Подведены итоги совместного конкурса «Рентгеновские, синхротронные, нейтронные методы для решения задач материаловедения». Данный конкурс был организован Новосибирским государственным университетом и Сибирским отделением в рамках реализации исследовательской программы (проекта) «Научное обоснование и создание инфраструктуры на основе использования синхротронного излучения для диагностики функционально-градиентных материалов». В нем приняли участие 29 проектов по нескольким актуальным научным направлениям, в частности, новым и адаптированным методикам диагностики структуры фазового состава функционально-градиентных материалов, а также материалов, получаемых методом электронно-лучевого аддитивного производства с использованием синхротронного излучения, в том числе времяразрешенным методикам исследования эволюции структурно-фазового состава и мониторингу скоростного импульсного ударного воздействия. Также представленные проекты затрагивали аппаратно-техническое оснащение экспериментальных станций на существующей синхротронной инфраструктуре (СЦСТИ) для дальнейшей их адаптации на вводимом в эксплуатацию источнике СИ поколения 4+ (ЦКП СКИФ). Также в молодежных проектах были представлены результаты комплексных исследований структуры и свойств конструкционных материалов, металлов, сплавов, получаемых методом электронно-лучевого аддитивного производства с использованием синхротронного излучения. Некоторые работы были посвящены разработке программного обеспечения, новых подходов и алгоритмов обработки экспериментальных данных, полученных с использованием синхротронного излучения.
Проекты оценивались по десятибалльной шкале. Проводили экспертизу конкурсных работ и выставляли оценки ведущие специалисты Сибирского отделения РАН, научно-исследовательских институтов, а также Центра коллективного пользования «Сибирский кольцевой источник фотонов». Конкурсная комиссия работала под председательством заместителя председателя СО РАН, научного руководителя Института теоретической и прикладной механики им. С. А. Христиановича СО РАН академика Василия Фомина. По количеству набранных баллов были определены 12 проектов 13 авторов. Обладатели первых шести мест получили разовую финансовую поддержку в размере 180 тысяч рублей, а занявшие 7-12 места — по 120 тысяч рублей.
Дипломы победителям конкурса вручали на заседании Президиума Сибирского отделения РАН. Вручая дипломы победителям, председатель СО РАН академик Валентин Пармон высказал пожелание о том, чтобы их работа была реализована на практике и от имени всего Сибирского отделения Российской академии наук поздравил молодых ученых с победой в конкурсе. Академик Василий Фомин пояснил, что Сибирское отделение РАН выиграло большой грант, в реализации которого принимает участие и НГУ. Он уточнил, что в техническом задании проекта прописан пункт о том, что НГУ будет в течение трех лет на регулярной основе будет проводить конкурсы молодых ученых. Также Василий Фомин подчеркнул важность нынешнего конкурса, тематика которого была связана с их привлечением к будущей работе на ЦКП СКИФ.
— Победившие работы в основном относятся к области развития различных способов диагностики с использованием рентгеновского и синхротронного излучения и некоторым исследованиям материалов с использованием этих методов. Этот конкурс быль организован СО РАН и НГУ в первую очередь для поддержки в подготовке кадров для ЦКП СКИФ, запуск которого состоится в ближайшей перспективе. Соответственно, нам нужны специалисты, владеющие методами исследования различных объектов и способные предлагать новые задачи для СКИФ, — прокомментировал заместитель декана физического факультета НГУ доктор физико-математических наук Сергей Цыбуля.
Разовую финансовую поддержку в размере 180 000 рублей получили проекты:
«Разработка и обоснование методологии in situ рентгеновской диагностики термической стабильности металлокерамических композитов с временным разрешением». Автор проекта — Илья Герцель;
«Разработка дифракционной методики исследования функционально-градиентных материалов на основе никелевых сплавов». Автор проекта — Александр Горкуша;
«Разработка оптической схемы станции «Монокристалл» ЦКП СКИФ для in situ и operando рентгеноструктурного анализа с высоким пространственным и временным разрешением». Автор проекта — Григорий Жданкин;
«Расчеты ключевых параметров генерирующей структуры и проектирование канала вывода ИК-излучения для проекта станции «ИК-диагностика» синхротронного источника СКИФ». Автор проекта — Никита Ташкеев;
«Изучение ударно-волновой сжимаемости политетрафторэтилена с помощью синхротронного излучения». Автор проекта — Артур Асылкаев;
«Разработка методики исследования внутренней структуры и механизмов разрушения наполненного полимерного композита с помощью синхротронного излучения». Авторы проекта — Станислав Лукин и Анастасия Искова.
