МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Новосибирский национальный исследовательский государственный университет» (Новосибирский государственный университет, НГУ)

Физический факультет Кафедра физики неравновесных процессов

Рабочая программа дисциплины

НЕРАВНОВЕСНАЯ ТЕРМОДИНАМИКА И ЗАКОНЫ ИЗЛУЧЕНИЯ

направление подготовки: **03.03.02 Физика** направленность (профиль): **Общая и фундаментальная физика**

Форма обучения **Очная**

		Виды учебных занятий (в часах)			іасах)	Проме	куточная аттестац	(ия	в часах	()
		Контактная работа обучающихся с преподавателем			гра-	ая ме-	Контактна обучающихся с 1	-		пем
Семестр	Общий объем	Лекции	Практические занятия	Лабораторные за- нятия	Самостоятельная ра- бота, не включая пе- риод сессии	Самостоятельная подготовка к проме- жуточной аттестации	Консультации	Зачет	Дифференциро- ванный зачет	Экзамен
1	2	3	4	5	6	7	8	9	10	11
6	72	22	10		18	18	2			2

Всего 72 часа / 2 зачётные единицы, из них:

- контактная работа 36 часов

Компетенции ПК-1

Ответственный за образовательную программу, д.ф.-м.н., проф.

С. В. Цыбуля

Новосибирск, 2022

Содержание

	Перечень планируемых результатов обучения по дисциплине, соотнесённых с нируемыми результатами освоения образовательной программы	.3
2.	Место дисциплины в структуре образовательной программы.	.5
часс	Трудоёмкость дисциплины в зачётных единицах с указанием количества академических ов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных ятий) и на самостоятельную работу.	.6
	Содержание дисциплины, структурированное по темам (разделам) с указанием отведённог их количества академических часов и видов учебных занятий	
5.	Перечень учебной литературы.	0
6.	Перечень учебно-методических материалов по самостоятельной работе обучающихся1	. 1
	Перечень ресурсов информационно-телекоммуникационной сети «Интернет», бходимых для освоения дисциплины1	1
	Перечень информационных технологий, используемых при осуществлении азовательного процесса по дисциплине	1
	Материально-техническая база, необходимая для осуществления образовательного цесса по дисциплине	2
10. дис	Оценочные средства для проведения текущего контроля и промежуточной аттестации по циплине	

1. Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы.

Учебный курс «Неравновесная термодинамика и законы излучения» направлен на обучение студентов кафедры физики неравновесных процессов, получивших базовую подготовку по общефизическим дисциплинам, и продолжающих изучать термодинамику и статистическую физику.

Дисциплина ориентирована на студентов третьего курса физического факультета, освоивших базовый уровень общефизической подготовки и продолжающих изучать термодинамику, статистическую физику и квантовую механику. На кафедре физики неравновесных процессов данный курс традиционно состоит из двух частей. Первая часть - неравновесная термодинамика, вторая часть — законы излучения. Курс призван дать студентам кафедры представление о неравновесной термодинамике, научить решать широкий класс задач, подготовить понятийную базу для освоения различных курсов теоретической физики и курсов, связанных с тепло- и массопереносом, включая теорию радиационного теплообмена, а также сформировать общекультурные и профессиональные навыки.

Цели курса - дать представление о теории термодинамической устойчивости и теории термодинамических флуктуаций, о неравновесных и необратимых процессах. Большое внимание уделяется второму началу термодинамики, понятию энтропии. Рассматривается диссипативные процессы и производство энтропии, их роль в неравновесной термодинамике, кинетические коэффициенты для различных неравновесных процессов, соотношения Онзагера, теорема Пригожина о минимальном производстве энтропии для стационарных состояний. Особое внимание уделено рассмотрению диссипативных процессов в газовой динамике (производство Навье-Стоксовском газе), термодиффузионных И термомеханических, термоэлектрических и термомагнитных процессов. В курсе рассматривается теория обобщенной восприимчивости, соотношения Крамерса-Кронига, связь вещественной и мнимой частей диэлектрической проницаемости между собой и с производством энтропии. Вторая часть курса посвящена законам излучения, и включает в себя рассмотрение законов равновесного излучения, различных радиационных и излучательных процессов, и введение в кинетические процессы излучения.

Дисциплина нацелена на формирование у выпускника следующей профессиональной компетеннии:

Результаты освоения		
образовательной про-	Индикатары	Размин тоти и объящамия на видинивника
граммы	Индикаторы	Результаты обучения по дисциплине
(компетенции)		
		Знать 1-ое начало термодинамики и
	ПК 1.1 Применяет специали-	уравнения состояния, 2-ое начало термо-
ПК-1 Способность	зированные знания в области	динамики в различных формулировках,
использовать		термодинамические функции (потенци-
специализированные		алы), термодинамическое и статистиче-
знания в области фи-	мой степенью научной точно-	ское определение энтропии; теорию тер-
зики при построении		модинамической устойчивости и термо-
теоретических моде-	ПК 1.2 Использует специали-	динамических флуктуаций, термодина-
лей физических явле-	зированные знания при про-	мические неравенства; что такое произ-
ний и процессов в со-	ведении научных изысканий	водство энтропии и диссипативные про-
ответствии с профи-	в избранной области.	цессы; теорию Онзагера неравновесной
лем подготовки в за-		гермодинамики; правило Кюри о связи
висимости от специ-	эффективные методы постро-	процессов различной тензорной размер-
фики объекта иссле-	1	ности; различные процессы, приводящие
дования	физических явлений и про-	к излучению и поглощению фотонов; за-
	1	коны равновесного излучения, распреде-
		ление Планка, закон Стефана-Больцмана

