МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Новосибирский национальный исследовательский государственный университет» (Новосибирский государственный университет, НГУ)

Физический факультет Кафедра физики ускорителей

Рабочая программа дисциплины

ВВЕДЕНИЕ В ФИЗИКУ ЦИКЛИЧЕСКИХ УСКОРИТЕЛЕЙ

направление подготовки: **03.03.02 Физика** направленность (профиль): **Общая и фундаментальная физика**

Форма обучения **Очная**

		Виды учебных занятий (в часах)				Промежуточная аттестация (в часах)				
		Контактная работа обучающихся с преподавателем		гра-	ная эоме- тации	Контактная работа обучающихся с преподавателем				
Семестр	Общий объем	Лекции	Практические занятия	Лабораторные за- нятия	Самостоятельная ра- бота, не включая пе- риод сессии	Самостоятельная подготовка к проме жуточной аттестаци	Консультации	Зачет	Дифференциро- ванный зачет	Экзамен
1	2	3	4	5	6	7	8	9	10	11
5	36	32				2			2	

Всего 36 часа / 1 зачётных единицы, из них:

- контактная работа 34 часов

Компетенции ПК-1

Ответственный за образовательную программу, д.ф.-м.н., проф.

С.В. Цыбуля

Новосибирск, 2022

Содержание

. Перечень планируемых результатов обучения по дисциплине, соотнесённых с ланируемыми результатами освоения образовательной программы	3
. Место дисциплины в структуре образовательной программы	4
. Трудоёмкость дисциплины в зачётных единицах с указанием количества академических асов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных анятий) и на самостоятельную работу	
. Содержание дисциплины, структурированное по темам (разделам) с указанием отведённо а них количества академических часов и видов учебных занятий.	
. Перечень учебной литературы.	6
. Перечень учебно-методических материалов по самостоятельной работе обучающихся	6
. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», еобходимых для освоения дисциплины	7
. Перечень информационных технологий, используемых при осуществлении бразовательного процесса по дисциплине.	7
. Материально-техническая база, необходимая для осуществления образовательного роцесса по дисциплине	7
0. Оценочные средства для проведения текущего контроля и промежуточной аттестации г исциплине.	

1. Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы.

Дисциплина «Введение в физику циклических ускорителей» предназначена для обучения специалистов, которые будут в своей последующей работе использовать знания об устройстве и принципе работы циклических ускорителей элементарных заряженных частиц, предназначенных для научных и промышленных целей. Данная дисциплина имеет своей целью дать профессионально подготовленным физикам информацию о принципах работы и конструкции основных компонентов современных циклических ускорителей, а также основных физических явлениях, влияющих на параметры пучков заряженных частиц.

Уникальная особенность курса «Введение в физику циклических ускорителей» заключается в том, что студентам передаются не только современные знания в данной области, но и весь накопленный многолетний опыт Института ядерной физики им. Г.И. Будкера СО РАН. Поскольку институт стоит у истоков ускорительной техники, весь курс построен с учетом практических знаний, имеющихся у его коллектива. Кроме этого, студенты могут «вживую» ознакомится со многими макетами различных ускорительных разработок, а также с действующими установками, созданными в Институте ядерной физики им. Г.И. Будкера СО РАН.

Дисциплина нацелена на формирование у выпускника следующей профессиональной компетенции:

Результаты освоения образо- вательной программы (компетенции)	Индикаторы	Результаты обучения по дисци- плине
ПК-1 Способность использовать специализированные знания в области физики при построении теоретических моделей физических явлений и процессов в соответствии с профилем подготовки в зависимости от специфики объекта исследования	ПК 1.1 Применяет специализированные знания в области физики при воспроизведении учебного материала с требуемой степенью научной точности и полноты. ПК 1.2 Использует специализированные знания при проведении научных изысканий в избранной области. ПК 1.3 Выбирает наиболее эффективные методы построения теоретических моделей физических явлений и процессов в соответствии с профилем подготовки в зависимости от специфики объекта исследования	Знать об особенностях циклических ускорителей при достижении предельно высоких энергий заряженных частиц; знать о преимуществах коллайдера с высокой светимостью при постановке высокоэффективных экспериментов по физике элементарных частиц. Уметь решать типовые задачи при проектировании и эксплуатации коллайдерной установки; рассчитывать вклад квантовых флуктуаций в основные характеристики пучка частиц в ускорительной установке. Владеть исследовательским и технологическим потенциалом применения циклических ускорителей; теоретическими основами, описывающими динамику пучка заряженных частиц в электромагнитной системе ускорителя.

