулярно обновляемое лицензионное Π O Windows и MS Office.

Использование специализированного программного обеспечения для изучения дисциплины не требуется.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине.

Для реализации дисциплины «Конвективный тепломассообмен» используются специальные помещения:

- 1. Учебные аудитории для проведения занятий лекционного типа, практических занятий, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля, промежуточной и итоговой аттестации.
 - 2. Помещения для самостоятельной работы обучающихся.

Учебные аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду НГУ.

Реализация дисциплины осуществляется с применением электронного обучения на платформе Zoom где обучение проводится на виртуальных аналогах, позволяющим достигать запланированных результатов по дисциплине.

Для проведения занятий лекционного типа предлагаются следующие наборы демонстрационного оборудования и учебно-наглядных пособий:

- комплект лекций-презентаций по темам дисциплины;

Материально-техническое обеспечение образовательного процесса по дисциплине для обучающихся из числа лиц с ограниченными возможностями здоровья осуществляется согласно «Порядку организации и осуществления образовательной деятельности по образовательным программам для инвалидов и лиц с ограниченными возможностями здоровья в Новосибирском государственном университете».

10. Оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

10.1 Порядок проведения текущего контроля и промежуточной аттестации по дисциплине

Текущий контроль

Текущий контроль осуществляется в ходе семестра путем опроса в начале каждой лекции по материалам предыдущей лекции, а также проведения коротких самостоятельных работ в начале каждого занятия с решением типовых задач, разобранных на предыдущем занятии. Студентам необходимо успешно выполнить две контрольные работы, предполагающие решение задач

Промежуточная аттестация

Освоение компетенций оценивается согласно шкале оценки уровня сформированности компетенции. Положительная оценка по дисциплине выставляется в том случае, если заявленная

компетенция ПК-1 сформирована не ниже порогового уровня в части, относящейся к формированию способности использовать специализированные знания в области конвективного тепломассообмена.

Окончательная оценка работы студента в течение семестра происходит на экзамене. Экзамен проводится в конце семестра в экзаменационную сессию по билетам в устной форме. Вопросы билета подбираются таким образом, чтобы проверить уровень сформированности компетенций.

Вывод об уровне сформированности компетенций принимается преподавателем. Каждый вопрос билета оценивается от 0 до 5 баллов. Положительная оценка ставится, когда все компетенции освоены не ниже порогового уровня. Оценки «отлично», «хорошо», «удовлетворительно» означают успешное прохождение промежуточной аттестации.

Соответствие индикаторов и результатов освоения дисциплины Таблица 10.1

Индикатор	Результат обучения по дисциплине	Оценочные средства
ПК 1.1 Применяет спе-	Знать основные понятия и физиче-	
циализированные зна-	ские принципы процессов тепломас-	
ния в области физики	сообмена, базовые математические	
при воспроизведении	модели и типы дифференциальных	
учебного материала с	уравнений, описывающих тепломас-	
требуемой степенью	сообменные процессы в сплошных	Пероположите моменто и и и
научной точности и пол-	средах; базовые разделы теории кон-	Проведение контрольных
ноты.	вективного тепломассообмена: основ-	работ, экзамен.
	ные понятия, модели, законы и тео-	
	рии; теоретические и методологиче-	
	ские основы и способы их использо-	
	вания при решении научно-инноваци-	
	онных задач.	
	Уметь анализировать системы урав-	
	нений переноса вещества и энергии в	
	сплошных средах в ламинарном и	
	турбулентных режимах, использовать	
	критерии подобия процессов переноса	
	использовать полученные теоретиче-	
	ские знания при решении практиче-	
	ских задач, относящихся к процессам	
	конвективного тепломассообмена; ре-	
ПК 1.2 Использует спе-	шать типовые учебные задачи по ос-	
циализированные зна-	новным разделам теории конвектив-	
ния при проведении	ного тепломассообмена; применять	Проведение контрольных
научных изысканий в	полученную теоретическую базу для	работ, экзамен.
избранной области	решения научно-инновационных за-	
	дач, грамотно работать с научной ли-	
	тературой с использованием новых	
	информационных технологий; приме-	
	нять полученные теоретические зна-	
	ния для самостоятельного освоения	
	специальных разделов теории конвек-	
	тивного тепломассообмена, необходи-	
	мых в профессиональной деятельно-	
	сти; определять необходимость при-	
	влечения дополнительных знаний из	