Розуни тоти и оспосния		
Результаты освоения образовательной про-		
	Индикаторы	Результаты обучения по дисциплине
граммы (компетенции)		
(компетенции)	филом польстории в зависи	и закон смещения Вина, законы
	филем подготовки в зависи-	
	мости от специфики объекта	Кирхгофа для поверхностей и объёмов.
	исследования.	Иметь представление: о термодиффузи-
		онных, термомеханических, термоэлек-
		грических и термомагнитных процессах;
		о производстве энтропии в диссипатив-
		ных процессах; о коэффициентах Эйн-
		штейна для излучения; о кинетическом
		уравнении для распространения излуче-
		ния и приближенных методах его реше-
		ния (разложение по полиномам Ле-
		жандра, диффузионное приближение,
		метод Шустера и Чандрасекхара, при-
		ближение Росселанда и Планка);
		базовые разделы неравновесной термо-
		динамики: основные понятия, модели,
		законы и теории; теоретические и мето-
		дологические основы и способы их ис-
		пользования при решении научно-инно-
		вационных задач.
		Уметь использовать метод якобианов
		для получения термодинамических соот-
		ношений для квазистатических процес-
		сов, вычислять термодинамические не-
		равенства для различных термодинамические ческих, определять термодинамические
		флуктуации; решать типовые учебные
		задачи по основным разделам неравно-
		весной термодинамики; применять полу-
		ченную теоретическую базу для реше-
		ния научно-инновационных задач, гра-
		мотно работать с научной литературой с
		использованием новых информацион-
		ных технологий; применять полученные
		теоретические знания для самостоятель-
		ного освоения специальных разделов
		неравновесной термодинамики, необхо-
		димых в профессиональной деятельно-
		сти; определять необходимость привле-
		чения дополнительных знаний из специ-
		альных разделов неравновесной термо-
		динамики для решения научно-иннова-
		ционных задач; применять знания нерав-
		новесной термодинамики для анализа и
		обработки результатов физических экс-
		периментов; проводить анализ научной
		и технической информации в области

Результаты освоения образовательной программы (компетенции)	Индикаторы	Результаты обучения по дисциплине
		неравновесной термодинамики и смежных дисциплин. Владеть техникой вычисления кинетических коэффициентов для различных неравновесных процессов, техникой использования соотношений Крамерса-Кронига для определения обобщенной восприимчивости для различных систем; навыками самостоятельной работы с учебной литературой по базовым разделам неравновесной термодинамики; основной терминологией и понятийным аппаратом базовых разделов неравновесной термодинамики; навыками решения базовых задач по неравновесной термодинамике; основными методами научных исследований; навыками использования теоретических основ базовых разделов неравновесной термодинамики при решении научно-инновационных задач; знаниями на уровне, позволяющем проводить эффективный анализ научной и технической информации в области неравновесной термодинамики и смежных дисциплин.

2. Место дисциплины в структуре образовательной программы.

Курс «Неравновесная термодинамика и законы излучения» читается студентам кафедры физики неравновесных процессов в весеннем семестре 3 курса параллельно с курсом «Термодинамика и статистическая физика». Курс является одной из профессиональных дисциплин по выбору, реализуемых кафедрой физики неравновесных процессов. В настоящей программе учтено, что многие вопросы равновесной термодинамики студенты изучали в курсе «Молекулярная физика», осваивают при выполнении лабораторных и курсовых работ на практикуме.

Студенты должны иметь знания по общей физике, классической механике и электродинамике, знания основных положений и принципов квантовой механики, без чего невозможно усвоить разнообразные излучаемые процессы. По математическим дисциплинам необходимы знания основ линейной алгебры и математического анализа, теории комплексных переменных и преобразований Фурье, необходимо умение решать простые дифференциальные уравнения, умение применять эти знания при решении задач.

3. Трудоёмкость дисциплины в зачётных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу.

	Виды учебных занятий (в часах)			Промежуточная аттестация (в часах)						
	<u>-</u>		Контактная работа обучающихся с преподавателем		ая ме-	Контактная работа обучающихся с преподавателем				
Семестр	Общий объем	Лекции	Практические занятия	Лабораторные за- нягия	Самостоятельная ра- бота, не включая пе- риод сессии	Самостоятельная подготовка к проме- жуточной аттестации	Консультации	Зачет	Дифференциро- ванный зачет	Экзамен
1	2	3	4	5	6	7	8	9	10	11
6	72	22	10		18	18	2			2
Всего 72 ч	Всего 72 часа / 2 зачётные единицы, из них:									

- контактная работа 36 часов

Компетенции ПК-1

Реализация дисциплины предусматривает практическую подготовку при проведении следующих видов занятий, предусматривающих участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью: лекции, практические занятия, консультации, самостоятельная работа студента и её контроль преподавателями с помощью заданий, экзамен.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости: задания для самостоятельного решения, подготовка реферата.
- промежуточная аттестация: экзамен.