Всюду, где это допускается уровнем знаний и подготовки студентов, материал лекционного курса увязывается с современными исследованиями в области физики ускорителей. Поскольку институт стоит у истоков ускорительной техники, весь курс построен с учетом практических зна-

ний, имеющихся у его коллектива. Кроме этого, студенты могут «вживую» ознакомится со многими макетами различных ускорительных разработок, а также с действующими установками, созданными в Институте ядерной физики им. Г.И. Будкера СО РАН.

2. Место дисциплины в структуре образовательной программы.

Дисциплина «Введение в физику циклических ускорителей» является дисциплиной вариативной части подготовки бакалавра по направлению «03.03.02 Физика» и реализуется в осеннем семестре 3-го курса кафедрой физики ускорителей. Для его восприятия требуется предварительная подготовка студентов по таким физическим и математическим дисциплинам, как электродинамика, а также высшая алгебра, математический анализ, дифференциальные уравнения. Он должен предшествовать выполнению квалификационной работы бакалавра по данной специализации, т.к. дает бакалавру необходимые знания, навыки и предоставляет инструменты для выполнения исследовательской работы в области расчетов динамики частиц в ускорителях в рамках подготовки его квалификационной работы (Практика и научноисследовательская работа в НИИ).

3. Трудоёмкость дисциплины в зачётных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу.

		Виды учебных занятий (в часах)			Промежуточная аттестация (в часах)					
	Общий объем	Контактная работа обучающихся с преподавателем		те-	ая ме- ции	Контактна обучающихся с г	-		лем	
Семестр		Лекции	Практические занятия	Лабораторные за- нягия	Самостоятельная ра- бота, не включая пе- риод сессии	Самостоятельная подготовка к промежуточной аттестации	Консультации	Зачет	Дифференциро- ванный зачет	Экзамен
1	2	3	4	5	6	7	8	9	10	11
5	36	32				2			2	

- контактная работа 34 часа

Компетенции ПК-1

Реализация дисциплины предусматривает практическую подготовку при проведении следующих видов занятий, предусматривающих участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью: лекции, самостоятельная работа студента и её контроль преподавателем с помощью опросов, дифференцированный зачет.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости: опрос по материалам предыдущей лекции
- промежуточная аттестация: дифференцированный зачет.

Общая трудоемкость рабочей программы дисциплины составляет 1 зачетную единицу.

- занятия лекционного типа 32 часа;
- промежуточная аттестация (подготовка к зачету, дифференцированный зачет) 2 часа.

Объём контактной работы обучающегося с преподавателем (занятия лекционного типа, дифференцированный зачет) составляет 34 часа.

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведённого на них количества академических часов и видов учебных занятий.

Дисциплина «Введение в физику циклических ускорителей» представляет собой полугодовой курс, читаемый на 3-м курсе физического факультета НГУ в 5 семестре. Общая трудоемкость дисциплины составляет 1 зачётную единицу, 36 академических часа.