		T
	специальных разделов теории конвек-	
	тивного тепломассообмена для реше-	
	ния научно-инновационных задач;	
	применять знания теории конвектив-	
	ного тепломассообмена для анализа и	
	обработки результатов физических	
	экспериментов; проводить анализ	
	научной и технической информации в	
	области теории конвективного тепло-	
	массообмена и смежных дисциплин.	
	Владеть навыками самостоятельной	
	работы с учебной литературой по ба-	
	зовым разделам теории конвектив-	
	ного тепломассообмена; основной	
HIC 1 2 Deservation was 5	терминологией и понятийным аппара-	
ПК 1.3 Выбирает наибо-	том базовых разделов теории конвек-	
лее эффективные ме-	тивного тепломассообмена; навыками	
тоды построения теоре-	решения базовых задач по теории	
тических моделей физи-	конвективного тепломассообмена, ос-	
ческих явлений и про-	новными методами научных исследо-	Проведение контрольных
цессов в соответствии с	ваний; навыками использования тео-	работ, экзамен.
профилем подготовки в	ретических основ базовых разделов	
зависимости от специ-	теории конвективного тепломассооб-	
фики объекта исследо-	мена при решении научно-инноваци-	
вания.	онных задач, знаниями на уровне,	
	позволяющем проводить эффектив-	
	ный анализ научной и технической	
	информации в области конвективного	
	тепломассообмена и смежных дисци-	
	плин.	

10.2 Описание критериев и шкал оценивания индикаторов достижения результатов обучения по дисциплине «Конвективный тепломассообмен».

Таблица 10.2

Крите-	Планируемые резуль-		Уровень осв	оения компетенции	
рии оце- нивания резуль- татов обуче- ния	таты обучения (показатели достижения заданного уровня освоения компетенций)	Не сформиро- ван (0 баллов)	Пороговый уровень (3 балла)	Базовый уровень (4 балла)	Продвинутый уровень (5 баллов)
1	2	3	4	5	6
Полнота знаний	ПК 1.1	Уровень знаний ниже минимальных требований. Имеют место грубые ошибки.	Демонстрирует общие знания базовых понятий по темам/разделам дисциплины. Допускается значительное количество негрубых ошибок.	Уровень знаний соответствует программе подготовки по темам/разделам дисциплины. Допускается несколько негрубых/ несущественных ошибок. Не отвечает на дополнительные вопросы.	Уровень знаний соответствует программе подготовки по темам/разделам дисциплины. Свободно и аргументированно отвечает на дополнительные вопросы.

		Отсутствие ми-	Продемон-	Продемонстриро-	Продемонстри-
Наличие умений	ПК 1.2	нимальных	стрированы	ваны все основные	рованы все ос-
		умений.	частично ос-	умения. Решены	новные умения.
		Не умеет ре-	новные уме-	все основные зада-	Решены все ос-
		шать стандарт-	ния. Решены	ния с негрубыми	новные задания
		ные задачи.	типовые за-	ошибками или с	в полном объеме
		Имеют место	дачи. Допу-	недочетами.	без недочетов и
		грубые	щены негру-		ошибок.
		ошибки.	бые ошибки.		
Наличие навыков (владе- ние опы- том)	ПК 1.3	Отсутствие	Имеется ми-	Имеется базовый	Имеется базовый
		владения мате-	нимальный	набор навыков	набор навыков
		риалом по те-	набор навы-	при решении стан-	при решении
		мам/разделам	ков при ре-	дартных задач с	стандартных за-
		дисциплины.	шении стан-	некоторыми недо-	дач без ошибок и
		Нет навыков в	дартных за-	четами.	недочетов. Про-
		решении стан-	дач с некото-		демонстриро-
		дартных задач.	рыми недоче-		ваны знания по
		Наличие гру-	тами.		решению нестан-
		бых ошибок.			дартных задач.

10.3 Типовые контрольные задания и материалы, необходимые для оценки результатов обучения

1. Задания для самостоятельного решения.

Задание 1. Мелкопористый материал сделан их железа. Объемная доля пор составляет 80%. Определить коэффициент эффективной теплопроводности материала, использованием двух моделей — воздух и железо чередуются, а) продольными б) поперечными слоями. Коэффициенты теплопроводности $\lambda_{FE} = 30$, $\lambda_{AIR} = 0.025$.

Задание 2. Чему равна температура контакта двух полуограниченных тел 1 и 2, если до контакта они имели температуры T_1 и T_2 . Плотности, коэффициенты теплопроводности, удельные теплоемкости тел равны λ_1 , ρ_1 , C_1 и λ_2 , ρ_2 , C_2 соответственно. Чему равна температура контакта человеческого языка и сосновой щепки? куска железа? Тепловые активности воды, сосны, железа соответственно равны $K_{\text{вода}} = 1590$, $K_{\text{сосна}} = 470$, $K_{\text{железо}} = 10400$.