Общая трудоемкость рабочей программы дисциплины составляет 2 зачетные единицы.

- занятия лекционного типа 22 часов;
- практические занятия 10 часов;
- \bullet самостоятельная работа обучающегося в течение семестра, не включая период сессии -18 часов;
- промежуточная аттестация (подготовка к сдаче экзамена, консультации и экзамен) 22 часа. Объём контактной работы обучающегося с преподавателем (занятия лекционного типа, практические занятия, групповые консультации, экзамен) составляет 36 часов.
 - 4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведённого на них количества академических часов и видов учебных занятий.

	Раздел дисциплины		Виды уче самостоя тов и т	у студен-	тестация		
п/п				_	Аудиторные часы		очная атт
			Всего	Лекции	Практические занятия	Сам. работа во время занятий (не включая период сессии)	Промежуточная аттестация (в часах)
1	2	3	4	5	6	7	8
1	Термодинамические системы, нулевое начало термодинамики. Первое начало термодинамики. Второе начало термодинамики. Энтропия. Термодинамические потенциалы и термодинамические коэффициенты.	1	2	2			
2	Теория термодинамической устойчивости и термодинамические неравенства. Принцип Ле-Шателье – Брауна.	2	2	2			
3	Теория флуктуаций и случайные процессы.	3	4	2		2	
4	Термодинамическая теория необратимых процессов. Производство энтропии в гидродинамических системах (уравнения Навье-Стокса).	4	4	1	1	2	
5	Диффузия, теплопроводность, вязкость, термодиффузия (эффект Cope).	5	4	2		2	
6	Термомеханические явления - формула Пуазейля, эффект Джоуля-Томсона, изоэнтропическое перетекание (турбина Капицы), фонтанирование жидкости.	6	4	1	1	2	
7	Термоэлектрические эффекты. Термо ЭДС (явление Зеебека), эффект Пельтье, эффект Томсона.	7	4	2		2	
8	Термомагнитные явления. Эффект Реги-Ледюка, эффект Холла, эффект Эттингсхаузена.	8	4	1	1	2	
9	Обобщенная восприимчивость и спектральные разложения. Динамическая восприимчивость. Дисперсионные соотношения Крамерса-Кронига.	9	2	1	1		
10	Связь производства энтропии с мнимой частью динамической восприимчивости.	10	4	2		2	•
11	Теория и законы излучения. Теория равновесного излучения. Распределение Планка, закон Стефана- Больцмана, закон смещения Вина.	11	2	1	1		
12	Законы излучения Кирхгофа, закон Ламберта.	12	4	1	1	2	

	Вынужденное излучение. Коэффициенты Эйнштейна.						
13	Излучательные и поглощательные процессы.	13	4	1	1	2	
14	Уравнение переноса излучения.						
	Локальное равновесие и приближение лучи-						
	стого теплообмена.	14	2	1	1		
	Излучение от полупространства и от слоя						
	конечной толщины.						
15	Методы решения кинетического уравнения для						
	излучения. Приближение «вперед-назад»,	15	4	1	1	2	
	разложение по сферическим гармоникам.				1	_	
	Приближение Росселанда и Планка.						
16	Неравновесное излучение низкотемпературной	16	4	1	1	2	
	плазмы. Элементы физики лазеров.	10	7	1	1	2	
17	Консультации		2				2
18	Самостоятельная работа в период подготовки к		18				18
	промежуточной аттестации		10				10
19	Экзамен		2				2
	Всего		72	22	10	18	22

Программа и основное содержание лекций (22 часов)

І. Неравновесная термодинамика.

1. Равновесная термодинамика.

- 1.1. Термодинамические системы и переменные, нулевое начало термодинамики. Работа и теплота, уравнения состояния вещества. Первое начало термодинамики.
- 1.2. Внутренняя энергия функция состояния. Второе начало термодинамики (различные формулировки). Энтропия. Эквивалентность PV- и TS-плоскостей.
- 1.3. Термодинамические функции (потенциалы) и условия термодинамического равновесия. Полные дифференциалы, и преобразование Лежандра. Свободная энергия Гельмгольца, потенциал Гиббса, химический потенциал, Ω -потенциал. Уравнение Гиббса-Дюгема.

2. Теория термодинамической стабильности.

- 2.1. Метод Якобианов, термодинамические коэффициенты, соотношения Максвелла. Экстремальные свойства термодинамических потенциалов.
- 2.2. Теория термодинамической устойчивости.
- 2.3. Термодинамические неравенства. Принцип Ле-Шателье Брауна.

3. Теория флуктуаций и случайные процессы.

- 3.1. Общая формула (Эйнштейна) для вероятности флуктуационного отклонения от равновесного состояния.
- 3.2. Термодинамические флуктуации.
- 3.3. Флуктуации в классических системах.
- 3.4. Спектральные представления для случайной переменной и корреляционной функции.

4. Термодинамическая теория необратимых процессов.