		Неделя семестра	Виды у самосто тов и	ная асах)			
№ п/п	Раздел дисциплины			-	торные	зремя ючая пи)	Промежуточная тестация (в часа
	Неделя		Всего	Лекции	Практические занятия	Сам. работа во время занятий (не включая период сессии)	Промежуточная аттестация (в часах)
1	2	3	4	5	6	7	8
1.	Уравнения движения частиц в циклических ускорителях. Фокусировка в неоднородном магнитном поле.	1	2	2			
2	Устойчивость поперечного движения частиц в циклических ускорителях. Бетатронные колебания. Матрица перехода. Слабая фокусировка.	2	2	2			
3	Бетатронные колебания в периодических фокусирующих системах. Устойчивость решений уравнения Хилла, теорема Флоке. Огибающая бетатронных колебаний в жесткофокусирующем ускорителе.	3	2	2			·
4	Влияние возмущений ведущего поля в циклических магнитных структурах. Искажение равновесной орбиты. Запрещенные полосы бетатронных частот.	4	2	2			
5.	Замкнутая орбита для частиц с неравновесной энергией. Коэффициент удлинения орбит, удлинение периода обращения.	5	2	2			
6.	Продольное движение частиц, резонансное ускорение, автофазировка, уравнения синхротронных колебаний.	6	2	2			
7.	Синхротронное излучение, его характеристики и влияние на динамику циркулирующих электронов. Радиационное затухание колебаний.	7	2	2			
	Возбуждение колебаний вследствие квантовых флуктуаций синхротронного излучения. Установившиеся размеры пучка в электронном накопителе.	8	2	2			
	Анализ нелинейных возмущений осциллятора методом усреднения. Нерезонансные возмущения. Хроматизм и кубическая нелинейность бетатронных колебаний.	9	2	2			

				1	1	1
	Внешний (простой) резонанс ангармонических колебаний. Амплитудно-частотная характеристика, фазовый портрет, области бетатронной автофазировки.	10*	2	2		
	Параметрический резонанс, нелинейные резонансы. Амплитудно-частотная характеристика, фазовый портрет, области бетатронной автофазировки.	11*	2	2		
	Взаимодействие встречающихся сгустков. Параметр пространственного заряда ξ.	12	2	2		
	Ограничение светимости встречных пучков "эффектами встречи".	13	2	2		
	Эффекты, определяющие время жизни пучка в накопителе.	14*	2	2		
	Методы инжекции. Методы охлаждения протонных пучков: электронное охлаждение, стохастическое охлаждение.	15*	2	2		
	Влияние пространственного заряда на динамику интенсивного пучка. Когерентные неустойчивости пучка, их диагностика и подавление.	16	2	2		
7.	Самостоятельная работа в период подготовки к промежуточной аттестации	17	2			2
	Дифференцированный зачет	17	2			 2
8.	Всего		36	32		4

Самостоятельная работа студентов (2 часа)

Перечень занятий на СРС	Объем,
	час
Самостоятельная подготовка к дифференцированному зачету	2

5. Перечень учебной литературы.

5.1. Основная литература

1. А.А.Коломенский, А.Н.Лебедев. Теория циклических ускорителей, М., Физматгиз, 1962.

5.2. Дополнительная литература

- 1. А.Н.Лебедев, А.В.Шальнов. Основы физики и техники ускорителей, М., Энергоатомиздат, 1991.
- 2. Е.А.Переведенцев. Радиационные эффекты в циклических ускорителях. Учебное пособие по спецкурсу «Циклические ускорители», 2005. http://accel.inp.nsk.su/library/Perevedentsev_RadEffects.pdf

Интернет ресурсы:

1. Методические материалы на сайте кафедры физики ускорителей ФФ НГУ http://accel.inp.nsk.su/

6. Перечень учебно-методических материалов по самостоятельной работе обучающихся

Самостоятельная работа студентов поддерживается следующими учебными пособиями:

1. А.А. Коломенский и А.Н.Лебедев. Теория циклических ускорителей. М.: Физматгиз, 1962.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

Для освоения дисциплины используются следующие ресурсы:

- электронная информационно-образовательная среда НГУ (ЭИОС);
- образовательные интернет-порталы;
- информационно-телекоммуникационная сеть Интернет.

7.1 Современные профессиональные базы данных

Не используется.