Разовую поддержку в размере 120 000 рублей получили проекты:
«Цифровой двойник конфокального рентгеновского микроскопа». Автор проекта — Артем Скляров;
«In situ дифракционное исследование процесса восстановления смешанного MnCu оксидного катализатора». Автор проекта — Валерия Коновалова;
«Оптическая схема станции «РФА-Геология» ЦКП СКИФ». Автор проекта — Юрий Хомяков;
«Влияние градиента температуры на структурно-фазовый состав Inconel 939 при селективном лазерном сплавлении». Автор проекта — Арсений Колпаков;
«Изучение параметров неоднородностей и их влияния на чувствительность энергетических материалов методом микротомографии». Автор проекта — Николай Хлебановский;
«Прототип цифрового двойника регулируемой маски фронтенда ЦКП СКИФ». Автор проекта — Дмитрий Шакиров.
Победители конкурса кратко рассказали о своих проектах:
Григорий Жданкин:
— Мой проект посвящен проектированию и расчету оптической станции второй очереди ЦКП СКИФ «Монокристалл». Мне, как его автору, необходимо было понять, какая комбинация оптических элементов наиболее оптимальна для получения пучка синхротронного излучения необходимых размеров и интенсивности. Ее ключевая задача — исследование методом рентгеноструктурного анализа молекулярных кристаллов в условиях высоких давлений и низких температур. Такие исследования важны для выявления взаимосвязи структуры исследуемого вещества и его свойств. Понимание этого процесса позволит создавать новые и улучшать существующие лекарства, так как различные полиморфные модификации обладают различными, важными для фармацевтической промышленности, свойствами. Также фотокристаллографические эксперименты в условиях высоких давлений и низких температур важны для создания молекулярных переключателей. Победа в этом конкурсе поможет мне в реализации моего проекта.
Дмитрий Шакиров:
— Новизна нашего проекта по созданию цифрового двойника регулируемой маски фронтенда ЦКП «СКИФ» заключается в том, что вся установка (СКИФ), в том числе его составные части, являются уникальным оборудованием, и на данный момент цифровых двойников такого оборудования не существует. Цифровой двойник регулируемой маски будет частью комплексного цифрового двойника всего ЦКП СКИФ, работы по созданию которого ведутся в ИВМиМГ СО РАН. Цифровой двойник позволит значительно снизить стоимость обслуживания установки, а также даст возможность обучать персонал без вреда физическому изделию. С помощью цифрового двойника можно будет проводить виртуальные эксперименты и определять, что будет с установкой в различных, в том числе и аварийных, ситуациях. Главной задачей в рамках достижения поставленной цели нашего проекта является создание и обучение нейросети, которая будет основой цифрового двойника регулируемой маски. Нейросеть мы решили использовать, чтобы иметь возможность воспроизведения виртуальных экспериментов в режиме реального времени.
Станислав Лукин:
— Представленный мною проект заключается в подготовке образцов дисперсно-наполненного полимерного композита и проведении предварительных исследований их механических свойств с учетом межфазного слоя в области контакта матрицы и частиц наполнителя. По результатам проведенных исследований будет разработана предварительная схема эксперимента на станции источника СИ по in-situ исследованию механизмов разрушения и изменения внутренней структуры в подготовленных образцах при одноосном растяжении. Дальнейшая реализация эксперимента на станции источника синхротронного излучения позволит характеризовать изменения свойств дисперсно-наполненных полимерных композитов при их механическом нагружении, а, следовательно, изменение свойств деталей из данных материалов при их эксплуатации.