- 4.1. Общий формализм. Второе начало для неквазистатических процессов. Квадратичная форма для отклонения энтропии от равновесия.
- 4.2. Термодинамические силы и термодинамические потоки в линейном приближении.
- 4.3. Уравнение баланса массы, импульса, энергии и энтропии.

- 4.4. Производство энтропии в гидродинамических системах (уравнения Навье-Стокса) для смесей химически реагирующих газов. Закон действующих масс.
- 4.5. Соотношения взаимности Онзагера для кинетических коэффициентов: $L_{ik}=L_{ki}$.
- 4.6. Принцип Кюри. Связь между кинетическими коэффициентами различной тензорной размерности.
- 4.7. Принцип Ле-Шателье Брауна с точки зрения неравновесной термодинамики.
- 4.8. Теорема о минимуме производства энтропии для стационарных состояний.

5. Примеры применения теории Онзагера.

- 5.1. Термодиффузионные процессы.
- 5.1. Диффузия, теплопроводность, вязкость, термодиффузия (эффекты Соре и Дюфура).
- 5.2. Производство энтропии в термодиффузионных процессах.

6. Термомеханические явления.

- 6.1. Течение Пуазейля,
- 6.2. Эффект Джоуля-Томсона,
- 6.3. Изоэнтропическое перетекание (турбина Капицы),
- 6.4. Фонтанирование жидкости.

7. Термоэлектрические эффекты.

- 7.1. Термо ЭДС (явление Зеебека) возникновение разности потенциала на концах разомкнутой электрической цепи, когда спаи проводников поддерживаются при разных температурах.
- 7.2. Эффект Пельтье выделение тепла при прохождении тока через спаи различных проводников в изотермической системе.
- 7.3. Эффект Томсона перенос тепла электрическим током вдоль однородного проводника при наличии перепада температуры.
- 7.4. Производство энтропии в термоэлектрических процессах.

8. Термомагнитные явления.

- 8.1. Эффект Реги-Ледюка возникновение вторичной разности температур в проводнике с градиентом температур, помещенном в магнитное поле.
- 8.2. Эффект Холла возникновение электрического поля, перпендикулярного плотности тока и магнитному полю.
- 8.3. Эффект Эттингсхаузена возникновение градиента температуры в проводнике с током под действием магнитного поля.

9. Обобщенная восприимчивость и спектральные разложения.

- 9.1. Системы с памятью. Принцип причинности.
- 9.2. Спектральные представления для силы, отклика, восприимчивости.
- 9.3. Динамическая восприимчивость. Аналитические свойства $\chi(\omega)$. Дисперсионные соотношения Крамерса-Кронига.
- 9.4. Связь спектральных представлений для кинетических коэффициентов Онзагера с динамической восприимчивостью. Условие на обобщенную динамическую восприимчивость: $\omega \text{Im}\chi(\omega) = \omega \chi''(\omega) > 0$.

10. Связь производства энтропии с мнимой частью динамической восприимчивости.

- 10.1. Связь производства энтропии с мнимой частью динамической восприимчивости.
- 10.2. Периодические воздействия. Стационарные колебания системы под воздействием внешней силы.
- 10.3. Диэлектрическая проницаемость и поглощение света.

П. Законы излучения.

11. Теория равновесного излучения. Теория и законы излучения. Теория равновесного излучения. Распределение Планка, закон Стефана-Больцмана, закон смещения Вина.

12. Законы излучения Кирхгофа.

- 12.1. Законы излучения Кирхгофа для поверхностей. Закон Ламберта.
- 12.2. Вынужденное излучение в классической и квантовой теориях. Коэффициенты Эйнштейна.

13. Излучательные и поглощательные процессы.

- 13.1. Рассеяние, поглощение и испускание излучения в газах. Типы электронных переходов.
- 13.2. Свободно-свободные переходы. Тормозное излучение. Свободносвязанные переходы. Фотоионизация и фоторекомбинация.
- 13.3. Связанно-связанные переходы. Излучательные переходы между дискретными уровнями атомов и молекул. Спектры атомов и молекул.
- 13.4. Рэлеевское и рамановское (комбинационное) рассеяние. Рассеяние Мандельштама-Бриллюэна (роль флуктуаций, акустических и фононных колебаний в среде).
- 13.5. Уширение спектральных линий. Форма спектральных линий. Распространение излучения в плазме. Распространение резонансного излучения в слабоионизованной плазме.

Программа практических занятий (10 часов)

14. Уравнение переноса излучения.

- 14.1. Локальное равновесие и приближение лучистого теплообмена.
- 14.2. Излучение от полупространства и от слоя конечной толщины.

Уравнение переноса излучения.

15. Методы решения кинетического уравнения для излучения.

- 15.1. Разложение по сферическим гармоникам.
- 15.2. Приближение «вперед-назад» (Шустера), и приближение Чандрасекхара.
- 15.3. Диффузионное приближение, приближение Росселанда и Планка.

16. Неравновесное излучение

- 16.1. Излучение низкотемпературной плазмы.
- 16.2. Элементы физики лазеров. СО2 лазер.

Самостоятельная работа студентов (36 часов)

Перечень занятий на СРС	Объем,	
	час	
Подготовка к практическим занятиям.	6	
Подготовка к контрольным работам		
Изучение теоретического материала, не освещаемого на лекциях		
Подготовка к экзамену		

5. Перечень учебной литературы.