7.2. Информационные справочные системы

Не используются.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

Для обеспечения реализации дисциплины используется стандартный комплект программного обеспечения (ПО), включающий регулярно обновляемое лицензионное ПО Windows и MS Office.

Использование специализированного программного обеспечения для изучения дисциплины не требуется.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине.

Для реализации дисциплины «Введение в физику циклических ускорителей» используются специальные помещения:

- 1. Учебные аудитории для проведения занятий лекционного типа, практических занятий, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля, промежуточной и итоговой аттестации.
 - 2. Помещения для самостоятельной работы обучающихся.

Учебные аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду НГУ.

Материально-техническое обеспечение образовательного процесса по дисциплине для обучающихся из числа лиц с ограниченными возможностями здоровья осуществляется согласно «Порядку организации и осуществления образовательной деятельности по образовательным программам для инвалидов и лиц с ограниченными возможностями здоровья в Новосибирском государственном университете».

10. Оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

10.1 Порядок проведения текущего контроля и промежуточной аттестации по дисциплине

Текущий контроль

Текущий контроль осуществляется в ходе семестра путем опроса в начале каждой лекции по материалам предыдущей лекции.

Промежуточная аттестация

Освоение компетенций оценивается согласно шкале оценки уровня сформированности компетенции. Положительная оценка по дисциплине выставляется в том случае, если заявленная компетенция ПК-1 сформирована не ниже порогового уровня в части, относящейся к формированию способности использовать специализированные знания в области эксплуатации циклических ускорителей.

Окончательная оценка работы студента в течение семестра происходит на дифференцированном зачете. Дифференцированный зачет проводится в конце семестра в зачетную сессию по билетам в устной форме. Вопросы билета подбираются таким образом, чтобы проверить уровень сформированности компетенции ПК-1.

Вывод об уровне сформированности компетенций принимается преподавателем. Каждый вопрос билета оценивается от 0 до 5 баллов. Положительная оценка ставится, когда все компетенции освоены не ниже порогового уровня. Оценки «отлично», «хорошо», «удовлетворительно» означают успешное прохождение промежуточной аттестации.

Соответствие индикаторов и результатов освоения дисциплины

	таолица тол			
Индикатор	Результат обучения по дисциплине	Оценочные сред-		
ПК 1.1 Применяет специализированные знания в области физики при воспроизведении учебного материала с требуемой степенью научной точности и полноты.	Знать об особенностях циклических ускорителей при достижении предельно высоких энергий заряженных частиц; знать о преимуществах коллайдера с высокой светимостью при постановке высокоэффективных экспериментов по физике элементарных частиц.	Проведение опроса, дифференцированный зачет.		
ПК 1.2 Использует специализированные знания при проведении научных изысканий в избранной области	Уметь решать типовые задачи при проектировании и эксплуатации коллайдерной установки; рассчитывать вклад квантовых флуктуаций в основные характеристики пучка частиц в ускорительной установке.	Проведение опроса, дифференцированный зачет.		

ПК 1.3 Выбирает наиболее
эффективные методы по-
строения теоретических мо-
делей физических явлений
и процессов в соответствии
с профилем подготовки в
зависимости от специфики
объекта исследования

Владеть исследовательским и технологическим потенциалом применения циклических ускорителей; теоретическими основами, описывающими динамику пучка заряженных частиц в электромагнитной системе ускорителя.

Проведение опроса, дифференцированный зачет.

10.2 Описание критериев и шкал оценивания индикаторов достижения результатов обучения по дисциплине «Введение в физику циклических ускорителей».