Артур Асылкаев:
— В рамках проекта ЦКП СКИФ к концу 2025 года будет смонтирована станция 1-3 «Быстропротекающие процессы» для исследования таких явлений, как распространение ударных или детонационных волн в среде, поэтому важно разработать методику с применением синхротронного излучения для изучения ударно-волновой сжимаемости инертных материалов, таких как политетрафторэтилен (фторопласт). Учитывая широкое использование инертных материалов (в том числе в самолетостроении), необходимо исследовать их реакцию на сверхвысокие давления (которые можно получить с помощью взрывчатых веществ). Практическая значимость моей работы заключается в получении динамики плотности фторопласта при высоких ударно-волновых нагрузках, ведь именно синхротронное излучение, в отличие от традиционных методов, позволяет получать динамику процесса.
Александр Горкуша:
— Мой проект посвящен разработке дифракционной методики для исследования функционально-градиентных материалов на основе никелевых сплавов. Его новизна заключается в адаптации традиционной схемы рентгенографического анализа к специфическим объектам - рельефным образцам с неровной поверхностью, где классические подходы часто дают значительные ошибки. Важность проекта состоит в создании лабораторной методики, которая позволит с высокой точностью определять параметры кристаллической решётки и проводить количественный фазовый анализ, что критически важно для разработки и контроля новых материалов.
Илья Герцель:
— Термическая стабильность является фундаментальным свойством, определяющим надежность и долговечность материалов в различных отраслях промышленности. Моя методика позволяет благодаря синхротронному излучению поставить эксперимент приближенный к условиям эксплуатации материалов (термическое нагружение материала с временным разрешением). Таким образом для реальных рабочих изделий можно определить температурный диапазон их работы, до того, как они будут переданы в эксплуатацию. Сейчас мало развита, как сама методология экспериментов, так и программное обеспечение для обработки данных, данные проблемы в будущем будут решены в рамках выполнения проекта.
Победе в данном конкурсе очень рад, поскольку теперь появляется возможно для развития предлагаемых методик на уникальной установке СКИФ.
Юрий Хомяков:
— Название моего проекта — «Оптическая схема станции «РФА-Геология» ЦКП СКИФ». Станция «РФА-Геология» второй очереди на данный момент является единственной запланированной станцией ЦКП СКИФ с сильнопольным шифтером (8 Тл) в качестве вставного устройства. Предполагается, что она будет функционировать в диапазоне энергий ~40-120 кэВ при поперечных размерах пучка СИ от ~10 мкм до ~10 см. На станции будут реализованы следующие методы: энергодисперсионная дифракция, микродифракция, микро-РФА (в т.ч. в конфокальной схеме), а также компьютерная томография.
Большая глубина проникновения жесткого рентгеновского излучения с энергией квантов порядка 100 кэВ открывает широкие перспективы для геологических исследований, в т.ч. исследований природных материалов, позволяя проводить недеструктивный анализ плотных макроскопических образцов (минералов, расплавов), содержащих заметные концентрации элементов с высоким атомным номером. В число таких образцов входят, например, мантийные ксенолиты (в т.ч. алмазоносные), а также фрагменты пород щелочных комплексов с которыми связаны месторождения редких и редкоземельных металлов.
Комбинация доступных на станции «РФА-Геология» методов в жестком рентгеновском диапазоне позволит визуализировать внутреннее строение образцов пород и пространственное распределение минеральных фаз, идентифицировать индивидуальные, в т.ч. новые, минералы, определять взаимную ориентировку кристаллических зерен. Кроме того, станция будет использоваться для исследования структуры и физических свойств мантийного вещества, определения фундаментальных констант и P-V-T уравнений состояния кристаллических веществ, жидкостей и флюидов, изучения кинетики протекания химических реакций in situ при высоких давлениях и температурах.
Целью исследования является разработка согласованной рентгенооптической схемы станции «РФА-Геология» для использования СИ в жестком диапазоне. В рамках исследования будут решены следующие задачи: обоснованный выбор и оптимизация вставного устройства; выбор оптической схемы, согласование рентгеновской оптики с источником, описание аппаратно-технологического оснащения станции; рентгенооптический расчет.
Результаты исследования войдут в концептуальный проект станции «РФА-Геология», на основании которого будет разработана техническая документация и изготовлено уникальное научное оборудование.