5.1. Основная литература

- 1. Ю.Б. Румер, М.Ш. Рывкин. Термодинамика, статистическая физика и кинетика. Новосибирск, Изд. НГУ, 2000, Глава X.
- 2. Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика. М. «Наука», 1976.

5.2. Дополнительная литература

- 1. Л.Д. Ландау и Е.М. Лифшиц. Теоретическая физика. Том Х. Е.М. Лифшиц, Л.П. Питаевский. Физическая кинетика. М.: «Наука», 1979.
- 2. Я.Б. Зельдович, Ю.П. Райзер. Физика ударных волн и высокотемпературных гидродинамических явлений. М. «Наука», 1966. (Главы II, V).
- 3. Д.Н. Зубарев. Неравновесная статистическая термодинамика. М. «Мир», 1971.
- 4. С. де Гроот, П.Мазур, Неравновесная термодинамика. М. ИЛ, 1964.
- 5. В.В. Соболев. Курс теоретической астрофизики. М. «Наука», 1975.
- 6. Р. Качмарек. Введение в физику лазеров. М. «Мир», 1981.
- 7. Р. Кубо. Термодинамика, М.: «Мир», 1970.
- 8. И.А. Квасников. Термодинамика и статистическая физика. Теория неравновесных систем. Москва, Издательство Московского Университета, 2002, Глава I, IV.
- 9. Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика. М. «Наука», 1976.
- 10. К.Хир. Статистическая механика, кинетическая теория и стохастические процессы. М.: «Мир», 1976.
- 11. В.Г. Севастьяненко. Перенос излучения. Учебное пособие. Новосибирск, НГУ. 1979

6. Перечень учебно-методических материалов по самостоятельной работе обучающихся.

Самостоятельная работа студентов поддерживается следующими учебными пособиями:

- 1. Ю.Б. Румер, М.Ш. Рывкин. Термодинамика, статистическая физика и кинетика. Новосибирск, Изд. НГУ, 2000, Глава Х.
- 2. В.Г. Севастьяненко. Перенос излучения. Учебное пособие. Новосибирск, НГУ. 1979

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Для освоения дисциплины используются следующие ресурсы:

- электронная информационно-образовательная среда НГУ (ЭИОС);
- образовательные интернет-порталы;
- информационно-телекоммуникационная сеть Интернет.

7.1 Современные профессиональные базы данных

Не используются.

7.2. Информационные справочные системы

Не используются.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

Для обеспечения реализации дисциплины используется стандартный комплект программного обеспечения (Π O), включающий регулярно обновляемое лицензионное Π O Windows и MS Office.

Использование специализированного программного обеспечения для изучения дисциплины не требуется.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине.

Для реализации дисциплины «Неравновесная термодинамика и законы излучения» используются специальные помещения:

- 1. Учебные аудитории для проведения занятий лекционного типа, практических занятий, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля, промежуточной и итоговой аттестации.
 - 2. Помещения для самостоятельной работы обучающихся.

Учебные аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду НГУ.

Реализация дисциплины осуществляется с применением электронного обучения на платформе Zoom где обучение проводится на виртуальных аналогах, позволяющим достигать запланированных результатов по дисциплине.

Для проведения занятий лекционного типа предлагаются следующие наборы демонстрационного оборудования и учебно-наглядных пособий:

- комплект лекций-презентаций по темам дисциплины;

Материально-техническое обеспечение образовательного процесса по дисциплине для обучающихся из числа лиц с ограниченными возможностями здоровья осуществляется согласно «Порядку организации и осуществления образовательной деятельности по образовательным программам для инвалидов и лиц с ограниченными возможностями здоровья в Новосибирском государственном университете».

10. Оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

10.1 Порядок проведения текущего контроля и промежуточной аттестации по дисциплине

Текущий контроль

Текущий контроль осуществляется в ходе семестра путем опроса в начале каждой лекции по материалам предыдущей лекции, а также проведения коротких самостоятельных работ в начале каждого занятия с решением типовых задач, разобранных на предыдущем занятии.

Промежуточная аттестация

Освоение компетенций оценивается согласно шкале оценки уровня сформированности компетенции. Положительная оценка по дисциплине выставляется в том случае, если заявленная компетенция сформирована ПК-1 не ниже порогового уровня в части, относящейся к формированию способности использовать специализированные знания в области неравновесной термодинамики в профессиональной деятельности.

Окончательная оценка работы студента в течение семестра происходит на экзамене. Экзамен проводится в конце семестра в экзаменационную сессию по билетам в устной форме. Вопросы билета подбираются таким образом, чтобы проверить уровень сформированности компетенции ПК-1.

Вывод об уровне сформированности компетенций принимается преподавателем. Каждый вопрос билета оценивается от 0 до 5 баллов. Положительная оценка ставится, когда все компетенции освоены не ниже порогового уровня. Оценки «отлично», «хорошо», «удовлетворительно» означают успешное прохождение промежуточной аттестации.