Задание 3. Теплопроводная несжимаемая жидкость натекает из бесконечности с температурой T_0 и с постоянной скоростью V по нормали на пористую пластину. Температура пластины равна T_1 . Теплопроводность жидкости λ , плотность ρ , удельная теплоемкость C. Найти стационарное поле температуры в жидкости и удельный поток тепла к пластине. Оценить максимальный размер пор d, при котором полученное решение будет справедливо.

Задание 4. На плоской стенке задан удельный поток тепла в жидкость (полубесконечное пространство). Дано: параметры жидкости λ , ρ , C. Начальная температура жидкости T_0 . Найти поле температуры и температуру стенки. Рассмотреть случаи: a) q = 0 при $t \le 0$, $q = q_0 = const$ при t > 0; g0 при g0 п

Задание 5. Найти распределение температуры и скорости жидкости при простом течении Куэтта (ширина канала h, нижняя стенка покоится, верхняя имеет скорость U). Вязкость жидкости зависит от температуры по закону: $\eta(T) = A \exp(-BT)$, где A и B — известные положительные константы. Зависимостью от температуры плотности жидкости ρ , коэффициента теплопроводности λ , удельной теплоемкости C пренебречь. Рассмотреть случаи:

а) температура нижней стенки T_0 верхней T_1 ($T_0 < T_1$), эффектами вязкой диссипации пренебречь

 δ) температура нижней и верхней стенок T_0 , тепло выделяется вследствие вязкой диссипации.

Задание 6. Определить стационарное распределение температуры и удельного потока тепла в жидкости, совершающей слоистое «пуазейлевское» течение по трубе кругового сечения (радиус трубы R, средняя по сечению скорость течения U). Температура стенки вдоль трубы меняется по линейному закону: $T_{CT}(x) = \Delta Tx/L$, где ΔT , L – известные положительные константы. Дано: параметры жидкости λ , ρ , C. Эффектами вязкой диссипации пренебречь.

Задание 7. В приближении пограничного слоя и при \Pr << 1 рассчитать профиль температуры около тонкой плоской пленки, наклеенной на нетеплопроводную стенку. Плотность тепловыделения (Вт/м^2) вдоль пленке q_0 =const, скорость внешнего невязкого обтекания пленки U, теплопроводность и температуропроводность жидкости λ и a. Температура на бесконечности равна T_0 .

Задание 8. На вертикальной изотермической стенке происходит конденсация неподвижного чистого пара. Среднее значение коэффициента теплоотдачи α_0 . К стенке прикладывают пластину толщиной δ и теплопроводности λ_P . Во сколько раз изменился расход конденсата, если число $Bi = \frac{\alpha_0 \delta}{\lambda_P} = 2$. Температуру стенки T_W , температуру насыщения пара T_0 и теплофизические свойства конденсата считать постоянными. Профиль температуры в пластине – линейный.

Задание 9. Рассчитать в приближении тонкого диффузионного пограничного слоя $(Pe_D >> 1)$ диффузию от твердой сферы радиуса R, обтекаемой потоком вязкой жидкости (Re >> 1). Определить локальный и интегральный критерий Нуссельта, если Pr << 1.

Задание 10. Из крана вытекает круглая струя воды, насыщенной хлором. С поверхности струи идет десорбция. Рассчитать толщину диффузионного слоя (в зависимости от расстояния от крана) в модели пограничного слоя на теле вращения. Дано: радиус и скорость струи при выходе из крана R_0 и U_0 ; ускорение свободного падения g; коэффициент диффузии D. Толщину диффузионного слоя $\delta(x)$ определить из тождества: $\delta(x) = \frac{D\Delta C}{j(x)}$, где j(x) – удельный поток массы хлора.

2. Вопросы к экзамену

- 1. Уравнения переноса энергии. Перенос кинетической энергии системы. Баланс полной энергии.
- 2. Перенос внутренней энергии (энтальпии, тепла). Гипотеза Фурье для молекулярного потока энергии. Уравнение теплопроводности.
- 3. Критерии подобия и анализ размерностей при переносе тепла. Число Нуссельта. Коэффициент теплоотдачи.
- 4. Уравнения теплового (температурного) пограничного слоя
- 5. Теплообмен при обтекании пластины. Теплообмен для вынужденной конвекции при различных числах Прандтля. Свободная конвекция у вертикальной пластины при различных числах Прандтля
- 6. Точные решения для распределения температуры в слоистых средах. Течения Куэтта, течения в канале с градиентом давления.
- 7. Ламинарные и турбулентные течения. Гипотеза «пути смешения» Прандтля. Универсальный (логарифмический) профиль скорости.

