Исследование устойчивости противовирусного соединения тековиримата проводит студент 1 курса магистратуры кафедры химии твердого тела (ХТТ) Факультета естественных наук (ФЕН) Новосибирского государственного университета Александр Ивлев под научным руководством старшего преподавателя кафедры химии твердого тела ФЕН НГУ, кандидата химических наук Сергея Архипова и ассистента кафедры ХТТ ФЕН НГУ Дмитрия Колыбалова. В рамках своей работы ученые решали проблему отсутствия воспроизводимости экспериментов по получению твердых форм действующего вещества противооспенного препарата. Они предложили новые способы получения ряда твердых форм, один из которых в данный момент проходит процедуру патентования.
— Принято считать, что человечество победило вирус натуральной оспы (VARV). Факт ликвидации вызываемого им смертельно опасного заболевания был засвидетельствован в 1980 году на заседании Всемирной ассамблеи здравоохранения. На нем было принято решение о прекращении массовой вакцинации против этого вируса, что привело в конечном итоге к значительному снижению у населения иммунитета ко всем ортопоксвирусам — большому семейству ДНК-вирусов, к которым относятся возбудители таких заболеваний, как натуральная и коровья оспа, а также оспа обезьян (MPXV). Вирус натуральной оспы передается только от человека к человеку, но другие ортопоксвирусы могут передаваться от животного к человеку. Одним из таких вирусов является вирус оспы обезьян. В 2022 году Всемирная организация здравоохранения (ВОЗ) объявила вспышку оспы обезьян чрезвычайной ситуацией международного масштаба. По данным ВОЗ, с 1 января 2022 года по 30 апреля 2025 года зафиксировано в общей сложности 142 141 лабораторно подверженных случаев заражения вирусом MPXV, 328 из них имели летальный исход. В настоящее время ведется работа в направлении разработки и усовершенствования вакцин, диагностических тестов и лекарственных препаратов для борьбы с вирусом оспы обезьян. И своим исследованием мы вносим вклад в решение этой глобальной проблемы, — рассказал Александр Ивлев.
Тековиримат — это химическое соединение, обладающее противовирусным эффектом в отношении ортопоксвирусов. В январе 2022 года для лечения заболевания, вызванного вирусом оспы обезьян, Европейское агентство по лекарственным средствам одобрило применение препарата TPOXX®, действующим веществом которого является тековиримат. В 2023 году в Российской Федерации введен в гражданский оборот лекарственных средств препарат НИОХ-14, являющийся пролекарством тековиримата. Тековиримат имеет чрезвычайно высокую активность в отношении вируса натуральной оспы, вируса оспы обезьян, вируса коровьей оспы, вируса осповакцины и других ортопоксвирусов и при этом обладает низкой токсичностью. Препарат работает, воздействуя на вирусный белок р37, что предотвращает высвобождение вируса из инфицированной клетки и в конечном итоге препятствует его распространению по организму. В настоящее время применяются две лекарственные формы тековиримата: капсулы для перорального приема и порошок для приготовления инъекций для внутривенного введения.
Применение каждой из лекарственных форм имеет свои ограничения и соответствующий температурный режим хранения. Условия хранения капсул требуют поддержания температуры от 20 ºС до 25 ºС, однако допускаются отклонения от 15 ºС до 30 ºС. Условия хранения порошка для приготовления инъекций требуют поддержания температуры от 2 ºС до 8 ºС, допускается кратковременное (до 24 часов) хранение при температуре окружающей среды, не допускается заморозка. Создание этой лекарственной формы расширило границы использования тековиримата.
Данный препарат запатентован американской компанией SIGA technologies. Кристаллическая структура моногидрата тековиримата (твердая форма III) определена и задепонирована в Кембриджский банк структурных данных. На данный момент компанией SIGA technologies обнаружено шесть отличающихся по своему строению твердых форм тековиримата: два моногидрата, один полугидрат и три безводные формы. Однако кристаллическая структура была определена только для моногидрата тековиримата, представляющего собой твердую форму III,который легко получить, но который является метастабильным при комнатный условиях и постепенно переходит в твердую форму I. Кристаллические структуры остальных твердых форм оставались неизвестными.