Соответствие индикаторов и результатов освоения дисциплины Таблица 10.1

Имимотор	Возун тот обущения не нистин	Таолица 10.1
Индикатор	Результат обучения по дисциплине	Оценочные средства
ПК 1.1 Применяет спе-	Знать 1-ое начало термодинамики и	
циализированные зна-	уравнения состояния, 2-ое начало тер-	
ния в области физики	модинамики в различных формули-	
при воспроизведении	ровках, термодинамические функции	
учебного материала с	(потенциалы), термодинамическое и	
требуемой степенью	статистическое определение энтро-	
научной точности и пол-	пии; теорию термодинамической	
ноты.	устойчивости и термодинамических	
	флуктуаций, термодинамические не-	
	равенства; что такое производство эн-	
	тропии и диссипативные процессы;	
	теорию Онзагера неравновесной тер-	
	модинамики; правило Кюри о связи	
	процессов различной тензорной раз-	
	мерности; различные процессы, при-	
	водящие к излучению и поглощению	
	фотонов; законы равновесного излу-	
	чения, распределение Планка, закон	
	Стефана-Больцмана и закон смещения	Прородомия компроници
	Вина, законы Кирхгофа для поверхно-	Проведение контрольных
	стей и объёмов. Иметь представление:	работ, экзамен.
	о термодиффузионных, термомехани-	
	ческих, термоэлектрических и термо-	
	магнитных процессах; о производстве	
	энтропии в диссипативных процессах;	
	о коэффициентах Эйнштейна для из-	
	лучения; о кинетическом уравнении	
	для распространения излучения и	
	приближенных методах его решения	
	(разложение по полиномам Лежандра,	
	диффузионное приближение, метод	
	Шустера и Чандрасекхара, приближе-	
	ние Росселанда и Планка);	
	базовые разделы неравновесной тер-	
	модинамики: основные понятия, мо-	
	дели, законы и теории; теоретические	
	и методологические основы и спо-	
	собы их использования при решении	
	научно-инновационных задач.	

		I
ПК 1.2 Использует специализированные знания при проведении научных изысканий в избранной области	Уметь использовать метод якобианов для получения термодинамических соотношений для квазистатических процессов, вычислять термодинамические неравенства для различных термодинамических, определять термодинамические флуктуации; решать типовые учебные задачи по основным разделам неравновесной термодинамики; применять полученную теоретическую базу для решения научноинновационных задач, грамотно работать с научной литературой с использованием новых информационных технологий; применять полученные теоретические знания для самостоятельного освоения специальных разделов неравновесной термодинамики, необходимых в профессиональной деятельности; определять необходимость привлечения дополнительных знаний из специальных разделов неравновесной термодинамики для решения научно-инновационных задач; применять знания неравновесной термодинамики для анализа и обработки результатов физических экспериментов; проводить анализ научной и технической информации в области неравновесной термодинамики и смежных дисциплин.	Проведение контрольных работ, экзамен.
ПК 1.3 Выбирает наиболее эффективные методы построения теоретических моделей физических явлений и процессов в соответствии с профилем подготовки в зависимости от специфики объекта исследования.	Владеть техникой вычисления кинетических коэффициентов для различных неравновесных процессов, техникой использования соотношений Крамерса-Кронига для определения обобщенной восприимчивости для различных систем; навыками самостоятельной работы с учебной литературой по базовым разделам неравновесной термодинамики; основной терминологией и понятийным аппаратом базовых разделов неравновесной термодинамики; навыками решения базовых задач по неравновесной термодинамике; основными методами научных исследований; навыками использования теоретических основ базовых разделов неравновесной термодинамики при решении научно-инновационных задач; знаниями на уровне, позволяющем проводить эффективный анализ	Проведение контрольных работ, экзамен.

	научной и технической информации в области неравновесной термодина-	
!	мики и смежных дисциплин.	

10.2 Описание критериев и шкал оценивания индикаторов достижения результатов обучения по дисциплине «Неравновесная термодинамика и законы излучения».