- 8. Турбулентные течения в трубах. Формулы Блазиуса, Прандтля.
- 9. Турбулентное трение и теплообмен при обтекании пластины. Вынужденное течение. Свободноконвективное течение.
- 10. Теплообмен при конденсации чистого пара. Формула Нуссельта. Турбулентная пленка. Капельная конденсация.
- 11. Пузырьковое и пленочное кипение чистой жидкости.
- 12. Модель кризиса кипения. Критерий устойчивости двухфазных систем.
- 13. Уравнения переноса в двухкомпонентной среде. Закон Фика. Критерии подобия в процессах диффузии.
- 14. Диффузионный погранслой. Аналогия процессов теплообмена и массообмена.
- 15. Массообменные процессы между жидкостью, газом или паром и твердым телом. Механизмы диффузии в пористых телах: свободная, кнудсеновская, поверхностная диффузия.
- 16. Адсорбция. Изотерма сорбции. Равновесная и неравновесная адсорбция.

3. Билеты к экзамену

Экзаменационные билеты по курсу КТ, ФФ, Кафедра неравновесных процессов, 3 курс

Билет 1

- 1. Теорема Гаусса-Остроградского о сведении интеграла по замкнутой поверхности S к интегралу по объему V . Примеры.
- 2. Охлаждение (нагревание) неограниченной пластины (метод разделения переменных)

Билет 2

- 1. Уравнения переноса (баланса) произвольной векторной экстенсивной величины.
- 2. Массообменные процессы между жидкостью (газом или паром) и твердым телом. Свободная и кнудсеновская диффузия. Поверхностная диффузия.

Билет 3

- 1. Уравнения теплового (температурного) пограничного слоя.
- 2. Массообменные процессы между жидкостью и жидкостью (газом или паром). Изотермическая пленочная абсорбция.

Билет 4

- 1. Перенос импульса. Уравнение Навье-Стокса.
- 2. Критерии подобия в процессах диффузии. Краевые условия для уравнения диффузии. Особенности задач диффузии.

Билет 5

- 1. Перенос кинетической энергии.
- 2. Пограничные слои на искривленной стенке и на теле вращения. Уравнение и решение Швеца.

Билет 6

- 1. Перенос полной энергии.
- 2. Основные критерии подобия при исследовании кипении в большом объеме.

Билет 7

- 1. Перенос внутренней энергии.
- 2. Перенос в двухкомпонентной среде. Уравнение переноса в двухкомпонентной среде. Закон Фика.

Билет 8

- 1. Гипотеза Фурье для молекулярного потока энергии. Коэффициенты теплопроводности для различных веществ.
- 2. Аналогия Рейнольдса для теплообмена. Тройная аналогия.

Билет 9

- 1. Различные виды уравнение переноса тепла с учетом гипотезы Фурье. Гиперболическое уравнение теплопроводности.
- 2. Пузырьковое и пленочное кипение чистой жидкости. Модель кризиса кипения. Критерий устойчивости двухфазных систем.

Билет 10

- 1. Критерии подобия и анализ размерностей в задачах переноса тепла. π -теорема Бэкингема
- 2. Теплообмен для вынужденной конвекции при больших числах Прандтля

Билет 11

- 1. Теплопередача. Термическое сопротивление. Критерий Био.
- 2. Свободная конвекция у вертикальной пластины.

Билет 12

- 1. Краевые условия для уравнения теплопроводности.
- 2. Теплообмен для вынужденной конвекции при малых числах Прандтля.

Билет 13

- 1. Аналитические методы решения уравнения теплопроводности (метод интегрального преобразования Лапласа)/ Примеры.
- 2. Ламинарная пленка при конденсации неподвижного пара. Формула Нуссельта.

Билет 14

- 1. Уравнения переноса (баланса) произвольной скалярной экстенсивной величины
- 2. Адсорбция Изотерма адсорбции Равновесная адсорбция

Билет 15

- 1. Точные решения для распределения температуры в слоистых течениях: а) течение Куэтта чистого сдвига; б) течения в плоском канале с градиентом давления между изотермическими плоскими стенками
- 2. Адсорбция Неравновесная сорбция. Стационарные решения.

Пример экзаменационного билета

Оценочные материалы по промежуточной аттестации, предназначенные для проверки соответствия уровня подготовки по дисциплине требованиям СУОС, хранятся на кафедреразработчике РПД в печатном и электронном виде.

Лист актуализации рабочей программы по дисциплине «Конвективный тепломассообмен» по направлению подготовки 03.03.02 Физика Профиль «Общая и фундаментальная физика»

№	Характеристика внесенных изменений (с указанием пунктов документа)	Дата и № протокола Учёного совета ФФ НГУ	Подпись ответственного