— Мы изучаем устойчивость твердых форм тековиримата к изменению внешних условий. На прошлом этапе исследования, проведенного при поддержке программы «Приоритет-2030», нами были найдены условия для воспроизводимого получения твердых форм тековиримата, определены кристаллические структуры пяти твердых форм из шести известных и установлены различия в их строении. Различные твердые формы, содержащие в своем составе одно и то же соединение, могут значительно отличаться и по своим физико-химическим свойствам (в частности, кажущейся растворимости и скорости растворения), поэтому данная информация очень важна для идентификации уже известных твердых форм и при поиске новых твердых форм тековиримата, а также разработке способов их получения. Не менее важны данные об устойчивости и взаимном переходе друг в друга разных твердых форм тековиримата, так как это напрямую влияет на условия хранения лекарственных форм, — пояснил Александр Ивлев.
В рамках нового этапа исследования ученые решили важную проблему отсутствия воспроизводимости экспериментов по получению твердых форм тековиримата. Они подобрали ранее не описанные способы получения этих форм, один из которых в настоящее время проходит процедуру патентования. Воспроизводимый способ получения интересующей твердой формы позволяет ученым синтезировать необходимое количество интересующей формы, в полной мере исследовать свойства полученного соединения, вырастить кристаллы и определить пространственную структуру и ее свойства. Для патентования был выбран способ, обладающий значительным потенциалом к масштабированию.
На данный момент ученые произвели достаточное для исследований количество каждой твердой формы тековиримата и для каждой из них получили профили порошковых дифрактограмм лучшего качества, чем были представлены в патенте компании SIGA technologies. Для трех твердых форм тековиримата ученые уже показали устойчивость к понижению температуры. Ранее такие данные для исследуемых твердых форм не были описаны в литературе. В настоящее время проводятся эксперименты по исследованию устойчивости твердых форм тековиримата при нахождении в среде с повышенной влажностью. В совокупности с экспериментами по влиянию температуры это позволит сделать выводы о целесообразности их использования для разработки новых лекарственных форм противооспенного препарата, в основе которого используется метастабильная твердая форма.
При изучении структур и свойств различных форм тековиримата молодой ученый применял несколько методов: рентгенофазовый анализ, рентгеноструктурный анализ и дифференциальную сканирующую калориметрию. С помощью порошкового рентгенофазового анализа (РФА) были получены дифрактограммы, уникальные для каждой твердой формы, и дана оценка фазовой чистоты кристаллического продукта. Кристаллическая структура исследуемых веществ была расшифрована с помощью монокристального рентгеноструктурного анализа (РСА). Реакцию исследуемых форм тековиримата на изменение температуры определяли методом дифференциальной сканирующей калориметрии (ДСК). По характеру эффектов при нагревании или охлаждении образца определяли, какая из твердых форм более устойчивая, и определяли, при каких значениях температуры одна форма может переходить в другую, меняя строение своей кристаллической структуры.
На данном этапе молодой исследователь работает над определением структуры последней, шестой твердой формы тековиримата. Способ ее получения уже найден, остается найти условия для получения кристаллов. Затем планируется провести поиск новых твердых форм тековиримати и изучение их физико-химических свойств. Следующим этапом проекта станет проведение механохимических исследований.
— На производстве, с целью измельчения измельчения частиц фармацевтической субстанции, используется механическое воздействие, но оно же может приводить к переходу одной твердой формы в другую. То есть твердая форма вещества может изменить свою кристаллическую структуру и перейти в другую твердую форму этого же соединения. А, поскольку в промышленных условиях порошки субстанций будущих препаратов могут подвергаться механических воздействиям, очень важно знать заранее о том, какие последствия могут возникать вследствие этого технического процесса, — пояснил Александр Ивлев.
На завершающем этапе работы планируется провести сокристаллизацию действующего вещества препарата TPOXX® с другими соединениями и получить твердые формы, в которых молекула тековиримата будет связана с другими молекулами межмолекулярными взаимодействиями. Такие эксперименты необходимы для получения новых твердых форм с улучшенными свойствами, что в итоге должно улучшить свойства итогового продукта. Например, его растворимость или устойчивость к воздействию температур.
— Надеюсь, что наша работа в конечном итоге приведет к улучшению эффективности при использовании препарата и поможет врачам в их работе, — рассказал Александр Ивлев.
Работа выполняется при поддержке программы «Приоритет-2030» в рамках молодежного конкурса научно-исследовательских работ «Рентгеновские, синхротронные, нейтронные методы междисциплинарных исследований».