Таблина 10.2

		Таолица 10.2			
Крите-	Планируемые резуль-	Уровень освоения компетенции			
рии оце-	таты обучения				
нивания	(показатели достиже-	Не сформиро-	Пороговый	Базовый	Продвинутый
резуль-	ния заданного уровня	ван	уровень	уровень	уровень
татов	освоения компетен-	(0 баллов)	(3 балла)	(4 балла)	(5 баллов)
обуче-	ций)	(о оашов)	(5 Gaina)	(4 Gaina)	(Э баллов)
ния	ции)				
1	2	3	4	5	6
Полнота знаний		Уровень зна-	Демонстри-	Уровень знаний	Уровень знаний
		ний ниже ми-	рует общие	соответствует про-	соответствует
		нимальных	знания базо-	грамме подго-	программе под-
		требований.	вых понятий	товки по те-	готовки по те-
		Имеют место	по темам/раз-	мам/разделам дис-	мам/разделам
	ПК 1.1	грубые	делам дисци-	циплины. Допус-	дисциплины.
		ошибки.	плины. До-	кается несколько	Свободно и аргу-
			пускается	негрубых/	ментированно
			значительное	несущественных	отвечает на до-
			количество	ошибок. Не отве-	полнительные
			негрубых	чает на дополни-	вопросы.
			ошибок.	тельные вопросы.	
	HK 1.2	Отсутствие ми-	Продемон-	Продемонстриро-	Продемонстри-
		нимальных	стрированы	ваны все основные	рованы все ос-
		умений.	частично ос-	умения. Решены	новные умения.
11		Не умеет ре-	новные уме-	все основные зада-	Решены все ос-
Наличие умений	ПК 1.2	шать стандарт-	ния. Решены	ния с негрубыми	новные задания
		ные задачи.	типовые за-	ошибками или с	в полном объеме
		Имеют место	дачи. Допу-	недочетами.	без недочетов и
		грубые	щены негру-		ошибок.
		ошибки.	бые ошибки.		
Наличие навыков		Отсутствие	Имеется ми-	Имеется базовый	Имеется базовый
		владения мате-	нимальный	набор навыков	набор навыков
		риалом по те-	набор навы-	при решении стан-	при решении
	ПК 1.3	мам/разделам	ков при ре-	дартных задач с	стандартных за-
		дисциплины.	шении стан-	некоторыми недо-	дач без ошибок и
(владе-		Нет навыков в	дартных за-	четами.	недочетов. Про-
ние опытом)		решении стан-	дач с некото-		демонстриро-
		дартных задач.	рыми недоче-		ваны знания по
		Наличие гру-	тами.		решению нестан-
		бых ошибок.			дартных задач.

10.3 Типовые контрольные задания и материалы, необходимые для оценки результатов обучения

Образцы вопросов и задач для подготовки к экзамену:

- 1. Микроканоническое, каноническое и большое каноническое распределения.
- 2. Теория термодинамической стабильности.
- 3. Термодинамические неравенства.
- 4. Термодинамические неравенства. Принцип Ле-Шателье Брауна.
- 5. Общая формула для вероятности флуктуационного отклонения от равновесного состояния
- 6. Химический потенциал. Флуктуации плотности.

- 7. Соотношения взаимности Онзагера для кинетических коэффициентов: $L_{ik}=L_{ki}$.
- 8. Термодинамические силы и термодинамические потоки в линейном приближении.
- 9. Принцип Кюри. Связь между кинетическими коэффициентами различной тензорной размерности.
- 10. Производство энтропии. Выражение через термодинамические силы и потоки.
- 11. Производство энтропии в вязком теплопроводном газе.
- 12. Аналитические свойства динамической восприимчивости. Соотношения Крамерса-Кронига.
- 13. Дисперсионные соотношения Крамерса-Кронига для динамической восприимчивости.
- 14. Системы с памятью. Принцип причинности. Динамическая восприимчивость.
- 15. Отклик колебательной системы на периодические воздействия.
- 16. Производство энтропии. Выражение через термодинамические силы и потоки.
- 17. Соотношения Онзагера. Диффузия, теплопроводность, вязкость, термодиффузия.
- 18. Производство энтропии в вязком теплопроводном газе.
- 19. Диффузия, теплопроводность, термодиффузия (эффект Соре).
- 20. Термомеханические явления.
- 21. Термоэлектрические эффекты. Термо-ЭДС (явление Зеебека).
- 22. Термоэлектрические эффекты. Эффект Пельтье.
- 23. Термоэлектрические эффекты. Эффект Томсона.
- 24. Термомагнитные явления. Эффекты Реги-Ледюка и Холла.
- 25. Законы Кирхгофа и закон Ламберта для излучения.
- 26. Законы Кирхгофа для поверхностей.
- 27. Законы Кирхгофа для излучения для объёма газа или плазмы.
- 28. Кинетическое уравнение для излучения.
- 29. Диффузионное приближение для решения кинетического уравнения лучистого переноса.
- 30. Связь производства энтропии с мнимой частью динамической восприимчивости.
- 31. Производство энтропии. Составляющие различной тензорной размерности.
- 32. Распределение Планка для равновесного излучения.
- 33. Закон смещения Вина и закон Стефана-Больцмана.
- 34. Приближения Планка и Росселанда для кинетического уравнения лучистого переноса.
- 35. Излучение от полупространства и от слоя конечной толщины.
- 36. Коэффициенты Эйнштейна для излучения. Инверсная заселенность.
- 37. Кинетическое уравнение для излучения в приближении ЛТР.

Написание рефератов по курсу «Неравновесная термодинамика и законы излучения».

За время семестра для получения положительной итоговой оценки студентам предлагается написать реферат на одну из тем курса. При подготовке доклада студент должен углубленно изучить тему, ознакомиться с соответствующими публикациями в научных журналах и подготовить 20 минутный доклад. Доклад представляется перед всей группой в форме электронной презентации. Во время презентации доклада студент должен продемонстрировать понимание и знание не только заданной темы, но и ее связь с тематикой курса. В ряде случаев предлагается написание одного реферата на двух студентов, что может способствовать развитию навыков коллективного творчества.

Примерный список рефератов (срок сдачи, 25 мая):

- 1. Термодиффузионные процессы. Эффекты Соре и Дюфора.
- 2. Сдвиговая и объёмная вязкость в газах и жидкостях.
- 3. Эффект Зеебека. Термопары.
- 4. Эффект Пельтье.