Таблица 10.2

Крите- Планируемые резуль-		Уровень освоения компетенции						
рии оце- нивания резуль- татов обуче- ния	таты обучения (показатели достижения заданного уровня освоения компетенций)	Не сформиро- ван (0 баллов)	Пороговый уровень (3 балла)	Базовый уровень (4 балла)	Продвинутый уровень (5 баллов)			
1	2	3	4	5	6			
Полнота знаний	ПК 1.1	Уровень знаний ниже минимальных требований. Имеют место грубые ошибки.	Демонстрирует общие знания базовых понятий по темам/разделам дисциплины. Допускается значительное количество негрубых ошибок.	Уровень знаний соответствует программе подготовки по темам/разделам дисциплины. Допускается несколько негрубых/ несущественных ошибок. Не отвечает на дополнительные вопросы.	Уровень знаний соответствует программе подготовки по темам/разделам дисциплины. Свободно и аргументированно отвечает на дополнительные вопросы.			
Наличие умений	ПК 1.2	Отсутствие минимальных умений. Не умеет решать стандартные задачи. Имеют место грубые ошибки.	Продемон- стрированы частично ос- новные уме- ния. Решены типовые за- дачи. Допу- щены негру- бые ошибки.	Продемонстрированы все основные умения. Решены все основные задания с негрубыми ошибками или с недочетами.	Продемонстрированы все основные умения. Решены все основные задания в полном объеме без недочетов и ошибок.			
Наличие навыков (владе- ние опы- том)	ПК 1.3	Отсутствие владения материалом по темам/разделам дисциплины. Нет навыков в решении стандартных задач. Наличие грубых ошибок.	Имеется минимальный набор навыков при решении стандартных задач с некоторыми недочетами.	Имеется базовый набор навыков при решении стандартных задач с некоторыми недочетами.	Имеется базовый набор навыков при решении стандартных задач без ошибок и недочетов. Продемонстрированы знания по решению нестандартных задач.			

10.3 Типовые контрольные задания и материалы, необходимые для оценки результатов обучения

Примеры вопросов к дифференцированному зачету:

1. Уравнения движения частиц в циклических ускорителях. Фокусировка в неоднородном

магнитном поле.

- 2. Устойчивость поперечного движения частиц в циклических ускорителях. Бетатронные колебания. Матрица перехода. Слабая фокусировка.
- 3. Бетатронные колебания в периодических фокусирующих системах. Устойчивость решений уравнения Хилла, теорема Флоке. Огибающая бетатронных колебаний в жесткофокусирующем ускорителе.
- 4. Влияние возмущений ведущего поля в циклических магнитных структурах. Искажение равновесной орбиты. Запрещенные полосы бетатронных частот.
- 5. Замкнутая орбита для частиц с неравновесной энергией. Коэффициент удлинения орбит, удлинение периода обращения.
- 6. Продольное движение частиц, резонансное ускорение, автофазировка, уравнения синхротронных колебаний.
- 7. Синхротронное излучение, его характеристики и влияние на динамику циркулирующих электронов. Радиационное затухание колебаний.
- 8. Возбуждение колебаний вследствие квантовых флуктуаций синхротронного излучения. Установившиеся размеры пучка в электронном накопителе.
- 9. Взаимодействие встречающихся сгустков. Параметр пространственного заряда ξ.
- 10. Ограничение светимости встречных пучков «эффектами встречи».

Пример билета к зачету.

- 1. Уравнения движения частиц в циклических ускорителях. Фокусировка в неоднородном магнитном поле.
- 2. Синхротронное излучение, его характеристики и влияние на динамику циркулирующих электронов. Радиационное затухание колебаний.

Форма билета к зачету представлена на рисунке

M	ИИНОБРНАУКИ РОССИИ					
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет» (Новосибирский государственный университет, НГУ)						
	Физический факультет					
	БИЛЕТ №					
1 2						
Составитель (подпись)	_ /Ф.И.О. преподавателя/					
«»20 г.						

Оценочные материалы по промежуточной аттестации, предназначенные для проверки соответствия уровня подготовки по дисциплине требованиям СУОС, хранятся на кафедреразработчике РПД в печатном и электронном виде.

Лист актуализации рабочей программы по дисциплине «Введение в физику циклических ускорителей» по направлению подготовки 03.03.02 Физика Профиль «Общая и фундаментальная физика»

№	Характеристика внесенных изменений (с указанием пунктов документа)	Дата и № протокола Учёного совета ФФ НГУ	Подпись ответственного