- 5. Эффект Томсона.
- 6. Термомеханические явления. Эффект фонтанирования.
- 6. Дросселирование и изоэнтропическое перетекание. Турбина Капицы, турбодетандер.
- 7. Термомагнитные явления. Эффект Холла, Нернста, Эттингсхаузена и Реги-Ледюка.
- 8. Термомагнитные явления и теория Онзагера.
- 9. Соотношение Крамерса-Кронига.
- 10. Диэлектрическая проницаемость и поглощение света.
- 11. Равновесное излучение в наномире и в космосе (от переизлучения крупных молекул до реликтового излучения).
- 12. Теория Ми.
- 13. Различные виды излучения.
- 14. Броуновское движение и диффузия.
- 15. Производство энтропии и мнимая часть обобщенной восприимчивости.
- 16. Производство энтропии в разреженном газе и соотношения Онзагера.
- 17. Принцип наименьшего рассеяния энергии Онзагера и принцип наименьшего производства энтропии.

Экзаменационные билеты по курсу «Неравновесная термодинамика и законы излучения».

Билет № 1.

- 1. Теория термодинамической стабильности.
- 2. Распределение Планка для равновесного излучения.

Билет № 2.

- 1. Производство энтропии. Выражение через термодинамические силы и потоки.
- 2. Коэффициенты Эйнштейна для спонтанного и вынужденного излучения.

Билет № 3.

- 1. Термоэлектрические эффекты. Термо-ЭДС (явление Зеебека).
- 2. Законы Кирхгофа для поверхностей.

Билет № 4.

- 1. Термоэлектрические эффекты. Эффект Пельтье.
- 2. Закон смещения Вина равновесного излучения.

Билет № 5.

- 1. Термоэлектрические эффекты. Эффект Томсона.
- 2. Кинетическое уравнение для излучения.

Билет № 6.

- 1. Принцип Кюри. Связь между кинетическими коэффициентами различной тензорной размерности.
- 2. Производство энтропии в вязком теплопроводном газе.

Билет № 7.

- 1. Термомагнитные явления. Эффекты Реги-Ледюка и Холла.
- 2. Диффузионное приближение для решения кинетического уравнения лучистого переноса.

Билет № 8.

- 1. Принцип Ле-Шателье Брауна с точки зрения неравновесной термодинамики.
- 2. Отклик колебательной системы на периодические воздействия.

Билет № 9.

- 1. Соотношения Онзагера. Диффузия, теплопроводность, вязкость, термодиффузия.
- 2. Связь производства энтропии с мнимой частью динамической восприимчивости.

Билет № 10.

- 1. Производство энтропии. Составляющие различной тензорной размерности.
- 2. Приближения Планка и Росселанда для кинетического уравнения лучистого переноса.

Билет № 11.

- 1. Связь производства энтропии с мнимой частью динамической восприимчивости.
- 2. Излучение от полупространства и от слоя конечной толщины.

Билет № 12.

- 1. Закон смещения Вина и закон Стефана-Больцмана.
- 2. Термоэлектрические эффекты. Эффект Пельтье.

Билет № 13.

- 1. Термодинамические неравенства и принцип Ле-Шателье Брауна.
- 2. Коэффициенты Эйнштейна для излучения. Инверсная заселенность.

Билет № 14.

- 1. Диффузия, теплопроводность, термодиффузия (эффект Соре).
- 2. Кинетическое уравнение для излучения в приближении ЛТР

Билет № 15.

- 1. Соотношения взаимности Онзагера для кинетических коэффициентов: $L_{ik}=L_{ki}$.
- 2. Коэффициенты Эйнштейна для спонтанных и вынужденных переходов.

Билет № 16.

- 1. Системы с памятью. Принцип причинности. Динамическая восприимчивость.
- 2. Приближения Планка и Росселанда для кинетического уравнения лучистого переноса.

Билет № 17.

- 1. Дисперсионные соотношения Крамерса-Кронига для динамической восприимчивости.
- 2. Излучение от полупространства и от слоя конечной толщины.

Билет № 18.

- 1. Законы Кирхгофа для излучения.
- 2. Термомеханические явления.

Билет № 19.

- 1. Теория термодинамической стабильности. Термодинамические неравенства.
- 2. Законы Кирхгофа для излучения.

Билет № 20.

- 1. Соотношения Онзагера. Термоэлектрические явления.
- 2. Законы Кирхгофа и закон Ламберта для излучения.

Форма экзаменационного билета представлена на рисунке

МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Новосибирский национальный исследовательский государственный университет» (Новосибирский государственный университет, НГУ)

1.
 2.
 3.

Составитель

Физический факультет ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _____

Оценочные материалы по промежуточной аттестации, предназначенные для проверки соответствия уровня подготовки по дисциплине требованиям СУОС, хранятся на кафедреразработчике РПД в печатном и электронном виде.

__ /Ф.И.О. преподавателя/

(подпись) 20 г.

Лист актуализации рабочей программы по дисциплине «Неравновесная термодинамика и законы излучения» по направлению подготовки 03.03.02 Физика Профиль «Общая и фундаментальная физика»

№	Характеристика внесенных изменений (с указанием пунктов документа)	Дата и № протокола Учёного совета ФФ НГУ	Подпись ответственного